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1. ABSTRACT

Adenovirus infection of quiescent cells induces
transition from G0 or G1 into the S phase of the cell cycle
and allows cellular proliferation. This is beneficial for the
virus since cells in S phase provide optimal conditions for
viral replication. Adenovirus E1A, E1B and E4 gene
products contribute to cell cycle deregulation. E1A proteins

inactivate the pRb checkpoint, allowing the E2F
transcription factor to activate genes involved in nucleotide
metabolism and DNA replication, which are required in S
phase. E1A also interacts with transcriptional modulators,
including histone acetyltransferases, histone deacetylases,
and other chromatin remodeling factors. These interactions
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affect transcription of several cellular and viral genes, some
of which are involved in cell cycle regulation. Cell cycle
deregulation by E1A results in stabilization and
accumulation of p53. To prevent cell cycle arrest and
apoptosis that would be triggered by p53, the adenovirus
E1B and E4orf6 gene products employ various mechanisms
to inactivate the tumor suppressor. Additional E4 gene
products also interact with and modulate cell cycle
regulators. Cell cycle checkpoints targeted by adenovirus
proteins are often compromised in human tumors as well.
Thus, understanding the interactions between adenovirus
and the cell cycle has facilitated the generation of
adenovirus mutants, which can replicate only in cells with
inactivated checkpoints. Such “oncolytic” viruses are being
tested for their ability to specifically replicate in and lyse
cancer cells.

2. INTRODUCTION

During infection of host cells, viruses rely
heavily on cellular processes for various stages of their
replication. Small DNA tumor viruses such as adenovirus
(Ad), simian virus 40 (SV40), and human papillomavirus
(HPV) depend on host cell mechanisms to replicate the
viral genome. These viruses infect primarily quiescent
cells, which do not provide an optimal environment for
viral DNA synthesis due to rate-limiting levels of
deoxynucleotides (1) and low levels of proteins involved in
DNA synthesis. Various viruses have evolved different
means to overcome this obstacle. The pRb and p53
regulatory pathways are two crucial pathways that control
transitions from one cell cycle phase to the next. Not
surprisingly, adenoviruses, as well as other DNA tumor
viruses, target these pathways to induce quiescent cells to
enter the S phase of the cell cycle.

 Adenoviruses belong to the Adenoviridae family
of viruses, which includes at least 50 human adenovirus
serotypes, allocated to six subgroups (A through F). The
adenovirus chromosome carries five early transcription
units (E1A, E1B, E2, E3, and E4) (2). Modulation of the
cell cycle is carried out by several adenovirus proteins,
including E1A, E1B, and E4 gene products. The growth
deregulatory functions of Ad are also essential for
transformation of primary rodent cells. However, although
all Ad serotypes are able to induce tumors in
immunodeficient nude mice, only cells transformed by
oncogenic Ad serotypes of groups A (Ad12, Ad18 and
Ad31) and B produce tumors in immunocompetent rodents
(3). In addition, the group D member, Ad9, is known to
specifically induce mammary tumors in rats (4). Most of
the work regarding adenovirus and cell cycle control was
carried out using Ad2/5 or Ad12.

E1A and E1B are the only adenovirus genes
consistently found to be integrated and expressed in
adenovirus transformed cultured rodent cells. In general,
E1A by itself is sufficient to activate the cell cycle,
inducing expression of genes required for DNA synthesis
and repeated rounds of cell division. However, proliferation
of cells in response to E1A is often quite limited in the
absence of E1B expression. With E1B coexpression, the

number of primary cell colonies able to proliferate
indefinitely in response to E1A expression is greatly
elevated (5). E4 gene products were recently shown to
enhance cellular transformation by E1A and E1B (6). In
this review we will discuss the interaction of E1A, E1B and
E4 from Ad2/5 and Ad12 with the cell cycle regulatory
machinery.

