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1. ABSTRACT

Adenoviral E1A is an indispensable protein for
virus-host interaction. To provide a suitable environment
for viral replication, E1A physically interacts with multiple
cellular proteins to reprogram gene expression and other
processes of the host cells. Proteins targeted by E1A
include the pRb family of pocket proteins, p300/CBP,
cyclin/Cdk, the carboxyl terminal binding protein (CtBP),
transcriptional regulator YY1, and the recently identified
RACK1 and SWI/SNF complex. Reprogramming activity
of E1A and the host cell response to this reprogramming
lead to transformation, growth arrest or apoptosis. Based on
the ability of E1A to override the fundamenta controls of
host cells, E1A has been being utilized to make continuous
contributions not only to a better understanding of the
molecular mechanisms underlying the regulation of
transcription, cell division, apoptosis and tumorigenesis but
also to new therapeutics such as gene therapy.

2. INTRODUCTION

Located at the left end of the adenovirus genome,
early region 1A is the first unit transcribed after viral
infection (1, 2). Two major products are trandated from the
transcripts and are named 289R E1A and 243R EI1A,
according to the numbers of amino acid residue (3). Three
regions are highly conserved among various serotypes of
adenoviruses and are named conserved region 1, 2, 3 (CR1,
CR2 and CR3). CR1 and CR2 are shared by 243R E1A and
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289R E1A while CR3 is unique for 289R E1A (Figure 1).
Both 243R and 289R forms of E1A are capable of
promoting virus replication, transforming rodent cells,
regulating gene expression, and inducing apoptosis.
Because of its ability to reprogram multiple cellular
processes, 243R E1A has become an enduring tool with
versatile applications and has been making new
contributions continuously to our understanding of the
molecular basis of cellular events.

3. ADENOVIRAL 243R E1A, A TOOL TO IDENTIFY
REGULATORY PROTEINS

Since the observation of its ability to interact with
cellular proteins (4, 5), E1A has been utilized as a powerful
tool to identify important cellular regulatory proteins
through their interaction with E1A (Figure 1). Initially
observed major protein factors interacting with E1A have
apparent molecular masses of 33, 60, 105, 107, 130, 300,
and 400-kDa. The 33-kDa protein with histone kinase
activity has been shown to be the cyclin-dependent kinase 2
(Cdk2), which is closely related to Cdc2 (6, 7). Both Cdc2
and Cdk2 are important modulators of the cell division
cycle (8). The 60-kDa protein was identified as cyclin A,
the regulatory subunit for Cdc2 and Cdk?2 (8). The 105-kDa
protein turned out to be pRb, the prototype tumor
suppressor that is lost in retinoblastoma (9,10). The 107-
kDais structuraly related to pRb and has similar functions
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Figure 1. Schematic structures of 289R and 243R-E1A.
Three regions of E1A are highly conserved between
different serotypes. E1A regions required for various
functions are indicated. The éllular proteins interacting with
243R-E1A are listed in the lower part. The conserved
region 3 is unique for 289R E1A but is not involved in
transformation, apoptosis and transcriptional repression.
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Figure 2. Mechanism underlying E1A-mediated
stimulation of S-phase genes. pRb family proteins bind E2F
and recruit histone deacetylases. E1A targets the pocket
proteins and releases E2F, thus E2F forms heterodimers
with DP1 or DP2 to transactivate S-phase specific genes
and to promote DNA synthesis.

as pRb (11, 12). The 130-kDa protein is another pRb-
related growth suppressor (pRb2) with extensive homology
with p105 and pl07, especialy at the so-called pocket
region (13, 14). Thus pl05, p107 and p130/Rb2 form a
growth suppressor family and share similar functions such
as repressing E2F family transcriptional factors and
interacting with histone deacetylase. Molecular cloning of
the 300-kDa protein reveals it to be related to the CREB
(CAMP responsive element binding protein) binding
protein, CBP (15-18). Both CBP and p300 are coactivators
for multiple transcriptional factors with intrinsic histone
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acetyl transferase activity and directly targeted by E1A (16-
20). Using E1A as bait in yeast two-hybrid system to fish
for new interacting proteins resulted in the discovery of
CtBP, ageneral transcriptional co-repressor (21).

4. TARGETING SWI/SNF:
CHROMATIN STRUCTURE

MODULATING

The story has not stopped here. Additional
proteins were found to interact with the amino terminus of
E1A in a p300-independent manner (22). In addition, E1A
functionally represses SWI/SNF activity, an activity
required for chromosome remodeling in yeast (23).
Because SWI/SNF is highly conserved between yeast and
mammals (24), it was proposed that the amino terminus of
E1A was able to target components of SWI/SNF complex
in human cell (22). This hypothesis was first partialy
confirmed by the identification of E1A-associated p270 as
a component of the SWI/SNF complex (25). Recently, a
protein complex interacting with the amino terminus of
E1A has been identified as part of the human SWI/SNF
complex (26), further substantiating the notion that E1A
uses its amino terminus to directly target SWI/SNF
complex, thus regulating gene expression by altering
chromatin structure.

