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1. ABSTRACT

This review covers the emerging field of
expression microarray technology as applied to human
brain tumors. Dua and single color techniques are
described and contrasted, and the importance of proper
handling of the starting materia is emphasized.
Difficulties with data interpretation are described and
current approaches to cluster anaysis reviewed.
Microarray studies of general importance or specificaly
pertaining to brain tumors, published in theinitial few years
of this technology, are summarized.  Although this
technology is dtill in its infancy, microarray has
distinguished prognostic groups within medulloblastomas
and separated medulloblastomas from morphologicaly
identical supratentorial PNETs. Differential expression of
a number of genes previously known to be involved in the
pathogenesis of brain tumors has been confirmed. These
genes include EGFR, VEGF, transcription factor AP-2,
insulin growth factor binding proteins 3 and 5, matrix
metalloproteinases,  tissue  inhibitors of  matrix
metalloproteinases, CD44, basic fibroblast growth factor,
and cathepsin H. Finaly, novel roles for a few genes,
including insulin growth factor binding protein 2 and
apolipoprotein D, have been revealed for the first time by
expression microarrays.

2. INTRODUCTION

Cancer is a process in which genes and gene
expression are disrupted causing abnormal cell behavior.
Some of the characteristic changes observed as normal cells
transform into cancer cells include self-sufficiency without
growth signals, insensitivity to anti-growth signals,
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inhibition of apoptosis, unlimited potential for cell division,
increased angiogenesis, and increased cellular motility (1).
Most of these changes are reflected in corresponding
differences in mMRNA transcription patterns. The potential
of microarray technology to quantitatively assay the mRNA
levels of essentially every human gene in a single
experiment has naturally kindled high hopes for elucidating
the molecular mechanisms of oncogenesis.

Although still in its infancy, current microarray
expression techniques have highlighted individua genes
involved in malignant behavior and have shown the
potential to significantly improve prognostic prediction in
selected human malignancies. To what extent this
technology will ultimately contribute to cancer research
and improvements in cancer therapies remains to be seen.

Thisreview will summarize contributions that the
emerging field of expression microarray technology has
made to the study of human brain tumors up to the present
time. It will focus on a few genes that initial studies have
implicated in the pathogenesis of human brain tumors,
including insulin growth factor binding protein 2, and
apolipoprotein D. It will also cover some of the potentials
and pit falls of microarray assays.

Although beyond the scope of this review, there
is a pressing need for standardization of microarray data
formats among investigators.  The microarray gene
expression data group (http://www.mged.org) is currently
working to address this issue and has proposed, as an
academic standard, the minimum information about a
microarray experiment (MIAME)(2).
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3. SINGLE- vs. TWO-COLOR PLATFORMS

Microarray assays are performed by specific
hybridization to cDNA or oligonuclectide probes
immobilized on a glass or silicon substrate. The main
strength of microarray lies in its high throughput, i.e., the
capacity to assay tens of thousands of different mMRNA
species simultaneously.  Compared with subtractive
hybridization or differential display, microarray technology
is more rapid and quantitative, and it does not require the
large amounts of sequencing necessary for SAGE analysis.
However, since false positive and negative results occur,
data needs to be confirmed by conventional methods such
as gquantitative real-time PCR, Northern blots, Western
blots, or immunohistochemistry.

Two main types of microarray systems are single
color (sold by Affymetrix) and dual color. The most recent
set of Affymetrix human GeneChips, the HG-U133 Array
set, assays 33,000 genes, essentially the entire human
genome, on two microarrays, each approximately the size
of a large postage stamp. In this system, short
oligonucleotide probes are used allowing larger numbers of
probes to be affixed per microarray. Each gene is
represented by a set of eleven or more probe pairs that are
25 base pairs in length and correspond to different regions
of the gene. Each probe pair consists of one probe exactly
matching the base pair sequence of the target gene, and one
probe with a mismatch in the central position. Probes are
selected to minimize cross-reactions due to alternatively
spliced or homologous genes, and then synthesized in situ
on a silicon chip by a proprietary photolithographic
procedure. Gene expression is calculated from the
brightness and consistency of hybridization to the multiple
different probes representing each gene using Affymetrix
software.  Although reference RNA is not required for
single color analysis, data is frequently compared to a
reference RNA assayed on a separate microarray.

