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1. ABSTRACT

Breast cancer is the most commonly diagnosed
cancer in American women. The underlying mechanisms
that cause aberrant cell proliferation and tumor growth
involve conserved pathways, which include components of
the cell cycle machinery. Proto-oncogenes, growth factors,
and steroids have been implicated in the pathogenesis of
breast cancer. Surgery, local irradiation, and chemotherapy
have been the mainstay of treatment for early and advanced
stage disease. Potential targets for selective breast cancer
therapy are herein reviewed.  Improved understanding of
the biology of breast cancer has led to more specific
"targeted therapies" directed at biological processes that are
selectively deregulated in the cancerous cells. Examples
include tamoxifen for estrogen receptor positive tumors and
imunoneutralizing antibodies such as trastuzumab for
Her2/neu overexpressing tumors.   Other novel anticancer
agents such as paclitaxel, a microtubule binding molecule,
and flavopiridol, a cyclin dependent kinase inhibitor, exert
their anticancer effects by inhibiting cell cycle progression.

2. INTRODUCTION

Breast cancer accounts for about 30% of all
cancers diagnosed in women in the United States (an
estimated 183,000 new cases in 2000) (1).  It is the second
leading cause of cancer death in women, accounting for
about 15% of all female cancer deaths (an estimated 42,000
deaths in 2000) (1). Breast cancer mortality has declined by
an average of 1.8% per year between 1990 and 1996,
particularly in white and younger women. This decline is
probably due to the more widespread use of screening
mammography and perhaps due to improved treatment of
early stage disease (2). Risk factors for breast cancer
include family history, reproductive status, and lifestyle
elements including diet and exercise. Although family
history is an important risk factor, approximately 80% of
all women with breast cancer have no family history of the
disease (3). The molecular analysis of human breast cancer
has been propelled by the use of transgenic mouse models.
These murine systems have been used both for molecular
analysis of candidate oncogenes and tumor suppressors and
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more recently for the testing of novel therapeutics. In the
future, the genetically engineered mouse models may
provide important insights into rational therapeutics based
on tumor genotyping.

2.1. Inherited Breast Cancer Susceptibility Genes
Although breast cancer is a heterogeneous disease in

its clinical and biological manifestations, patients with strong
family histories demonstrate a more predictable disease course
(4). One large population-based study (CASH study) estimated
that 7% of all breast cancers were due to familial breast cancer
associated with genetic susceptibility alleles (5). Genes
associated with high breast cancer risk (called high-penetrance
genes) are: BRCA1, BRCA2, TP53, PTEN, MSH2/MLH1, and
STK11 (reviewed in (6)). The last four genes are relatively rare
and variants in these genes are associated with the Li-Fraumeni,
Cowden, Muir-Torre, and Peutz-Jeghers syndromes
respectively.  Information on BRCA1 and BRCA2 is available
on the Breast Cancer Linkage Consortium Internet site
(http://ruly70.medfac.leidenuniv.nl/~devilee/BCLC/statbite.htm)
and the Breast Cancer Information Core site
(http://www.nhgri.nih.gov/Intramural_research/Lab_transfer/Bic
/index.html) (Table 1).

Inherited mutations of BRCA1 account for 1-5%
of human breast cancer and carriers (1/800 in the US) show
a lifetime risk of developing some form of cancer of 60-
80% (7). More than 140 distinct BRCA1 mutations have
been identified in breast and ovarian cancer-prone families.
In addition, the reduction in BRCA1 abundance in sporadic
breast tumors (8-10) suggests BRCA1 function may
regulate tumorigenesis through additional pathways. In
families with increased breast cancer susceptibility,
BRCA1 mutations occur in 52% and BRCA2 mutations in
32% of breast cancers (11). In families with a history of
both breast and ovarian cancers, BRCA1 mutations occur
in 81% and BRCA2 mutations in 14% (11), but only 58%
of families with site-specific female breast cancer have
mutations in BRCA1 or BRCA2. BRCA-associated breast
tumors have a 2-3 fold higher incidence (84%) of somatic
aberrations in p53 (i.e. mutations in the gene Trp53 or
protein accumulation) compared to sporadic grade-matched
breast tumors (reviewed in (12)). p53 is a protein involved
in cell cycle arrest and apoptosis. The TP53 mutants in
BRCA1 and BRCA2-associated tumors include some novel
types that fail to suppress transformation, exhibit gain-of-
function transforming activity using in vitro studies, yet
still retain other wild-type p53 functions (13).

A role for BRCA1 and BRCA2 in DNA repair
has also been described ((14-16) (reviewed in: (17)).
Phosphorylated BRCA1 or 2 associates with RAD51 (18),
a protein required for repair of double strand DNA breaks
by homologous recombination (19). BRCA1 participates in
an S phase, DNA damage-dependent cell cycle checkpoint
response co-localizing with RAD51 and BARD1 (20).
Mutations in BRCA1 and BRCA2 may therefore lead to
accumulation of damaged DNA, which fails to trigger cell
cycle arrest because of defective p53 function. The
proclivity towards the predominant involvement of BRCA1
mutations in breast cancer, although relatively ubiquitously
expressed, raises the possibility that BRCA1 may interact

with components of other pathways that are predominantly
dysregulated in human breast cancer. Examples of such
interactions are BRCA1 with the estrogen receptor (21, 22)
and BRCA1 with mammary oncoproteins including RAS,
cMYC, and HER2. In addition, the subnuclear location of
BRCA1 is likely important in normal tumor suppressor
function, as mislocalization occurs in the presence of these
transforming oncogenes (23).

Transgenic approaches to study the function of
BRCA1 have been hampered by the embryonic lethality of
the Brca1-/- animals at E6.5-9 (14) with partial rescue in the
p53 or p21 nullizygous genetic background (24). Mice with
mutations in BRCA1 develop tumors with allelic loss of
Trp53 (25), consistent with the high rate of TP53 mutations
in BRCA1-derived human cancers (26, 27). The Brca1-/-

cells grow poorly due to chromosomal loss and are
particularly sensitive to ionizing radiation (28) and
overexpression of BRCA1 is associated with the induction
of senescence or apoptosis (29, 30). Therefore investigators
have engineered conditional knockouts for analysis in
tissue specific paradigms (31) and remarkably the human
BRCA1 gene has been shown to rescue murine Brca1
deficiency, providing an ideal model for studying human
BRCA1 function (32).

The associations between candidate polygenes
(also called low-penetrance genes) and breast cancer have
been less clearly established. These genes include COMT,
ATM, CYP1A1, CYP2D6, CYP2E1, GSTM1, HRAS1, and
NAT2 (reviewed in (6)).