3. THE E1A PROTEINS

E1A is the first viral transcription unit to be
expressed after the adenoviral chromosome reaches the
nucleus. Two mRNAs are transcribed from the Ad2/5 E1A
unit during the early phase of infection: a 13S mRNA that
encodes a 289R protein and a 12S mRNA that encodes a
243R protein. Experimentally, all the biological functions
attributed to E1A can be carried out by one or both of these
products (7). Three additional E1A mRNA species, with no
definitive function, accumulate later in the infectious cycle.
The two early mRNAs contain identical 5` and 3` ends, but
differ internally due to differential splicing. They encode
proteins that are identical except for an additional 46 amino
acid segment (CR3) that is present in the larger polypeptide
and encodes a transcriptional activation domain (8). When
comparing E1A sequences from several human adenovirus
serotypes it appears that the E1A products include three
conserved regions (CR1, CR2 and CR3), separated by less
highly conserved domains. These conserved regions along
with arginine at position 2, a PXDLS motif and a short run
of basic residues at the C-terminus are regions common to
all Ad E1As. In the absence of any known enzymatic
activity attributable to Ad E1A, and since E1A proteins are
transcriptional activators that do not exhibit sequence-
specific DNA binding, it is now considered that these
proteins function through a series of protein-protein
interactions with important cellular components. The three
conserved regions mark domains that play major roles in
mediating such interactions (Reviewed in (2, 9)). The
oncogenic serotypes have an additional alanine-rich region
between CR2 and CR3 that has been shown to be important
for tumor induction (10-11). The CR3 region that is present
in the 289R, but not in the 243R protein, is required for the
activation of cellular genes and early viral transcription
units (7). The CR3 domain binds several transcription
factors and components of the general transcriptional
machinery (7, 9, 12). Since both 243R and 289R proteins
can promote cell cycle progression and cellular
transformation, it is believed that CR3 is not absolutely
required for these activities of E1A (13). Thus the role of
CR3 in stimulating transcription is beyond the scope of this
review. The 243R product can both activate and repress
transcription, and the consequences of its effects on gene
expression include cell cycle deregulation and virus
replication.

E1A accomplishes cell cycle deregulation by
binding to and perturbing the normal function of key
negative regulators of cell growth. Ironically, the same
activities of E1A that are required for productive virus
infection and oncogenic transformation also stimulate
programmed cell death, which causes abortive
transformation unless E1A is coexpressed with anti-
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apoptotic genes, such as adenovirus E1B proteins
(Reviewed in (14-16)). E1A overrides normal regulatory
constraints at the G1/S border by acting on at least three
levels: (i) by inactivating pRb-family proteins and releasing
active E2F transcription factor (section 3.2); (ii) by
modulating the function of chromatin remodeling factors,
such as the histone acetyltransferases (HAT) p300/CBP and
PCAF, the SWI/SNF family member p400, and the
complex containing CtBP and a histone deacetylase
(HDAC) (section 3.4); and (iii) by targeting additional
cellular proteins, including downstream targets of cdk2,
and transcription factors involved in regulation of genes
that participate in cell cycle control (section 3.3).

3.1 Early findings
In early studies of adenovirus, it was noticed that

adenovirus infection influences the host cell cycle.
Experiments with ts BHK cells that were arrested in G1 at
the nonpermissive temperature and made quiescent by
serum restriction revealed that Ad2 infection stimulated
DNA synthesis at both the permissive and restrictive
temperatures (17-19). A mutation analysis of Ad5 revealed
that mutants in the E1A region were defective for the
induction of cell cycle abnormalities, whereas an E1B
mutant produced a wild type response. It was concluded
that alteration of cell cycle progression was a direct effect
of E1A (20-22). In several rat cell lines expressing the
Ad12 E1A gene from a dexamethasone (DM)-regulatable
promoter, DNA synthesis increased in density-arrested
cells following DM induction (23). It was later shown that
the 13S- or 12S-mRNA product alone had the ability to
cause progression of the cell cycle at a similar rate (24).
293 is a cell line that has been immortalized and
transformed by E1A and E1B (25). Transfection of 293
cells with an antisense E1A-expressing vector resulted in a
transient inhibition of cellular DNA synthesis. Thus, even
after extended periods of time in culture, cells immortalized
by E1A still require E1A expression to activate the cell
cycle and prevent them from senescing (26).