In contrast with the Affymetrix single color
approach, dual color systems measure the relative mRNA
abundance of two samples that simultaneoudly bind to cDNA
or oligonucleotide probes spotted on a glass dide. The
experimenta sample is typicdly labeled with the fluorescent
ribonuclectide Cy5, while the reference sample islabeled with
Cy3. Thetwo labeled populations of cDNA or cRNA arethen
simultaneoudly hybridized to the microarray, fluorescent
intensity is quantitated by a confocal scanning laser, and
the difference in brightness at the two wavelengths is used
to calculate the differential expression. The data in both
single and dua color systems is normalized against the
overall measured brightness of the fluorescent markers
across the entire microarray or across selected house
keeping genes. The result is an expression profile, i.e, a
list of differentially over or under expressed genes relative
to the reference mRNA.

One of the man technica problems of
microarray assays is the variability in hybridization kinetics
inherent in assaying thousands of probes simultaneously.
In the Affymetrix single color system, variability in
hybridization kinetics is circumvented by assaying each
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gene with several oligonucleotide probes, half containing a
centrally located mismatched base pair. In this system,
experimental data can be compared on the computer with
any number of normal, or control hybridizations performed
on the same type of micoarray plate. In dual color systems,
this problem is circumvented by measuring mMRNA
hybridization relative to a reference mRNA sample. Thus,
in dua color systems al comparisons require a single
common reference mMRNA.  Data from experiments
performed on one color microarrays can be compared to
data from two color microarrays qualitatively, (i.e., up or
down regulated), but not quantitatively.

4. SPECIMEN PREPARATION

Microarray analysis requires 5 to 75 micrograms
of total RNA, depending on the particular system. This
corresponds to a minimum of approximately 300
nanograms of mMRNA or 30,000 cells. Fresh or snap frozen
tissues are used, and tissue is selected to contain as pure a
population of cells as possible.

One of the major challenges in generating
microarray data is to isolate RNA from a specific cell
population without cross-contamination from norma or
inflammatory cells included within the specimen. In most
cases this can be accomplished by Laser-capture
microdissection (LCM). While LCM offers the advantage
of a relatively pure tumor cell population, it has the
disadvantage that the total RNA yield is generally less than
one microgram, considerably less than the amount required
for hybridization. Two very similar protocols using
recombinant T7 polymerase to linearly amplify LCM-
derived mRNA have been used with success for DNA
microarray analysis (3, 4). Using this process, microarray
analysis has been successfully performed on LCM captures
from as few as 1000 cells (5). However, because of the
generally lower RNA yield from LCM tissues, most
published microarray studies of cancers have not used
LCM tissues as starting material (6-8). In the case of
infiltrating astrocytomas, particularly low-grade tumors,
completely excluding non-neoplastic elements may be
virtually impossible because of the close intermingling and
difficulty distinguishing invasive neoplastic cells and non-
neopl astic elements.