2.2. Breast Adenocarcinoma Pathology: Implications
for Local and Systemic Therapy

Adenocarcinoma is by far the most common
malignant neoplasm of the breast. The tumor may have
features suggesting a ductal epithelial origin (90%), a
lobular origin (5%), or both (5%). These tumors arise from
the terminal duct lobular unit, the functional unit of the
mammary parenchyma. Invasive ductal and lobular
carcinomas metastasize by lymphatic and hematogenous
spread to regional lymph nodes and distant sites, carrying
the risk of local and systemic recurrence (33).  Treatment
typically consists of removal of the primary tumor (by
lumpectomy or mastectomy) and regional axillary lymph
nodes, followed by systemic "adjuvant" chemotherapy or
hormonal therapy in order to reduce the likelihood of
systemic recurrence. The choice of the local procedure is
predicated upon establishing tumor free surgical margins,
which may require mastectomy if there is a large tumor, a
small breast, or other technical factors that render breast
conservation untenable. Lumpectomy is equally curative,
although local irradiation is usually indicated following
surgery to reduce the risk of local recurrence within the
breast (from about 40% to 5-10%). Identification of the
"sentinel node" by injection of a dye or
radiopharmaceutical into the tumor bed minimizes the
extent of axillary surgery and its attendant morbidity if the
"sentinel node" has no metastases. The accuracy of the
procedure is highly dependent upon the surgeon's
experience (34).  Ductal carcinoma in situ (DCIS) (3) on
the other hand, has the capacity to proliferate but lacks the
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Table 1. Web sites relevant to transgenic studies (from: http://www.aecom.yu.edu/pestell)
Non-murine Transgenics

• MIT Center for Genome Research http://www-genome.wi.mit.edu/
• Japan Animal Genome Database http://ws4.niai.affrc.go.jp/
• The Genome Database (H. sapiens) http://gdbwww.gdb.org/
• Flybase (D. melanogaster) http://flybase.bio.indiana.edu:82/
• The Fish Net (D. rerio) http://zfish.uoregon.edu
• Yeast Genome Database (S. cerevisiae) http://genome-www.stanford.edu/saccharomyces/

Murine Transgenics
• The Jackson Laboratory http://www.jax.org/
• The Mouse Genome Database http://www.informatics.jax.org/
• Induced Mutant Resources http://lena.jax.org/resources/documents/imr
• The Transgenic/Targeted Mutation Database http://www.jax.org/tbase/
• The Mouse Atlas Project http://genex.hgu.mrc.ac.uk/
• Portable Dictionary of the Mouse Genome http://mickey.utmem.edu/front.html
• Whole Mouse Catalog http://www.rodentia.com/wmc/

Knockouts
• Database of Gene Knockouts http://www.bioscience.org/knockout/knochome.htm
• BioMedNet Mouse Knockout Database http://biomednet.com/db/mkmd
• UCD Medpath Transgenic Mouse Searcher http://www-mp.ucdavis.edu/personaltgmouse1.html
• Nagy Cre and Flox Transgenic Databases http://www.mshri.on.ca/nagy/cre.htm
• Gene trap Insertions http://socrates.berkeley.edu/~skarnes/resource.html
• Transgenic Systems for Mutation Analysis http://eden.ceh.uvic.ca/bigblue.htm

Crossing Organisms
• National Center for Biotechnology Information http://www.ncbi.nlm.nih.gov/index.html
• Genbank http://www2.ncbi.nlm.nih.gov/dbEST/index.html
• Cross-referencing with Mammalian Phenotypes http://www.ncbi.nlm.nih.gov/XREFdb/
• Online Mendelian Inheritance in Man http://www3.ncbi.nlm.nih.gov/omim
• Human/Mouse Homology Relationships http://www3.ncbi.nlm.nih.gov/Homology/
• Biology of the Mammary Gland http://mammary.nih.gov/
• The Mammary Transgene Database http://mbcr.bcm.tmc.edu:80/BEP/ERMB/mtdb.html
• Human-Mouse Homology Database http://www.hgmp.mrc.ac.uk/DHMHD/dysmorph.html

Mapping and Sequencing
• UK Human Genome Mapping Resource Center http://www.hgmp.mrc.ac.uk/homepage.html
• German Human Genome Project http://www.rzpd.de/
• National Center for Genome Resources http://www.ncgr.org
• Genetic Linkage Analysis http://linkage.rockefeller.edu/
• Stanford Human Genome Center http://shgc-www.stanford.edu/
• Genethon Human Genome Research Center http://www.genethon.fr/genethon_en.html

Other
• Pasteur Institute http://www.pasteur.fr/recherche/BNB/bnb-en.html

capacity to invade the basement membrane of the duct and
metastasize. The natural history of DCIS is characterized,
therefore, by local but not systemic recurrence.
Interestingly, lobular carcinoma in situ (LCIS) is associated
with an increased lifetime risk of developing both invasive
lobular and ductal carcinoma. Its diagnosis does not require
any treatment of the primary lesion, and is viewed as a risk
factor for the subsequent development of breast cancer.

3. PATHOGENESIS

Breast cancer induction and progression are associated with
oncogenic activation, loss of checkpoint control tumor
suppressor function, and growth sustained by growth

factors and steroids (35, 36). Many candidate mammary
tumor suppressors and oncogenes, which have been
implicated in human breast cancer through pathological
observations, have been assessed using transgenic mouse
models. These studies in which candidate oncogenes have
been targeted to the mammary gland by mammary gland
specific promoters have identified the importance of
several types of proteins including growth factors, their
receptors, intracellular cell cycle proteins, and cellular
proto-oncogenes (Table 2).   The recent use of unified
pathological classifications for tumors and the shared use of
web sites outlining transgenic and knockout animals for use
by investigators has catalyzed global productive
interactions in breast cancer research (Table 1).
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Table 2. Transgenic mouse models of mammary cancer
Transgene Bitransgene Species Promoters References

Differentiation
• Wnt1 Murine MMTV-LTR 246
• Wnt10b Murine MMTV-LTR 247
• Notch4(Int3) TGF-β Murine MMTV-LTR, WAP 248; 249
• P-Cadherin Murine Null
Cell Cycle
• Myc bcl-2 Murine MMTV-LTR, WAP 102; 251
• p53-172H p53 Murine WAP, Null 252; 253
• Cyclin D1 Murine MMTV-LTR 51
• SV40TAg bcl-2 Murine MMTV-LTR 254 - 256
Oncogenes

• pp60
c-src Murine MMTV-LTR 128

• PyV-mT Murine MMTV-LTR 250
• Ras Murine MMTV-LTR 103
• β-catenin Y33 Murine MMTV-LTR
Receptors
• TGF-β DNIIR Murine MMTV-LTR 257
• Erb-B2/neu p53-172H Murine MMTV-LTR 93; 94; 253
• Ret-1 Murine MMTV-LTR 258
• Tpr-MET Murine MMTV-LTR 259
• Cdc37 Murine MMTV-LTR

• Aromatase Murine MMTV-LTR
Growth Factors
• FGF3(Int2) Wnt1 Murine MMTV-LTR 260; 261
• FGF7(KGF) Murine MMTV-LTR 262
• Heregulin Myc Murine MMTV-LTR 263
• HGF Murine MT 264
• IGFII Murine BGL, H19 265; 266
• TGF-α p53-172H; Myc; DMBA Murine WAP; MMTV-LTR; MT 269; 270
• TGF-β MMTV-infected Murine WAP 271

The promoter and the transgene used to drive mammary gland restricted expression are detailed (from  (245)).