The origins of the understanding how E1A
affects cell cycle regulation can be found in several reports
describing a set of cellular proteins, which can be co-
immunoprecipitated with E1A (27-30). The main co-
precipitating proteins have molecular weights of about 33,
60, 80, 90, 105, 107, 130, 300 and 400 kDa, and several of
these proteins have been shown to associate directly with
E1A. The 105 kDa polypeptide was the first to be
identified. It is the retinoblastoma tumor suppressor protein
(pRb) (31), and the consequences of its interaction with
E1A are discussed below (section 3.2). The other proteins
include pRb family members (p107, p130); Cyclin A (p60)
and Cdk2 (p33), which may associate with E1A by
interacting with p107 and p130 (32-34); p300, which is closely
related in its amino acid sequence to the CREB-binding protein
(CBP), a histone acetyltransferase and a scaffold for the
assembly of transcription complexes (35-36); and p400, which
is a SWI2/SNF2-related protein (37). The interactions of E1A
with these proteins are discussed below.

There are three regions in the 12S E1A protein
that are required for transformation: the nonconserved

amino terminus (aa 2 to 24), CR1 (aa 40 to 80) and CR2 (aa
120 to 140) (reviewed in (2)). These regions of E1A
interact with two sets of cellular proteins: p300/CBP binds
to the N terminus and CR1, and the pRb family members
bind to CR1 and CR2 (figure 1). The interactions with pRb
and p300/CBP influence functionally distinct growth-
regulatory pathways (5). Both the pRb- and p300/CBP-
interacting domains of E1A are required for cellular
transformation, whereas either domain is sufficient for
induction of DNA synthesis. Each domain alone is not
enough to allow cells to pass the G2/M checkpoint and
progress to mitosis (29, 38-40). E1B may contribute to
induction of DNA synthesis by E1A, since it has been
reported that E1A mutants, which fail to bind pRb, induce
DNA synthesis at a significantly lower level in Ad5 lacking
E1B than in Ad5 containing E1B (41). The C-terminus of
E1A was shown to modulate transformation through
binding to a protein called C-terminal binding protein
(CtBP) (42-43). It has also been shown that a region near
the C-terminus of the 12S protein is required for growth
factor induction, which stimulates epithelial cell
proliferation. Furthermore, this growth factor production is
necessary for epithelial cells to survive past their normal
life span in culture and become immortalized (44).

3.2 Targeting the pRb checkpoint by E1A

3.2.1 pRb
The pRb tumor suppressor has been shown by a

number of assays to inhibit cell cycle progression and arrest
cells at the G1 phase (45). pRb contains several functional
domains, including domains A and B, which are highly
conserved and which form a central “pocket” that is critical
for the tumor suppressor function of pRb (46-47). The A
and B domains are separated by a linker. The structural
integrity of the “pocket” is required for the interaction of
pRb with most of its associated proteins, including the E2F
transcription factor (47).

The E2F family is a group of sequence-specific
DNA-binding transcription factors that have been shown to
regulate expression of genes required for entry into S phase
and for DNA synthesis (47). “Free E2F”, the smallest E2F
complex, is composed of heterodimers containing a subunit
encoded by the E2F gene family and a subunit encoded by
the DP family of genes. Six E2F genes and two DP genes
are known in mammalian cells. Some of the E2F
heterodimers are transcription activators and some act as
repressors (48). Binding of pRb to E2F leads to repression
of E2F transactivation, and at least two mechanisms are
suggested to account for the repression. First, the pRb
binding domain of E2F-1 through E2F-5 is embedded
within their transactivation domains, and thus pRb binding
can directly inhibit E2F transactivation (49). Second, pRb
recruits repressors such as histone deacetylases and
chromosomal remodeling SWI/SNF complexes to E2F-
responsive promoters on DNA (47, 50).

pRb activity is regulated by phosphorylation.
Hypophosphorylated forms of pRb predominate in early G1
phase and reappear during M phase, while
hyperphosphorylated forms of pRb are present from late G1
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Figure 1. E1A domains involved in protein-protein interactions. Conserved E1A domains and sites for protein-protein
interactions are shown. The functions attributed to the various domains are also represented. For details, see the text.