In microarray analyses of brain tumors, normal
brain tissue is the most commonly used source of reference
MRNA in either single or dual color systems. However,
because brain tissue is complex compared with other
organs, this tissue is not ideal for comparison in most
studies. The most common primary brain tumors are
astrocytomas, while norma brain tissue, either gray or
white meatter, consists of only approximately 20%
astrocytes. Conseguently, use of normal brain tissue as a
reference may disclose cell type expression differences that
are unrelated to neoplasia. These differences may be
between astrocytes and neurons, when gray matter is used
as areference, or between astrocytes and oligodendrocytes,
when white matter is used as a reference.  Approximately
80% of the cellsin white matter are oligodendrocytes.
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In addition, since normal brain tissue is neither
proliferative nor motile, it is not surprising that studies
using normal brain as a reference have shown that
astrocytomas  differentially express proliferation and
motility related genes. Proliferation and motility are not
unique to malignancy; rather, it is loss of control of
proliferation and motility that defines malignant behavior.
Theoretically, non-neoplastic reactive astrocytes, which are
motile and proliferative, might serve as a better source of
reference RNA than norma brain; however, pure
populations of reactive astrocytes are unfortunately not
available. As an dternatively to norma brain, feta
astrocytes(9) or pilocytic astrocytomas(10, 11), a
biologically distinct and generally non-fatal type of
astrocytoma, have been used as a source of reference
mRNA.

5. DATA INTERPRETATION

Perhaps the most formidable challenge facing the
microarray investigator is data analysis, i.e. interpreting
that long and daunting list of up and down regulated genes,
most of which are of unknown function. Severa factors
contribute to difficulties interpreting microarray data. The
function of most genes and their interactions are either not
understood or poorly understood. Variability in
hybridization kinetics may render comparisons between the
expression levels of two different genes difficult. Cellsthat
might show distinct expression patterns, i.e. those in
different phases of the cell cycle or belonging to different
clones, are lumped together and assayed at the same time.

Another problem that can lead to difficulty
interpreting microarray data is the considerable variability
in results that sometimes occurs. This variability may be
either technical or biological in origin. For example
according to Affymetrix, microarray analysis of two
supposedly identically treated isogenic mice produces
detectable differences in approximately 20% of the genes
on the microarray. According to this manufacturer, the
source of this variability is overwhelmingly biologic and
not technical. However, others have found that biologic
and technical factors contribute more equally to variable
results (12).

Microarray data may be organized either
according to prior knowledge concerning gene function, or
statistically without regard to gene function. Some studies
have limited the genes assayed to those of known function,
or grouped differentially expressed genes into different
functional groups based on previous knowledge about gene
function. For example, up regulated genes may be grouped
into those involved in proliferation, invasion or DNA repair
(i.e., progression). These types of analyses ignore genes of
unknown function, which comprise the mgjority of genesin
the human genome, and aso tend to highlight genes that
have already been studied in human malignancies.

Statistical approaches have been used to address
the challenge of interpreting variable results and separating
true biologic signa from technical noise. In genera, the
larger the number of patient samples in the database, the
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easier it is to demonstrate statistical significance and
determine which genes are genuinely characteristic of
various cancer subtypes.

The first step in most statistical analyses is
prefiltering out those genes that do not vary between
samples. These genes can be used to estimate the overall
noise in the microarray experiment, but are not useful for
detecting meaningful differences. Next, subsets of genes or
samples highly correlated with each other are grouped into
clusters. By clustering together genes that behave similarly
across a set of experiments, it may be possible to identify
sets of coordinately regulated genes. In some cases, a gene
of unknown function may behave similarly to a group of
genes of known function, allowing the investigator to infer
functional relationships.

Clustering may be supervised or unsupervised.
In supervised clustering, or “class prediction,” a subset of
genes that is highly correlated with a pre-defined
distinction is identified. Pre-defined distinctions such as
good vs. poor clinica outcome, drug response vs. non-
response, or tumors with a certain histologic feature vs.
tumors without that feature, may be correlated with
differentially expressed genes. Unsupervised clustering, or
“class discovery,” is based solely on a large data set of
filtered genes, unbiased by pre-defined distinctions.

At least six analytical approaches to clustering
microarray data have been described. These are
hierarchical clustering (13), self-organizing maps (SOMs)
(14, 15), principa component analysis (16, 17), relevance
networks (18), quality threshold (QT) clustering (19, 20),
and terrain maps (21). Each of these approaches posess
different strengths and weaknesses in the manner in which
they compare, include, and exclude data to sort out true
biological signals from experimental noise.