3.1. The Cell Cycle in Breast Cancer

During breast cancer development, cell cycle deregulation
promotes cellular hyperplasia and tumor cell growth.
Abnormal gene expression is common, including increased
oncogene activity (c-ErbB-2, c-Ras, c-Myc) and loss of
tumor suppressor function (p53, pRB).   In addition, the
aberrant expression of cell cycle mediators contributes to
the transformation of normal mammary cells.

The mammalian cell cycle (Figure 1) consists of
four stages:  S phase, where DNA synthesis occurs, mitosis
(M) during which the actual cell division takes place, and
two gap or growth phases (G1,G2) during which required
cell components are replicated. A quiescent non-
proliferating state is termed G0. Mitogen-induced signaling
orchestrates the expression of kinase holoenzymes that
coordinate the stepwise (G1, S, G2, M) progression through
the cell cycle. Each kinase holoenzyme consists of a
regulatory subunit, the cyclin, and its catalytic partner, the
cyclin-dependent kinase (CDK).  The mammalian cyclin
family (cyclins A-H), selectively bind members of the Cdk
family.  Phosphorylation of these specific cyclin-Cdk
heterodimeric complexes by a Cdk activating kinase (CAK)
activates holoenzyme activity. The cyclin dependent kinase

inhibitors (CKIs) attenuate holoenzyme function (Figure 1)
The cyclin-Cdk complexes promote cell cycle progression
through specific stages or “checkpoints” by stimulating
gene expression of transcription factors and critical cell
cycle components.

Together with its catalytic subunits, Cdk4 and
Cdk6 (37), the cyclin D1 holoenzyme complex
phosphorylates the retinoblastoma tumor suppressor protein
pRB (38-40). Expression of cyclin D1 is induced early
thereby promoting G1 phase cell cycle progression in
mammalian cells.  The structurally related D type cyclins,
D2 and D3, are also capable of heterodimerizing with
Cdk4/6 and phosphorylating pRB in vitro (40).
Phosphorylation of pRB is essential for passage through the
restriction point in G1, and represents the critical step after
which the cell is then committed to another round of
division.  Cyclin D1 binds to and sequesters cell cycle
inhibitors such as p27Kip1 (Figure 2), which thereby
contributes indirectly to the promotion of cell cycle
progression.

The cyclin E-Cdk2 complex promotes cell cycle
progression by pRB hyper-phosphorylation, likely
functioning temporally downstream of cyclin D1 (41).



Cell Cycle in Breast Cancer

942

                        
Figure 1. The mammalian cell cycle (from: (40)). Orderly progression through the cell cycle involves passage through sequential
checkpoints.  Full holoenzyme activity of the cyclin D1-Cdk4 complex is induced by mitogen recruitment of CAK.  The cyclin
D1-Cdk4 complex phosphorylates the pRB protein leading to sequential phosphorylation by cyclin E-Cdk2 and release of free
E2F. The phosphorylation of pRB, and relief of transcriptional repression by pRB induces genes involved in the induction of S-
phase entry.

                         
Figure 2. Dual function of p27Kip1.  The cyclin D1 gene product binds its catalytic subunit partner (Cdk4) in the presence of an
assembly factor. The cyclin D1-Cdk4 holoenzyme is phosphorylated by a Cdk activating kinase (239) (CAK), which consists of
several subunits. Activated cyclin D1-Cdk4 can then phosphorylate its target substrate, the tumor suppressor pRB. Cyclin E-
Cdk2 also phosphorylates pRB. The role of the p21 CKI family, shown as p27Kip1, in regulating activity of the cyclin D1-Cdk
complex is controversial.  In some circumstances p27Kip1 is thought to inhibit activity of the complex (240). In other
circumstances, p27Kip1 does not inhibit activity of the complex (241) acting as an assembly factor (48). If p27Kip1 inhibits cyclin
E-Cdk2 but does not inhibit cyclin D1-Cdk4, cyclin D1 induction may promote S-phase entry by titrating p27Kip1 from an
inhibitory complex with cyclin E-Cdk2.  These findings suggest the stoichiometry or cell-type may be important in the action of
p27Kip1.
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Figure 3.  Cell cycle-regulated, cyclin E-Cdk2-dependent S-Phase phosphorylation events.  (Top) Cyclin E-dependent
phosphorylation of p220NPAT is required for the S-phase induction of the histone H2B promoter. p220NPAT is co-localized with
Cajal bodies at histone gene clusters. Activation of cyclin E-Cdk2 complexes results in a cyclin E-Cdk2–dependent,
ubiquitin/proteasome-mediated reduction of cyclin-Cdk inhibitor p27KIP1 abundance. Reduction is initiated by the threonine-
specific phosphorylation of p27KIP1 by catalytically active cyclin E-Cdk2, followed by a JAB1-dependent p27KIP1 cytoplasmic
translocation. (Bottom) Centrosome duplication is blocked by nucleophosmin (NPM/B23). Cyclin E-Cdk2-dependent
phosphorylation of NPM/B23 drives its dissociation from centrosome pairs. Centrosome separation and duplication now
proceeds, as both are required for mitosis.

cyclin E-Cdk2 activation is also necessary for initiation of
centrosome duplication and phosphorylates several
substrates in regulating these activities including p220NPAT

(42) and nucleophospmin/B23 (43) (Figure 3). Cyclin A also
triggers S phase entry coupled to Cdk2 and in cooperation with
cyclin E (44). Cyclin E colocalizes with p220NPAT in Cajal
bodies, subnuclear bodies involved in histone gene expression,
coincident with p220NPAT phosphorylation at the G1/S
boundary, suggesting an important link between cyclin E-Cdk2
and histone gene expression (45). Cyclin H phosphorylates the
cyclin D1/Cdk/pRB complex and is necessary for full cyclin
D1 activity (37, 46). The differential expression of cyclins and
Cdks is highly coordinated and regulated in large part by
growth factors.

Two families of cyclin-dependent kinase
inhibitors (CKIs), Cip/Kip and INK4, inactivate cyclin–
Cdk holoenzyme complexes (39, 40, 47). Members of the
Cip/Kip family include p21Cip1, p27Kip1, and p57Kip2,
whereas p16INK4a, p15INK4b, p18INK4c, and p19INK4d comprise
the INK4 inhibitor group.  The INK4 CKIs inhibit the
catalytic domains of Cdk4 and Cdk6. The broader acting
Cip/Kip family inhibits the activity of cyclin D-, E-, and A-
dependent kinases.  In a manner that is not well understood,
p21Cip1 and p27Kip1 may also serve an assembly role in cell
cycle regulation (48, 49).  The Cip/Kip family can promote
cyclin D-Cdk4 assembly and promote holoenzyme nuclear
localization (49, 50).  Several studies have documented that
overexpression of the CKI can inhibit mammary epithelial

cell proliferation.  For this reason consideration has been
given to using the CKIs in tumor suppressor gene therapy
for breast cancer.