5. EIA-MEDIATED TRANSACTIVATION

Another line of exploration followed the clue of
E1A-mediated regulation of gene expression. An early
observation that E1A promoted the viral gene expression
initiated this line of investigation. These studies initialy
identified a cellular factor that bound to the E2 promoter
and was responsible for activating this promoter, thus
termed E2F (27). Later, this factor was cloned as a pRb-
binding protein and turned out to be an important factor in
the control of DNA replication and cell proliferation (28-
30). Now E2F has exploded to a family of transcription
factors including at least five members and it is clear that
E1A promotes vira and host gene expression partialy
through stimulating E2F activity (31). The generd
mechanism can be outlined as E1A directly targets the
pocket proteins, and releases E2F from the pRb family-
mediated repression (31, 32 and Figure 2). There are some
exceptions. One exception is the modulation of YY1
activity. E1A functionally and physicaly interacts with
YY1 and releases Y'Y 1-mediated transcriptional repression
(33, 34). Another exception is the regulation of
proliferating cell nuclear antigen (PCNA), a factor involved
in DNA synthesis and DNA repair (8). Investigations
targeted at the E1A responsive element of the human
PCNA promoter revealed the involvement of RFX1/EF-C
and ATF-1 (35). In addition, the human cdc2 gene has been
identified as a transcriptional target of E1A, and in this
case, CBF/NF-Y and an unidentified 110-kDa protein are
involved (36).

6. E1IA-MEDIATED
REPRESSION

TRANSCRIPTIONAL

More interestingly, E1A is not a DNA binding
protein and functions as a transcriptional inhibitor of
multiple host genes. The function of transcriptional
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Figure 3. E1A-mediated repression of p300/CBP-dependent transactivation. Transcriptional factors such as p53, MyoD and HIF-
1 require p300/CBP for maximal activity. E1A sequestrates p300/CBP and inhibits the transactivation. In addition, E1A also

sequestrates TBP and p/CAF, further repressing the gene expression.

repression requires the intact amino terminus and CR1 of
E1A. When fused to a DNA binding domain, however, the
amino terminus and CR1 show potent transactivation
activity and this activity is well conserved from yeast to
mammals (37, 38). Based on this fact, it has been found
that this region directly binds TBP, an important
component of TFIID (38), and p/CAF, another
acetyltransferase that interacts with p300/CBP (39, 40). By
direct interaction with p/CAF, E1A regulates histone
acetyltransferase  activity of  p/CAF.  Therefore,
sequestration of p300/CBP, TBP and p/CAF constitutes the
major mechanism underlying E1A-mediated transcriptional
repression (Figure 3).

Because EI1A sequesters p300/CBP, and
p300/CBP are cofactors for many transcription factors,
E1A and special E1A mutants that cannot interact with
pP300/CBP have been used as simple but reliable reagents to
test the requirement of p300/CBP for transcription factors
of interest. The activity of MyoD, for example, is repressed
by E1A but not by E1A mutant defective in binding to
p300/CBP. This observation leads to the finding that
p300/CBP are cofactors for MyoD and are essential for cell
cycle exit and myogenesis (41, 42). Similarly, p53 activity
was found to be repressed by E1A but not by E1A mutant
(43). It has been confirmed that p300/CBP directly interact
with p53 as cofactors and acetylate p53 at carboxyl
terminus to enhance p53 transactivation activity (44-46).
Another example is hypoxia inducible factor-1 (HIF-1), a
transcriptional activator that mediates hypoxic response of
genes coding for glycolytic enzymes, erythropoietin (EPO)
and vascular endothelial growth factor (VEGF). Hypoxia-
induced transcription from the EPO or VEGF promoter has
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been shown to be specificaly enhanced by ectopic
expression of p300 but inhibited by E1A (47, 48; Sang and
Caro, unpublished data). The interaction between the apha
subunit of HIF-1 (HIF-1a) and p300 involves the C/H1
region of p300 and the C-termina domain of HIF-1a, and
this interaction facilitates the recruitment of basic
transcriptional machinery and other coactivators such as
SRC-1 to form a fully active transcriptional complex (49).
These are just a couple of examples, and the list of
transcription factors that require recruitment of p300/CBP
for complete activation will be very long, if al related
reports are collected.