Table 1 provides alist of links to microarray data
analysis software packages that are freely available to
academic researchers. Currently, the most widely used data
analysis method is hierarchical clustering, a relatively fast
and simple approach (13). In the first step, the two most
similar elements are linked into a cluster, which is
subsequently considered as a single element (or
pseudoelement). This step is then repeated until the
elements are sorted into a phylogenetic tree. Hierarchical
clustering has the disadvantage that it employs loca
decision-making without considering the entire dataset
(19). Moreover, the ordering of the elements of the treeis
somewhat arbitrary and the tree can become extremely
complex for large datasets.

Another approach to clustering microarray datais
the use of SOMs, which employ an unsupervised neural-
network learning algorithm (15). To generate a group of
clusters, the number and geometry of clusters (or nodes)
must be entered. The program then iteratively reallocates
elements among these clusters until an optimum is reached.
A disadvantage of this approach is that it requires input of
the number of clusters (nodes) a priori. If too few nodes +
are entered, the clusters may be highly dispersed, while if
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Table 1. Linksto freely available microarray data analysis software

Typesof Analyses Package Name Link

Reference

Hierarchical Cluster/Treeview http://genome-www5.stanford.edu/MicroArray/SMD/restech.ntml 13
clustering

SOM GeneCluster http://www-genome.wi.mit.edu/cancer/software/software.html 14
Bayesian SAM http://www-stat.stanford.edu/~tibs/SAM/ 22
Multiple JExpress http://www.molmine.com/ 23
Probe Modeling dChip http://mww.dchip.org/ 24
Quality Threshold QT http://morenoc-01.whitehead.emory.edu/qgthome.html 19,20
Force-Directed VxInsight http://www.cs.sandia.gov/projects/\VxInsight.html 21

too many nodes are entered, elements that should be
grouped together can be artificially divided.

Principal component analysis attempts to replace
the expression profiles of k genes by p principle
components that represent large proportions of variationsin
gene expression patterns. The principle component is a
linear combination of variables that is often visualized
using a process known as multidimensional scaling to
enable three-dimensional graphical representations of
microarray samples (16, 25, 26). However, one problem
with this approach is that it is somewhat sensitive to
outliers (27).

In the fourth approach, known as relevance
networks (18), pairwise comparisons are made between
each member of the dataset, correlation coefficients are
computed, and only those above a certain threshold are
considered relevant. The threshold used by Butte et al (18)
of 0.8 was computed by randomly permuting the data 100
times and determining that the randomly permuted data did
not produce any correlations greater than 0.8. Thus, al
associations with a correlation coefficient less than 0.8
were considered as possibly due to biological noise. This
approach has the advantage that it can identify relationships
that are negatively correlated with each other and that it
considers all of the information present in the dataset.

A fifth approach used for clustering of
microarray data is known as Quality Threshold (QT)
clustering (19, 20). QT clustering is in many respects
similar to relevance networks. In the QT clustering
algorithm, each element is also compared in a pair-wise
fashion and correlation coefficients are computed.
Elements are clustered together such that al of the
elements within a cluster must be more highly correlated
with a single centra element than the input quality
threshold. The algorithm then computes the largest cluster
that it can create using the input quality threshold, and then
the next largest cluster, and so on until all of the elements
are clustered together within the threshold limits.

A unique and robust clustering approach uses a
force-directed energy minimization computation similar to
simulated annealing algorithms. This approach minimizes
distances between highly correlated genes and maximize
distances between uncorrelated genes based on the t-
statistic of the Pearson correlation coefficient.  This
algorithm, implemented in the VxInsight software
developed at Sandia National Laboratories, was recently
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used to create “terrain maps’ of globa gene expression
patternsin c. elegans (21). The robustness and utility of
this clustering approach was demonstrated by showing how
clusters were retained or destroyed as increasing amounts
of random noise was added to the data.