The cell cycle becomes deregulated during
oncogenic transformation in association with failure of
normal restriction point control.  Overexpression of cyclins
(D and E), pRB inactivation, and reduced CKI activity are
frequent findings. The incidence of abnormalities of the
cyclin D1/Cdk4/p16/pRB axis in human cancers is second
only to that of p53 abnormalities (37). Cyclin D1 is
overexpressed in 30-45% of human breast carcinomas (40),
and in cooperation with other misexpressed genes,
contributes to the oncogenic transformation of normal
mammary cells.  The role for cyclin D1 as a “driver
oncogene” has been demonstrated in transgenic mice
overexpressing cyclin D1 (51).  Many oncogenes, including
activating mutants of Ras, pp60src, Rac, Dbl, and Neu,
induce cyclin D1 abundance through inducing cyclin D1
promoter activity (52-56). The mechanism of cellular
transformation is believed to occur mainly through the
phosphorylation and inactivation of pRB (39) and cyclin
D1-mediated sequestration of CKIs. In contrast to cyclin
D1 overexpression in human breast cancer, cyclins D2 and
D3 are not associated with breast tumor formation.

3.1.1. The p27Kip1 Tumor Suppressor in Breast Cancer.
The p27Kip1 protein was initially characterized as

a protein homologous to the tumor suppressor p21Cip1.
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Figure 4. p27Kip1 degradation. Nuclear p27Kip1 is phosphorylated by cyclin E-Cdk2 in a trimeric complex. The Jun co-activator
JAB1 also binds to phosphorylated p27Kip1 enhancing its nuclear-cytoplasmic translocation and sequential ubiquitination by the
SCF complex, and proteasomal mediated degradation.

When overexpressed in fibroblasts, cell cycle progression
was delayed and anti-sense p27Kip1 experiments
demonstrated mitogen-independent G1-phase progression,
indicating a critical role for p27Kip1 in the establishment or
maintenance of cellular quiescence (57, 58). Reduced
p27Kip1 levels are found in a variety of tumors including
breast cancers. Reduced p27Kip1 levels have independent
prognostic significance in a subset of tumors. Although loss
of a single p27Kip1 allele is not uncommon in human
tumors, the second allele is frequently wildtype (59). Thus
p27Kip1 does not fit the classic tumor suppressor paradigm
(59).

The abundance of p27Kip1 is regulated primarily
at a post-translational level, although translational control
also contributes to p27Kip1 protein regulation (Figure 4).
Thus p27Kip1 mRNA levels remain relatively unchanged
during the cell cycle transition however, the addition of
mitogens reduces p27Kip1 protein levels. For example in
quiescent 3T3 cells p27Kip1 protein levels decrease after
mitogenic stimulation (60-62). In human breast tumors
p27Kip1 degrading activity is increased. The degradation of
p27Kip1 upon mitogen stimulation is regulated by
antecedent phosphorylation. Cyclin E-Cdk2 induces p27Kip1

phosphorylation on T187 (63). A threonine-187 to alanine
mutant of p27Kip1, created a p27 protein that caused a G1
block resistant to cyclin E overexpression and whose level
of expression was not modulated by cyclin E.
Phosphorylation of p27Kip1 by cyclin E-Cdk2 enhanced
degradation of p27Kip1 thereby promoting G1-S phase
transition. Thus, the cyclin-Cdk complexes promote cell
cycle progression in mammalian cells by enhancing
degradation of the CKI. The growth factor mediated
reduction in p27Kip1 protein levels is mediated primarily
through enhanced ubiquitin-mediated degradation (64). The
substrate specificity of the ubiquitin ligases, called SCFs
(composed of Skp1, Cul1, and F-box proteins), is
determined by the specific F-box protein, which binds the
substrate. The F-box protein that regulates β-catenin
abundance is termed β-Trcp (65) and the p27Kip1 F-box

protein is called Skp2 (66). The abundance of Skp2 may
therefore be rate limiting in the destruction of p27Kip1.
Skp1 by contrast is involved in binding cyclin D1 and
p21Cip1  (67). Several lines of evidence suggest that Skp2
may function as an oncogene. Skp2 is frequently found
overexpressed in tumor cell lines, collaborates with Ras in
transformation, and can promote S-phase entry of quiescent
cells. The role of specific oncogenes in regulating Skp2
abundance remains to be determined.

The p21Cip1/p27Kip1 family of proteins are "dual
function" kinase inhibitors, either inhibiting or inducing
Cdk activity. The p21Cip1 family members have a conserved
region near the amino terminus which is necessary and
sufficient for binding to and inhibiting Cdk2 (68-70).
Functional sub-domains of p21Cip1  were defined through
deletional analysis. The binding of p21Cip1 to cyclin E-Cdk2
and cyclin A-Cdk2 was shown to involve both a Cdk2
binding domain and either an amino terminal or carboxy
terminal cyclin binding domain, whereas binding by cyclin
D1 involved only the amino terminal cyclin binding
domain (71). The carboxy terminal region of p21Cip1  allows
it to associate with proliferating cell nuclear antigen
(PCNA), a processivity subunit of the DNA polymerase δ
holoenzyme (68-70, 72, 73). Because the binding of p21Cip1

to PCNA inhibits the processivity of polymerization but
does not affect excision repair, it was suggested that p21Cip1

may serve to coordinate DNA replication with cell cycle
progression (74). p21Cip1 inhibits Cdk activity in a kinase
and concentration-dependent manner (75)  inhibiting Cdk4
and Cdk6 kinase activity with a Ki of 0.5-15 nM, but is a
poor inhibitor of  cdc2/cyclin B in vitro with a Ki of 400
nM (76).

The cyclin-Cdk complex to which p27Kip1 is
bound determines its functional activity. p27Kip1 is found
associated with cyclin E in a variety of cell types during
quiescence (60, 77). When bound to cyclin D1-Cdk4,
p27Kip1 may not be inhibitory (77-80) whereas cyclin E-
Cdk2 activity is inhibited by p27Kip1.  It is thought that the
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Figure 5. ErbB-2 receptor pathway, cell survival and proliferation. Upon activation, the ErbB-2 receptor induces several
downstream signaling pathways including the ERK and PI3K pathways. Induction of the ERK pathway is associated with the
induction of cyclin D1 transcription (53) and the induction of JAB1 nuclear translocation (242). Cyclin D1 is required for
proliferation and contact-independent growth. The Akt pathway is also an important downstream target of ErbB-2 and is likely
involved in cell survival (243). Specific sites within the ErbB-2 cytoplasmic loop contribute to the induction of the metastatic
phenotype (244).

removal of p27Kip1 from the cyclin E-Cdk complex is an
essential step for S-phase entry.  Through binding cyclin
D1-Cdk4, p27Kip1 is sequestered from cyclin E-Cdk2,
reducing its inhibition by p27Kip1 (77-80).     