phase throughout S, G2 and M phases (51-52). Upon
mitogenic stimulation of quiescent cells, accumulation of
cyclin D-dependent kinases (Cdk4 and Cdk6) triggers the
phosphorylation of pRb, leading to dissociation of E2F,
which associates with the hypophosphorylated forms of
pRb (47, 50). The activity of the cyclin D-Cdk complexes
is inhibited in quiescent cells by a class of Cdk inhibitors
called INK4 (named for their ability to inhibit Cdk4),
which includes four members: p16INK4a, p15INK4b,
p18INK4c and p19INK4d (50). Once freed from its
association with pRb, E2F functions as a transcriptional
activator and induces a battery of genes that regulate DNA
metabolism (such as dihydrofolate reductase (DHFR),
thymidine kinase, thymidylate synthase, DNA polymerase-
alpha, and E2F-1 itself), as well as the cyclin E and A
genes and Cdk2. The phosphorylation process is then
accelerated by the cyclin E-cdk2 complex (53-54). Cyclin
E-Cdk2 also phosphorylates additional substrates involved
in DNA replication (50).

The interaction of E1A with pRb is mediated
primarily by CR2, with sequences from the N-terminal
portion of CR1 stabilizing the complex. The CR2 domain
of E1A, containing the LXCXE motif required for E1A-
pRb interaction, associates with pRb within domain B of
the pocket, a region that is distinct from the site required
for E2F interaction. As the E1A protein is bound to the

pRb-E2F complex, the CR1 domain, which plays an
auxiliary role, can compete for pRb binding to E2F. As a
consequence of this interaction, E1A is left firmly bound to
pRb and E2F is released, free to activate its target genes
(Reviewed in (55)). In addition to releasing E2F from
repression complexes, E1A has also been reported to cause
stabilization of E2F, achieving a further increase in active
E2F transcription factors (56). pRb acetylation is also
modulated by E1A, as discussed in section 3.4.1.

3.2.2 pRb family members
Two additional pRb family members also

associate with E2F: p107 and p130 (57-59). These proteins
are structurally very similar to pRb, with the greatest
sequence homology found in the pocket domain. p107 and
p130 were found to share many biochemical similarities
with pRb, as well as extensive functional properties.
Like pRb, p107 and p130 have been found to block
transcriptional activation by free E2F and to be capable
of actively repressing E2F-regulated promoters
(reviewed in (60)). Proteins such as the histone
deacetylase HDAC1, which have been implicated in
some aspects of pRb-mediated transcriptional
repression, have also been reported to interact with p107
and p130. Furthermore, overexpression of p107 and
p130 can arrest cells in G1 (61-62), similarly to pRb.
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Despite the many similarities, several significant
differences distinguish p107 and p130 from pRb. pRb,
p107 and p130 associate with E2F during different portions
of the cell cycle. p130-E2F complexes are found primarily
in quiescent or differentiated cells and p107-E2F
complexes are most prevalent in S phase, but can also be
found in G1. pRb-E2F complexes are found in quiescent or
differentiated cells, but are most evident as cells progress
from G1 into S phase (reviewed in (48)). There are also
differences in the identity of E2F family members, which
associate with the various pocket proteins (60). The spacer
region separating the A and B domains of the pocket is
larger in p107 and p130 than in pRb, and the larger spacer
serves as a site for direct binding of cyclin A/E-dependent
kinases (63-65). The biological significance of these
interactions is not clear. The p107 and p130-cyclin-Cdk
complexes may represent enzyme-substrate complexes,
although the stable nature of the interaction and the finding
that these complexes include a large portion of the nuclear
pool of p107 and p130 molecules may not be compatible
with this interpretation. Alternatively, the interaction may
target the kinase to other substrates. Interestingly, the
substrate specificities of p107- and p130-associated kinases
seem to differ from those of the free kinases (66). A third
possibility that has been suggested is that p107 and p130
may serve as Cdk inhibitors by sequestering Cdks away
from other substrates or by using their N-terminal domains
to reduce the activity of the associated kinases (67-69).
Currently, p107 and p130 are thought to be regulators of
E2F and Cdks, although they may have additional, as yet
unidentified, functions.