A key step in any microarray data analysis is
verification of statistical significance. Two of the most
widely used methods for this are known as bootstrapping
(28) and random permutation (18). In bootstrapping (a.k.a.
cross-validation), a single gene or sample is left out of the
analysis and the datais reclustered. The processis repeated
for all the genes or samples, and the stability of the clusters
is determined by percentage of the time that the clusters
remain unchanged. In random permutation, the data labels
for the samples are randomized, usually 1000 times. If a
gene of a given rank in the actua data is closer to a true
biologica distinction than genes of the same rank in al but
five of 1000 permutations, the statistical significance would
be estimated at p = 0.005. In some studies, the number of
genes that are highly correlated with random differences in
samples is then compared with those highly correlated with
the true biologica differences in groups (e.g. clinical
outcome) (29). In general, many more genes are highly
correlated with true biological distinctions than with
randomized groups of samples.

One dtatistical package developed specifically to
address issues of statistical significance is the Significance
Analysis of Microarrays (SAM) software (22). The SAM
software uses a nonparametric empirical Bayesian model to
compute a “relative difference,” or d(i), which is similar to
at-statistic for each gene. The score assigned to each gene
is based on the change in gene expression across different
conditions relative to the standard deviation of repeated
measurements of that gene. The genes that are called
significant by SAM are those in which the observed d(i) is
greater than the expected d(i) by athreshold (D) chosen by
the user. The higher the D threshold, the lower the number
of significant genes, and also the lower the false discovery
(or false positive) rate. Genes called significant using the
SAM software were shown to be much more reliably
verified by Northern blot or RT-PCR, than those genes
selected by afold-change cutoff.

6. MICROARRAY INVESTIGATION OF TUMORS

In one of the first microarray studies of its kind,
computer cluster analysis of gene expression in
hematopoetic malignancies was able to correctly classify
acute lymphoblastic and acute myeloid leukemias in al
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cases studied (14). In another recent study based on
analysis of 16,000 genes, 80% of 214 tumors of al
different types were correctly classified into 14 different
groups (30). Cluster anaysis has also been used to identify
subgroups of melanoma (31) lymphoma (32), breast cancer
(7) and prostate cancer (6) patients. In some cases,
microarray analysis has confirmed known tumor
classifications, while in others cases microarray has
suggested novel classification schemes.  Significantly,
several recent microarray studies have been predictive of
outcome of breast cancers (8), prostate cancers (29), and
leukemias (26).

A very recent and large study of childhood
leukemias (26) examined 327 patients. 215 patients were
used as a training dataset, and 112 patients were used as an
independent validation dataset. Six different subtypes of
pediatric acute lymphoblastic leukemias were identified,
and an expression profile of 20 genes was used to classify
leukemias into these subtypes with an overall accuracy of
96-100 %. In two of these subtypes, expression profiling
was able to predict relapse with 97-100% accuracy.

In the breast cancer study (8), a set of 70 genes
was determined to be optimal for prediction of recurrence
in women with no positive lymph nodes at the time of
mastectomy. An expression profile from those 70 genes
correctly predicted outcome in 90% of patients in both the
training set of 34 patients and in an independent set of 19
patients. Application of this classifier to lymph node
negative patients could significantly reduce unnecessary
adjuvant chemotherapy treatments.

Even in asmaller study of prostate cancers (29) a classifier

based on five genes was more highly correlated with
clinical outcome that Gleason score. The classifier reached
90% accuracy in prediction of recurrence in a set of 21
patients.