3.2. Oncogenes
3.2.1. Neu

The neu (c-ErbB-2, HER-2) proto-oncogene
encodes a glycoprotein receptor tyrosine kinase (RTK).
Neu is a member of the growth factor receptor family that
includes the epidermal growth factor (EGF) receptor
(ErbB-1), ErbB-3, and ErbB-4. Amplification and
overexpression of neu is observed in 20-30% of invasive
human breast tumors (81-83), and overexpression of Neu
correlates with breast cancer progression and a poor
prognosis (84-87). The neu receptor family stimulates
mitogenesis through ligand-induced formation of hetero-
and homodimeric signaling complexes (88). Increased neu
expression induces a signaling pathway involving Ras and
Src (89-91). An activating mutation in the transmembrane
region of rat Neu (known as NeuT) (92) induces mammary
carcinoma with high frequency when overexpressed in
transgenic mice (93, 94). Similarly, wildtype Neu
overexpression in transgenic mice demonstrated tumor
formation associated with development of somatic
mutations of the neu transgene (95).  The transforming
ability of Neu has been linked to cell survival and through
mitogenic signaling pathways to the cell cycle regulatory
machinery (Figure 5).  Cyclin D1 has been identified as a

downstream target of oncogenic neu in MMTV-Neu
transgenic animals, and increased cyclin D1 activity is
required for neu-induced transformation  (53). The p27Kip1

tumor suppressor inhibits Neu-induced transformation in
mammary epithelial cells in vivo, consistent with the
clinical findings that reduced p27Kip1 levels in human breast
cancer confer adverse prognostic significance.

3.2.2. Myc
The c-myc oncogene has also been implicated in

the pathogenesis of human breast cancer.  myc
amplification and subsequent overexpression is one of the
most common genetic abnormalities seen in breast cancer.
Although present in about 15-40% of human breast cancer
cases (96-99), Myc overexpression has not been
definitively identified as a poor prognostic marker. The
myc gene encodes a nuclear phosphoprotein transcription
factor that controls cellular proliferation, differentiation,
and apoptosis through distinct domains (100).  Anti-sense
experiments have demonstrated Myc is necessary for
estrogen-induced proliferation in breast cancer (101) and
mammary targeted expression of c-Myc induces mammary
adenocarcinoma (102-104). Activated mitogenic signals
(from the MAP kinase pathway) induce Myc activity and
the Myc protein heterodimerizes with MAX to regulate
gene expression (35, 105). The mechanisms by which Myc
transforms cells is complex and may involve a number of
processes such as cell cycle activation and apoptosis. Myc
has been shown to inhibit pRB function, repress cellular
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apoptosis, and regulate phosphatases such as cdc25A (106).
Myc can also trans-repress several genes including tumor
suppressors (107). p27Kip1 function has been shown to be
antagonized by Myc, while (108) components of the cell
cycle such as cyclin E-Cdk2 (109, 110), cyclin D1, cyclin
D2 (111), and cyclin A are shown to be induced by Myc
activity (112) (reviewed in (113).

3.2.3. Ras
The ras gene plays an essential role in cell

proliferation (114), development, (115) and differentiation
(116-119). Aberrant expression of Ras in human breast
cancer has not been well demonstrated except for a
correlation between a mutated H-ras-1 locus and aggressive
breast cancer (120).  Mammary targeted overexpression of
activated Ras is sufficient for the induction of mammary
tumorigenesis which was associated with the induction of
cyclin D1 and a reduction in the abundance of a putative
tumor suppressor caveolin-1 (121, 122). Receptor-mediated
Ras signaling promotes cyclin D1 activation through the
initiation of a kinase cascade, where the sequential actions
of Raf/Mek/ERK kinases up regulate the cyclin D1
promoter (54, 61, 123). Although it has not been formally
established that the induction of cyclin D1 is required for
Ras-induced mammary tumorigenesis, Ras-induced skin
tumors were markedly reduced in the cyclin D1-/-

background, thereby strongly supporting previous studies
implicating cyclin D1 in Ras-induced transformation in
fibroblasts (124).

3.2.4. pp60c-Src

 The pp60c-src proto-oncogene encodes a 60 kDa
cytoplasmic non-receptor tyrosine kinase (125) which is
sufficient to both initiate and maintain cellular
transformation (126).  Activation of the pp60c-src tyrosine
kinase has been observed in a large proportion of human
breast malignancies (127). Overexpression of a
constitutively active mutant of pp60c-src under control of the
murine mammary tumor virus long terminal repeat
(MMTV-LTR) in transgenic mice induced mammary gland
tumor formation (128). The cell cycle regulatory targets of
pp60src in mammary epithelial cells and the intracellular
kinase pathways by which pp60src regulates cell cycle
regulatory pathways are being actively explored.   In
fibroblast cell lines, pp60v-src enhanced the rate of G1 phase
progression in association with an induction of cyclin D1
protein levels in NIH3T3 cells, implicating cyclin D1 in
pp60v-src action (129). In mammary epithelial cell cultures,
pp60v-src induced cyclin D1 protein levels and promoter
activity (52). Furthermore, cyclin D1-associated kinase
activity and protein levels were increased  in mammary
gland tumors from pp60c-src527F transgenic mice.  Chemical
inhibitors and dominant negative mutants demonstrated
optimal induction of cyclin D1 by pp60v-src and involved
the MAPK1,2/ERK1,2, the p38, and Jun N-terminal kinase
(JNK) members of the mitogen activated protein kinase
(MAPK) family. pp60v-src activation of cyclin D1 involved
a cAMP response element/activating transcription factor
(CRE/ATF) site (52).

pp60c-src likely plays at least a permissive role in
promoting cell survival and angiogenesis. Overexpression
of Neu leads to pp60c-src activation (130)  and leads to

anchorage-independent growth in human breast epithelial
cells (131). pp60c-src is also necessary for HGF-induced
growth and motility of mammary carcinoma cells (132).
Inhibition of pp60c-src kinase activity in cells
overexpressing pp60c-src and Neu inhibits the anti-apoptotic
protein Bcl-XL and leads to reversal of the transformed
phenotype (133). pp60c-src induces vascular endothelial
growth factor implicating pp60c-src in mammary tumor
angiogenesis (134). Together, these studies suggest the src
tyrosine kinase regulates tumor cell proliferation, apoptosis,
and influences angiogenesis, while enhancing the
tumorigenic properties of other RTK oncogenes.