7. E1IA-MEDIATED
SENSITIZATION

APOPTOSIS AND

Expression of E1A is apoptotic in certain
mammalian cells (50). While the mechanism underlying
E1A-induced apoptosis is not fully understood, both p53-
dependent and independent mechanisms have been
suggested (51). In addition, expression of E1A confers high
sensitivity to DNA-damaging agents on tumor cells in a
p53-independent manner (52). Interestingly, exposure of
cells to DNA damaging agents induces growth arrest
accompanied by expression of a spectrum of genes that
encode enzymes involved in glucose metabolism and are
transcriptional  targets of HIF-1 (Zhou, persond
communication). Furthermore, non-genotoxic agents that
induce apoptosis down-regulate enzymes involved in
glucose metabolism (53). In addition, it is reported that
Akt/PKB protects cells from apoptosis by promoting
glycolysis (54, 55). Because HIF-1 is able to change the
glucose and oxygen metabolism and is usually activated in
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Figure 4. Strategy of functional screening by rescuing
yeast growth. Expression of proteins such as E1A in
mammalian cells leads to apoptotic or toxic effects to the
cells. However, expression of these proteins in yeast may
lead to growth arrest or slow-growing phenotype. When the
apoptotic gene is co-transformed with an expression library
into yeast, fast-growing colony may cary a cDNA
encoding a protein that antagonizes the apoptotic protein,
thus rescuing the yeast growth.

non-hypoxic tumor cells, we hypothesize that HIF-1 may
confer an activity facilitating cell adaptation not only to the
hypoxic stress but also to other apoptotic stresses. Thus
repression of HIF-1 activity may play a role in E1A-
mediated apoptosis and sensitization.

While yeast does not undergo apoptosis,
expression of E1A in some strains of S. cerevisiae leads to
growth arrest or a slow-growing phenotype, and the domain
requirement for growth arrest or slow-growing phenotype
in yeast is identica to that for apoptotic effects in
mammalian cells (56). Based on this phenomenon, a
functional screening strategy has been designed and
employed to seek mammalian proteins that can functionally
interact with E1A and thus rescuing the slow-growing
phenotype in yeast (Figure 4). This strategy has identified
RACK1, standing for Receptor for Activated C-type protein
Kinase, as an antagonizer of E1A activity in yeast and in
mammalian cells (56). Because mutation of cpc2, the yeast
counterpart of RACK1, leads to growth arrest and because
expression of RACK1 is able to rescue the growth arrest
(57), it is reasonable to propose that E1A blocks a growth-
related function of cpc2/RACK1. While the precise
function of RACK1 involved in growth control still needs
to be investigated, E1A exemplifies a novel strategy to
study apoptotic or toxic proteinsin yeast.

8. EIA-MEDIATED TUMOR SUPPRESSION AND
GENE THERAPY

Since the perception that E1A may cause
apoptosis and serve as a tumor suppressor (58, 59), the
potential of E1A as a magic bullet to fight against cancer
has been explored intensively (60, 61). Methodology such
as gene therapy is being developed and tested to deliver
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E1A into tumor cells (62, 63) and several patents have been
granted to E1A-based cancer gene therapy.

Not only is E1A a bullet for cancer but also an
important player in other fields of gene therapy. In recent
years, gene therapy has been gaining increasing
momentum. Despite some shortcomings, vira vectors are
still the majority in experimental gene therapy and clinica
trials. Among the viral vectors, adenovirus-based vector is
commonly used for cancer gene therapy and transient gene
transfer in basic research because of its high infection rate
and simplicity of packaging, preparation and preservation.
Adeno-associated virus (AAV)-based vector is the most
promising one in treatment of hereditary disease resulted
from dysfunction of a single gene. While E1A usudly is
not included in the genome of recombinant adenovirus or
AAV, E1A function is indispensable for the packaging of
these therapeutic vectors. Thus E1A must be provided
either by atrans-plasmid or by the packaging cell line, such
as HEK293, which is derived from human embryonic
kidney and expresses E1A congtitutively. Therefore, E1A
could be used to investigate the packaging processes of
recombinant virus, aiming at a ssimple, cost-effective and
highly efficient way to produce viral vectors for gene

therapy.
9. PERSPECTIVE

We have summarized the major functions of the
adenoviral E1A oncoprotein, the major applications of E1A
in basic research and potential applications in the clinical
therapy based on these functions. However, the mechanism
underlying the effects of EL1A on host cells and the
mechanism by which the host cells respond to these effects
are not completely understood. Since accumulating
evidence suggests that E1IA may affect the basic energy
metabolism of host cells, a process involving the utilization
of glucose and oxygen, we predict that further study
towards this direction will help us to understand E1A-
mediated apoptosis and tumor suppression. We strongly
believe that E1A will continue to be a powerful tool in the
dissecting of the regulation of cellular processes, as it has
been for the past twenty years. In addition, the yeast
rescuing strategy exemplified by E1A will prove to be a
useful strategy to study other apoptotic or cytotoxic
proteins in yeast (56). Finaly, we conclude by stating that
E1A, the enduring tool, will continue to make new
contributions to both basic research and clinical therapy.
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