7. MICROARRAY
TUMORS

INVESTIGATION OF BRAIN

Cluster analysis has been applied to embryonal
central nervous system tumors by Pomeroy (33). These
authors investigated a total of 99 pediatric brain tumors
using an Affymetrix microarray representing 6817 human
genes. In general, supratentoria primitive neuroectodermal
tumors (PNETs) could be distinguished from
medulloblastomas, while atypical teratoid rhabdoid tumors
in the brain were found to be molecularly similar to
rhabdoid tumors in the abdomen. Overadl, 35 out of the 42
cases studied (83%) were correctly classified. Thirty-three
out of 34 medulloblastomas were correctly segregated into
classic and desmoplastic subtypes compared with random
classification. Among genes correlated with desmoplastic
histology were PTCH, as well as three genes involved in
sonic hedgehog (SHH) signaling, GLI, N-MYC and
insulin-like growth factor 1l. These findings support the
activation of SHH signaling in sporadic desmoplastic
medul oblastomas, similar to the known involvement of this
pathway in the desmoplastic medulloblastomas associated
with Gorlin's syndrome.
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Next, these authors explored the heterogeneity in
clinical response to therapy (i.e., long term survival vs
death) that is well known to occur in medulloblastomas.
Initially, an unsupervised clustering method was used to
separate 60 similarly treated medulloblastomas into two
groups using self-organizing maps. Separation based on
this algorithm was based predominately on differential
expression of ribosome related genes, a finding confirmed
by the electron microscopic demonstration of different
numbers of ribosomes in the two groups. These two
groups, however, showed no differences in survival.
Subsequently, a supervised learning program was
developed to distinguish survivors from treatment failures
(i.e., death), with a minimum follow up of 24 months.
Optimum predictions were made using an 8 gene model
that correctly predicted outcome in 47 out of the 60 cases
(78%). Severa other classification agorithms performed
with similar accuracy. This outcome prediction was more
accurate than clinical staging and successfully separated
good and poor survival groups within the TRKC negative
medulloblastoma patient group (TRKC is a marker of good
prognosis in medulloblastomas). According to the authors,
genes associated with survival tended to be characteristic of
cerebellar differentiation, while genes associated with poor
outcome included genes associated with cell proliferation
and metabolism, including ribosoma protein-encoding
genes. Genes most frequently used by the outcome
predictor as markers of survival were PLOD lysyl
hydroxylase, apoD, KIAA0220, and beta NAP. Genes
most commonly used as predictors of poor survival were
ribosomal protein 18S, ribosoma protein L7a, MYBL2,
and ribosomal protein S10.

Several groups have either limited the genes
assayed to those of known function (34-36), or reported
only genes of known function (10, 11, 37). Genes are
generaly separated into different functional groups, i.e.,
those involved in proliferation, invasion or progression.
Not surprisingly, the majority of genes identified in these
analyses have been previously studied in brain tumors.
Previously studied genes that have been confirmed by
microarray to be up-regulated in high-grade astrocytomas
include EGFR, VEGF, transcription factor AP-2, IGF
binding proteins 3 and 5, matrix metalloproteinases,
TIMPs, CD44, basic fibroblast growth factor, and cathepsin
H. A few genes described in systemic cancers but not
previously related to brain tumors have been identified,
including insulin growth factor binding protein 2 and
apolipoprotein  D. Other genes important in the
oncogenesis of brain tumors may remain hidden in
databases, their significance unrecognized by current data
interpretation techniques.

In one of the initial microarray studies of brain
tumors, Fuller analysed various grades of fibrillary
astrocytomas using a Clontech microarray plate containing
588 cancer related genes(35). Insulin growth factor
binding protein 2 (IGFBP2) was consistently over
expressed only in the glioblastomas, i.e., the highest grade
of infiltrating astrocytomas, suggesting that it is a marker of
progression in fibrillary astrocytomas. Sallienen, aso
using a 588 gene Clontech microarray, found 117 up
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regulated genes in glioblastomas relative to normal brain,
the most highly over expressed gene being IGFBP 2(36).
Anaplatic (WHO grade I11) and low-grade (WHO grade I1)
infiltrating astrocytomas over expressed 32 and 38 genes
respectively. These authors also used a tissue array of 418
astrocytomas to confirm the association of IGFBP2 with
astrocytoma progression at the protein level.