3.3. The Transforming Growth Factor-β family
The transforming growth factor-βs (TGFβ) are

members of a superfamily that regulate cell growth and
function (135). The TGF-βs are widely expressed inhibitors
of cellular proliferation and are strongly implicated as
components of a tumor suppressor pathway in different
organ systems (136-139). The TGFs are secreted by human
breast cancers and in various transgenic mice models (140-
143).  TGF-β, found in malignant mammary tumors (144-
146) normally acts as a growth suppressor, but when
overexpressed, enhances tumor formation (146, 147). The
mechanisms by which TGF-β1 inhibits the cell cycle
apparatus are highly cell-type and context-dependent. TGF-
β1 activates several downstream signaling pathways
including the Smad transcription factors (148-150). In
cultured cells TGF-β1 can inhibit growth by inducing the
expression of the Cdk inhibitors (p15INK4B/MTS2 and
p21Cip1), through altering the distribution of p27Kip1 from
Cdk4/6 to Cdk2 (79) and through inducing inhibitory Cdk
tyrosine phosphorylation (151). The cdc25 phosphatases
activate the Cdks by dephosphorylating their inhibitory
tyrosine and threonine phosphorylated residues (152, 153).
In tissue culture experiments (151), and in transgenic mice
(154), TGF-β1 increases Cdk tyrosine phosphorylation
through repression of the Cdk-activating tyrosine
phosphatase cdc25A. Recent studies suggest that TGF-β1
may alter the binding of histone deacetylase proteins
(HDAC1) to pocket proteins including pRB, p130, and
p107, and that HDAC1 may be thereby recruited to specific
promoters to induce transcriptional repression (154).
Whether HDAC pocket protein associations are altered in
breast cancer remains to be determined. However, this area
is of interest in view of the highly specific HDAC inhibitor
drugs becoming available for cancer treatment (155-158).

3.4. Steroid Hormones
Steroid hormones induce breast cellular

proliferation. Estrogen stimulates cell cycle progression
early in G1 (159-161), and the induction of cell
proliferation was shown to correlate with increased
expression of cyclin D1 (162-164).  Estrogen accelerates
G1/S phase entry through upregulation of cyclin D1-Cdk4
and cyclin E-Cdk2 kinase activity together with modulation
of CKI function.  Progestins also affect cell cycle activity.
In breast cancer cell lines, progestins both stimulated and
inhibited cell cycle progression.  Progestins transiently
induced G1 phase activity by up regulating cyclin D1, then
upon completion of the cell cycle, caused cell cycle arrest
in G1 (165-168). The significant role of steroid hormones in
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the pathogenesis of breast cancer is evidenced by the
importance of using reproductive factors and exogenous
hormone levels as risk factor determinants. Furthermore,
the protective effect of early menopause and the
demonstration that the selective estrogen receptor
modulator, tamoxifen, reduces (by about one-half) the risk
of breast cancer in women who are at high risk for the
disease, adds further weight to this significant role for
steroid hormones.

3.4.1. The Estrogen Receptor and Breast Cancer.
 Steroid hormones mediate diverse effects on

cellular proliferation, in association with modulating the
activity of the cyclins and the CKIs. The proliferative
effects of estrogen on responsive tissues, including breast
and uterus, have been well documented (for reviews see
(35, 36, 165)).  The use of animals homozygously deleted
of the estrogen receptor alpha gene (ERα knockout mice)
confirmed the requirement for ERα in normal mammary
gland ductal growth (169, 170), angiogenesis (171), and
spermatogenesis (172).

A primary mechanism of estrogen action is the
ligand-dependent steroid hormone receptor activation
through specific response elements of target genes (173,
174).  In addition, estradiol regulates the Ras/Raf/MAPK
pathway with similar kinetics to polypeptide growth factors
operating through membrane tyrosine kinase receptors
(175). Peptide growth factors also modulate ERα activity
independently of ligand (176) and the ERα is capable of
interacting with a number of other transcription factors to
coordinate expression of downstream target genes,
including Sp1 and members of the AP-1 family (177). In
part, the coordinated regulation of these downstream
transcription factors is regulated by interaction with high
molecular weight co-integrator proteins, including SRC-1,
RIP-140, SNF2β-BRG1 (178), TASF(II)130 (179), and
TIFI (180) (reviewed in (181)).

3.4.2. Estrogen Receptor and the Cyclins.
The prognostic significance of cyclin D1 and

ERα in human breast cancer has been an area of some
ongoing controversy (182). A substantial recent study
demonstrated that overexpression of cyclin D1 mRNA
correlates with a worse prognosis within the ER-positive
breast cancer phenotype and may be a contributing factor to
the development of endocrine resistance in ER-positive
disease (183). These and other studies have contributed to
an interest in defining the molecular mechanisms by which
estrogens induce components of the cell cycle regulatory
apparatus to induce cellular proliferation.  Estrogens
stimulate cell cycle progression early in G1 phase in
cultured breast epithelial cells (159-161). Cyclin D1
expression is reduced by anti-estrogen treatment in T47-D
cells (184). The induction of cellular proliferation by
estrogen in breast cancer cell lines was found to correlate
with increased expression of cyclin D1 protein levels and
cyclin D1 kinase activity in MCF-7 and T-47D cells (162-
164). In the experiments conducted by Altucci, cell cycle
arrested MCF-7 cells were released from this arrest by 24-
48 hrs of treatment with the hydroxymethylglutyryl (HMG)
Co-A reductase inhibitor, simvastatin, followed by estrogen

treatment. Under these experimental conditions, cyclin D1
protein levels were induced rapidly between 1-3 hours. The
induction of cyclin D1 protein levels could be blocked at
the mRNA level by actinomycin D, suggesting a role for
RNA polymerase II. The cyclin D1 promoter was also
induced by estrogens indicating that induction by estrogen
may be a direct transcriptional event (163).

Cyclin D1 binds directly to the estrogen receptor
and regulates estrogen-dependent enhancer activity (185,
186). The transactivation function of ERα, when fused to a
GAL-4 DNA binding domain, was enhanced by
overexpression of cyclin D1.  This activity was induced
further by the addition of estrogens, an effect that was
mediated through the EF domain of the ERα (185, 186).
Cyclin D1 activated the ERα-mediated transcription in the
absence of ligand and the induction occurred independently
of the Cdk or pRB binding domains of cyclin D1 (185,
186). Because ERα status is often positive in the post
menopausal women, it has been proposed that the
overexpression of cyclin D1, which is frequently seen in
ERα positive tumors, may function to promote ERα
activation of target genes in the presence of low estrogen
levels. Through analysis of the molecular mechanisms by
which cyclin D1 enhances ERα activity, cyclin D1 was
found to bind the ERα co-activator SRC-1 through a
carboxyterminal LLXXXL motif, with deletion of this
region reducing ERα activation by 80% (187).  Because the
LXXL motif of SRC-1, which was required for cyclin D1
binding (187) is a conserved motif amongst several co-
activators (188), these studies imply cyclin D1 may interact
with other co-activator proteins. Thus, cyclin D1
stimulation of estrogen enhancer activity shows that cyclin
D1 mediates hormonal effects on target gene sequences by
Cdk-independent mechanisms. Cyclin A overexpression
also enhances ERα activity and ERα is phosphorylated
between amino acids 82 and 121 in vitro by cyclin A, an
effect that was inhibited by p27Kip1 overexpression (189).
Although most of the studies described above have focused
on the ERα gene, ERβ mRNA abundance is regulated by
the ERα gene (190). In addition, ERα and ERβ genes
differentially regulate AP-1 activity (191), suggesting that
the regulation of the Cdks by estrogens is under complex
feedback loops.