IGFBPs are a family of proteins that bind insulin
growth factors with high affinity. These factors bind to
specific cell surface receptors as well as the extracellular
matrix and exert both insulin growth factor-dependent and -
independent functions. 1GFBPs may either suppress or
augment insulin growth factor activity, depending upon
experimental conditions.  IGFBP2 has been associated
with several different malignant tumors, including prostate
and ovarian cancer (38, 39). Preliminary studies using cell
lines transfected with IGFBP2 expressing vectors suggest
that this protein may play arole in either tumor growth or
invasion (40-42). This protein is expressed in highly
proliferative fetal tissues, including astrocytes, with
significantly decreased expression after birth (43).

Huang studied 1176 cancer associated genes in
eleven low-grade infiltrating astrocytomas (WHO grade
11)(34). Thirteen genes were found to be up regulated in 20
to 100% of cases, while eleven genes were down regul ated.
Eleven genes were further tested by RT-PCR, nine of
which were confirmed to be differentially expressed. Two
of the identified genes were not differentially expressed by
RT-PCR, presumably representing false positives. SPARC,
previoudy associated with infiltrating astrocytomas, was
up-regulated in 30% of cases by microarray; however, the
SPARC protein was increased by immunohistochemistry in
100% of cases. This finding illustrates the genera point
that mRNA and protein levels do not always correlate
directly. Tissue inhibitor of matrix metalloproteinase
(TIMP3) was over expressed in all low-grade astrocytomas.
TIMP3 is involved with modulation of the extracellular
matrix and may also play arole in the invasive behavior of
astrocytic neoplasms(44). No differences in expression
were detected between the eight low-grade astrocytomas
with p53 mutations and the three low-grade astrocytomas
without p53 mutations.

SPARC, a secreted glycoprotein, resides in the
extracellual matrix (45). SPARC is highly expressed in a
variety of neoplasms, including, colon cancer, breast
cancer, ovarian cancer, melanoma, and meningioma, as
well asin non-neoplastic tissue repair. Similar to IGFBP2,
it is highly expressed in feta tissue, including astrocytes
and blood vessels (46). In addition, SPARC has been
previously shown to be present in all grades of fibrillary
astrocytomas. It has been hypothesized that SPARC plays
arolein theinvasion of astrocytic neoplasms (47).

Rickman, using the Affymetrix system, analysed
the expression of 6800 genes in glioblastomas (grade IV
infiltrating astrocytomas) relative to pilocytic and grade 2
infiltrating astrocytomas (11). Three hundred-sixty genes
were differentially expressed in glioblastomas relative to
pilocytic astrocytomas. Five genes not previousy
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assocated with glioblastomas, syndecan-1, filamin A, fork
head box M1, fork head box G1b and ZY X, were chosen
for additional study. Differential expression of al five
genes was confirmed by quantitative PCR. In this study,
expression microarray tended to underestimate the level of
differential expression, an observation that has also been
made by other investigators. |GFBP 2 was up-regulated in
glioblastomas, while apoD was up-regulated in the
pilocytic tumors.

Ljubimova analysed different grades of fibrillary
astrocytomas using a microarray from Incyte containing
11,000 genes (37). In contrast with the Rickman’s results,
only 14 genes were consistently over expressed in
glioblastomas relative to norma brain tissue. It would
appear that not all microarrays have the same sensitivity.
Most of the 14 genes identified were previously known to
be expressed in glioblastomas, with the exception of the
alphad laminin chain. Alpha4 laminin chain protein was
identified in blood vessel walls by immunohistochemistry,
suggesting that this gene is associated with the angiogenic
response in glioblastomas.