3.4.3. Estrogen Receptor and the CKI
The CKIs are also important in estrogen-induced

mitogenesis in breast cancer cell lines. Overexpression of
p16INK4a for example, blocked the estrogen-induced S-
phase entry in MCF7 cells (192), indicating a critical role
for the CKIs in estrogen induced mitogenesis. The
mechanisms by which estrogen regulates CKI function can
be mechanistically considered as three distinct but
functionally inter-related effects.  Firstly, estrogen
treatment induces alterations in the subcellular localization
of the CKIs. Estrogens induce cyclin E-Cdk2 activity in
association with an alteration in the relative distribution of
p21Cip1 from an inhibitory cyclin E-Cdk2 complex to the
cyclin D1-Cdk4 complex (193). Because p21Cip1  can
inhibit cyclin E-Cdk2 activity, but at specific stoichiometric
ratios may foster cyclin D1-Cdk4 activity, the net effect of
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the relocation of p21Cip1  is to promote cell cycle
progression and cellular proliferation (193). Secondly,
estrogen alters the nature of the multimeric complexes
formed between the cyclin-Cdk complexes.  In studies by
Prall et al. (1997), estrogens reduced the amount of the Cdk
inhibitors p21Cip1  and p27Kip1 protein bound to cyclin E-
Cdk2 (194).  Thirdly, estrogen treatment results in the
formation of higher molecular weight complexes of cyclin
E-Cdk2 which lack p21Cip1  and p27Kip1. These high
molecular weight complexes contained increased Cdk2
phosphorylation at Thr 160. Therefore, the estrogen-
induced activation of cyclin E-Cdk2 appeared to involve
both a reduction in the associated CKIs and increased CAK
activity. The use of gel filtration chromatography was
critical to demonstrating the alterations in the
cyclin/Cdk/CKI multimeric complexes. The nature of these
high molecular weight complexes is currently unknown,
however it is possible that these complexes include
estrogen receptor co-activator proteins, such as SRC-1 or
p300.

In recent studies of estrogen action both cyclin
D1-Cdk4 kinase activity and cyclin E-Cdk2 activity were
induced by estrogens. Myc expression is also induced by
estrogens and forced overexpression of Myc in MCF7 cells
induces similar changes in cyclin E-Cdk2 activity to those
induced by estrogen treatment (195). Thus, overexpression
of Myc, cyclin D1, or estrogen treatment each result in
decreased association of p21Cip1 with cyclin E-Cdk2 and
result in the formation of a high molecular weight
multiprotein complex with high levels of histone H1 kinase
activity (195).

4. ANGIOGENESIS

 The development of new blood vessels, or
angiogenesis, is essential for tumor survival.  Normal breast
tissue contains numerous angiogenic agents, particularly
vascular endothelial cell growth factor (VEGF) and basic
FGF, that may promote new blood vessel growth during
early oncogenesis (196).  This is particularly important in
rapidly growing cancers where the native blood vessels can
no longer sustain the increased metabolic requirements of
the growing tumor. Histological progression from
hyperplasia through CIS to invasive carcinoma is
associated with development of distinct microvascular
patterns and a complex pattern of increased angiogenic
factor expression (196, 197). Not surprisingly, the degree
of distant tumor growth (metastasis) is directly proportional
to the number of capillaries nourishing the tumor (35).
Neovascularization in breast cancers is enhanced by growth
factors, including FGFs and TGFs, and endothelial-derived
factors (198).

5. TUMOR PROGRESSION AND METASTASIS

5.1. Tumor Progression
Amplification of c-ErbB-2 and Myc in human

breast cancer may be an early indication of DNA instability
(199). The progression of breast cancer is characterized by
the increased activity of transcriptional activators.  The
activity of the Activator Protein-1 (AP-1) transcription

factor complex may be involved in the loss of growth
factor-dependence (200). Invasive carcinoma cells
differentially express genes for apolipoprotein D,
chemotactic cytokines such as RANTES, angiogenic
factors such as tissue factor precursor, chromatin
remodeling factors SWI/SNF, and matrix proteins (201).
The development of laser capture microdissection and high
density cDNA microarrays are powerful new techniques
that will allow a more detailed analysis of gene expression
profiles during tumor progression in human breast
neoplasia.

5.2. Metastasis
The spread of cancer, or metastasis, characterized

by tumor cell invasion of surrounding tissues with
sustained growth at distant sites, is the primary cause of
mortality in breast cancer. The induction of angiogenesis
and the evasion of host immune responses, together with
cell proliferation rates at metastatic sites are also important
factors in the metastatic process. An increasing number of
gene products have been identified that contribute to
invasion and detachment of cancer cells from the primary
tumor. Furthermore, blood and lymph vessel mediated
transport, extravasation, and tumor cell arrest at distant
tissues are also critical for metastasis (202, 203).  Genes
involved in breast cancer metastasis include mts-1, nm23,
WDNM-1, WDNM-2, pGM21, and stromelysin-3 (204-208).
The expression of mta1 for example correlated with a high
metastatic potential in both rat and human breast cancer
metastasis models (209).  The identification of these genes
may provide rationale basis for targeted anti-metastatic
breast cancer therapy.

6. NOVEL THERAPIES

6.1.Targeting the Cell Cycle for Breast Cancer Therapy
Strategies for reducing breast cancer mortality

include screening, prevention, and improving the treatment
for early and advanced stage disease. As metastatic disease
is generally considered incurable, improving the treatment
of early stage disease represents a more prudent strategy to
reduce mortality. Surgery, hormonal therapy,
chemotherapy, and irradiation have been the mainstays of
treatment for curing early stage disease. Despite surgical
removal of the primary tumor, relapse at local or distant
sites may occur within a few months to more than 40 years
after presentation, although most relapses occur within five
years after primary therapy (210).  The risk of relapse is
dependent principally upon the disease burden (as reflected
by the number of axillary lymph nodes containing
metastases) and upon the virulence of the tumor (as
reflected by poor nuclear grade, the expression of certain
oncogenes, or other biological factors). Cytotoxic therapy
administered after surgery ("adjuvant therapy") results in a
relatively modest 25-35% reduction in the risk of relapse
(211), presumably by eradicating micrometastatic disease
below a critical threshold that is necessary for the
development of clinically evident metastases. Cytotoxic
therapy kills neoplastic cells by multiple mechanisms
including DNA damage (alkylators), disturbing metabolic
pathways (antimetabolites), or interfering with DNA repair
mechanisms (anthracyclines), elements that are also shared
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by normal cells. The non-specificity of these agents,
therefore, also produces undesirable side effects, including
short term (myelosuppression) and long term toxicities
(cardiomyopathy, acute leukemia).

Strategies for modulation of the cell cycle (as
reviewed by: (212)) include direct or indirect inhibition of
the Cdks. Indirect strategies include overexpression of
endogenous Cdk inhibitors (e.g., lovastatin-induced
upregulation of p21Cip/Waf1, p27Kip1), small peptides that
mimic endogenous Cdk inhibitors, depletion of cyclin/Cdk
subunits (e.g. antisense molecules), or modulation of
proteasomes and upstream phosphatases and kinases.
Direct strategies include the use of small molecules that
directly inhibit the Cdks, such as purine derivatives and the
paullones (212). The small molecule inhibitors that have
been most extensively studied in the clinic include
flavopiridol and staurosporine (UCN-01) (213). For
flavopiridol, diarrhea, nausea, vomiting, neutropenia, and
fatigue are representative dose limiting toxicity indicators
(214). Minor response or disease stabilization has been
observed in some patients with lymphoma, renal cell
carcinoma, and colonic carcinoma (214).  Experience with
staurosporine has been much more limited. Toxicities have
included nausea, vomiting, insulin resistance, and
pulmonary toxicity (212).

6.2. Targeted Therapies Available in the Clinic
Several "targeted therapies" that selectively effect

cancerous cells are currently available in the clinic (212).
Estrogens interact to promote cellular proliferation through
interactions with the cell cycle apparatus. The selective
estrogen receptor modulator tamoxifen reduces the risk of
relapse by about 50% when used in the adjuvant setting
with considerably fewer side effects than chemotherapy in
individuals whose tumor expresses the estrogen receptor.
Trastuzumab (Herceptin), a humanized monoclonal
antibody that is directed against HER2/neu proto-oncogene
produces significant (> 50%) tumor regression in about
15% of patients with Neu-overexpressing metastatic
disease that is refractory to conventional therapy, and in
about 23% of patients when used as first line therapy (215).
The addition of trastuzumab to standard chemotherapy
significantly improves response rate, response duration, and
survival (216). Trastuzumab action involves multiple
mechanisms including induction of signal transduction
pathways that favor apoptosis, cell cycle perturbation,
antibody-dependent cellular cytotoxicity, complement-
dependent cytotoxicity, and inhibition of nuclear excision
repair mechanisms that confer alkylator agent resistance
(217). Studies are now in progress that will evaluate
trastuzumab in the adjuvant setting (218).

Taxanes are a third example of relatively
selective therapies (paclitaxel and docetaxel), but exhibit
considerably less specificity than tamoxifen or
trastuzumab. The taxanes bind to tubulin, promote
assembly of microtubules, and inhibit their
depolymerization (219).  In addition to their microtubule
effects, the taxanes induce apoptosis (220), inhibit
angiogenesis (221), invasiveness (222), cell motility, and
metalloproteinase production (223).   Paclitaxel is approved

for the treatment of early stage breast cancer since it
reduces the risk of relapse by about 20% when used as a
component of adjuvant cytotoxic therapy (224). Other
studies are currently in progress to determine whether other
taxanes or taxane-like agents are more effective than
paclitaxel, such as docetaxel, epithilone-B, taxopterin, and
tularik.

6.3. Other Targets for Cancer Therapy
 The matrix metalloproteinases, a family of
enzymes that are critical for the metastatic cascade and
neoangiogenesis, are a promising target. Numerous
inhibitors of the metalloproteinases are currently being
tested in the clinic, and some trials have demonstrated that
some of these agents may delay progression of some tumor
types (225, 226).   Some anti-angiogenic agents have
shown some efficacy in vascular tumors such as Kaposi's
sarcoma (227, 228), although experience with these agents
in breast cancer has thus far been limited and less
encouraging (229).

Farnesyltransferase has been a target of particular
interest in Ras-dependent  cancers, since post-translational
farnesylation of Ras is necessary for cellular transformation
(230). In a transgenic mouse study of farnesyltransferase
inhibitors (FTIs), and using mammary specific
overexpression of activated Ras, it was demonstrated that
FTIs inhibited the formation of malignant mammary
tumors in these mice (231). Surprisingly, the FTIs also had
activity in tumors lacking Ras mutations and may thus
mediate their effects via alternative mechanisms (232).
Several of these agents are being studied in the clinic,
although they are in the very early stages of development
(230).

The receptor tyrosine kinases (RTK) are a
promising target for developing specific therapies. This is a
family of transmembrane glycoproteins that have a
cytoplasmic tyrosine kinase domain, and the subfamilies
include the human epidermal growth factor receptors
(including HER2/neu) and the receptors for various growth
factors that were previously described. Numerous RTK
inhibitors are being evaluated in the clinic, including those
that target platelet derived growth factor receptor (SU101,
CGP57148, PD166285), epidermal growth factor receptor
(ZD1839, CP358 774, CGP 59236), and the receptor for
vascular endothelial growth factor, Flk-1/KDR (SU5416)
(233, 234).

 Some genetic expression properties of the breast
cancer cell may be exploited for delivery of a toxic agent,
enhancing tumor-specific immunity, or for mediating gene
transfer. For example, a recent phase I clinical trial
successfully used the cytosine deaminase gene driven by
the human erbB-2 promoter to convert inactive
fluorocytosine to active fluorouracil only in cells
expressing ErbB-2 (235). Alternative epitopes expressed on
tumors have been used for selective therapies. Recombinant
vaccinia virus used in an experimental pulmonary
metastasis model demonstrated that 90% of mice
innoculated with the vaccine were protected from the
development of metastasis (236). Other approaches include
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up regulating specific genes critical for normal cellular
activity, while simultaneously suppressing or knocking out
tumor-specific genes. p53 represents the most likely
candidate and is currently being evaluated in  phase I and
phase II clinical trials. This approach has been limited
however, by the rather poor ability of most vectors to
efficiently deliver the desired gene into the tumor cell
(237).

7. FUTURE DIRECTIONS

The cell cycle is a focus for studying cancer
growth and progression since an underlying theme in
human breast cancer and other cancers is enhanced cell
cycle activity leading to unrestricted growth. With the
identification and characterization of molecular
determinants of normal growth, development and
differentiation, and the application of this knowledge
toward understanding the development of cancer, many
aspects of oncogenesis and metastasis have been unraveled.
The analysis of overexpressed gene products, growth
factors, and other cellular agents stimulating cell
proliferation and tumor growth has imparted some insight
into the mechanisms of cancer formation. These insights
have provided the basis for developing specific therapies
that are targeted at interfering with particular biological
processes. Transgenic mouse models have provided
fundamental information that has substantially advanced
our understanding of breast cancer mechanisms and
therapeutics. Advances in the future will likely come in part
through identifying genetic predisposition to tumor
development through applying genomic array analysis
technology (238). This technology will likely also be key in
identifying important new therapeutics.
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