Comparing the differential expression of 6800
genes in pilocytic and anaplastic astrocytomas, Hunter
identified apolipoprotein D as the most highly over
expressed marker of pilocytic tumors (10). Subseguent
immunohistochemical  studies showed that apoD
immunostaining was associated not only with pilocytic
astrocytomas, but also with other low-grade and potentially
curable primary brain tumors, including gangliogliomas,
subependymal giant cell astrocytomas, and a single
pleomorphic xantoastrocytoma.  In contrast, al of the fatal
fibrillary — astrocytomas were negative for apoD
immunostaining. Positive apoD immunostainining in the
low-grade glial tumors was present in cytoplasm and cyst
fluid. Positive immunostaining was aso present in
granular bodies, a characteristic morphologic feature of
pilocytic astrocytomas, gangliogliomas, and pleomorphic
xantoastrocytomas. This study, together with the
identification of apoD as a prognostic marker in
medulloblastomas by Pomeroy (33), highlight apoD as a
promising marker of prognosisin primary brain tumors.

ApoD is a member of the lipocalin family of
proteins involved in the transport of small hydrophobic
molecules (48). ApoD is a component of high density
lipoproteins in serum and is the protein with the highest
concentration in fluid from benign cysts of the breast (49).
Similar to IGFBP 2, apoD has been previously identified as
a prognostic marker in several types of carcinoma outside
of the brain (50, 51). In breast and prostate carcinoma cell
lines, as well as senescent fibroblasts, apoD has been
proposed as a marker of cell cycle arrest (52-54).

Gutmann et al. used the Affymetrix system to
study the expression of 11,000 genes in 8 pilocytic
astrocytomas, 3 oligodendrogliomas, 3 normal white matter
specimens and 2 NHA specimens (norma  human
astrocytes from fetuses)(9). Hierarchical cluster analysis
clearly delineated the pilocytic astrocytomas from both
oligodendrogliomas and normal white matter. The overall
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expression pattern of the pilocytic tumors most closely
resembled that of NHA cells; however, pilocytic tumors
also expressed markers characteristic of oligodendrocytes,
such as myelin basic protein, PMP-22, and proteolipid
protein. Western blots confirmed over expression of N-
CAM (neural cell adhesion molecule) in pilocytic tumors
compared with NHA cells and under expression of
connexin-43 in pilocytic tumors relative to both NHA cells
and oligodendrogliomas. Both apoD and SPARC were up-
regulated in pilocytic astrocytomas relative to NHA cells.
Although unconfirmed, one potential gene, EF-lalpha2,
was identified which might distinguish NF-1 associated
from sporadic pilocytic astrocytomas.

8. CONCLUSION

Gene expresson is fundamental to the
determination of cell behavior and the process of malignant
transformation. Each malignant cell type expresses an
estimated 10,000 mRNA species, and a subset of these
MRNA species send a till incompletely understood
message signaling malignant behavior. The capacity of
expression microarrays to simultaneously assay all mRNA
species expressed by the human genome has
understandably sparked great excitement in the field of
oncology. However, anadlysis of the massive amounts of
data generated by microarrays is daunting. Separating true
biologic signal from technical noise may require large
numbers of cases and sophisticated statistica analysis.
Because of post-translational modifications and complex
systems of protein activation, mRNA levels often correlate
poorly with protein levels or activity. Trandating the
malignant message encoded in the mRNA of malignant
cells represents a challenge for the future.

In the few years of its existence, microarray
technology has aready contributed to the study of human
brain tumors. Prognostic groups within medulloblastoma
patients have been separated. Medulloblastomas and
supratentorial PNETSs, morphologically similar neoplasms,
have been distinguished from each other. The roles of
numerous known cancer related genes in brain tumors have
been confirmed. Insulin growth factor 2 and apolipoprotein
D have been identified as novel players in primary brain
neoplasia. Even better results will undoubtedly come with
technical improvements, more appropriate reference
MRNA sources, better data analysis methods, larger data
sets, and increased knowledge concerning the functions and
interactions of genes.
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