Similarly to pRb, E1A can bind p107 and p130,
dissociating E2F from the complex. As for pRb, the
interaction is mediated by the E1A CR2 region, and CR1
sequences were shown to contribute to stabilization of the
E1A-p107 complex (38). However, the interactions of E1A
with the various pocket proteins are not identical, and can
be differentially affected by certain E1A mutants (70).
Using such mutants, it was possible to show that interaction
of E1A with the various pocket proteins could influence the
expression of different genes (71). E1A does not disrupt the
interaction of p107 and p130 with the cyclin-Cdk
complexes (29, 65), and is thus found to be associated with
kinase activities (30, 34, 72). p107 and p130 present in
these complexes were reported by some investigators to be
hyperphosphorylated (73), whereas others have shown that
E1A blocks hyperphosphorylation of p107 and p130 (74).
However, different phosphorylation sites may have been
affected in the two cases. Although E1A was reported to
modulate phosphorylation of p130 and p107, it is unclear
whether a direct interaction with the pocket proteins is
required (74). E1A was also shown to induce
phosphorylation of pRB in normal quiescent cells,
independently of binding to pRb (75). pRb phosphorylation
may complement pRb inactivation by interaction with E1A.
However, the functional significance of the E1A-pocket
proteins-cyclin-Cdk complexes is uncertain. They could
represent inactive complexes dissociated from E2F, or they
may have additional, unknown functions. Interestingly,
E1A itself was reported to be phosphorylated by various
Cdks and phosphorylated E1A was found to be more

efficient in binding pRb and disrupting pRb-E2F
complexes (76).

In summary, E1A proteins disrupt a series of
complexes consisting of different pocket proteins, several
E2F subunits and cyclin-Cdks. These complexes normally
regulate cell cycle progression and their disruption by E1A
deregulates normal cell cycle control, leading to
progression of quiescent cells into S phase.

3.3 Targeting cyclin-Cdks by E1A
In addition to interacting with cyclin-Cdk

complexes (section 3.2.2), E1A was also shown to
modulate the expression of genes encoding cyclins and
Cdks.  Cyclin A was shown to be transcriptionally activated
by E1A, through a mechanism involving binding to p107
and relieving repression of the cyclin A promoter (71, 77).
Cyclin D levels were reduced in Ad-transformed and
infected cells, in a manner dependent on E1A, whereas
Cyclin E was increased in response to Ad5 E1A (77-79).
The E1A 243R protein has also been shown to induce
elevated levels of Cdc2 in infected cells (80). Ad12 E1A
similarly increased the levels of cyclins A, B1, E, Cdc2,
and Cdk2, and decreased the levels of cyclins D1 and D3.
These changes were suggested to depend on p107 and p130
(81). In addition, expression of E1A proteins in quiescent
fibroblasts was reported to lead to an increase in Cdc25A
tyrosine phosphatase activity and levels. This phosphatase
activates Cdks by dephosphorylating an inhibitory
phospho-tyrosine site in these molecules. Inhibition of
Cdc25A function by antibody injection prevented virus-
induced entry into S phase, presumably by inactivating the
Cdc25A target Cdks (82). Thus, alterations in the levels of
various cyclins and Cdk molecules and their modulators
may also contribute to deregulation of the cell cycle by
E1A.

In addition, E1A has been shown to directly
affect Cdk inhibitors. E1A bound the cyclin-dependent
kinase inhibitor p27/Kip1 in TGF-beta-treated cells and
blocked its inhibitory effect. As a result, the activity of the
cyclins E/A-cdk2 kinase complex was restored, and the
TGF-beta growth-inhibitory effect was reversed (83).
Mutation of two conserved motifs in CR2, GFP and
SDDEDEE, was shown to impair the ability of E1A to
overcome G1 arrest by the Cdk inhibitors p16 and p27, but
did not prevent pRb binding by E1A (84). E1A can also
interact with p21 and inactivate it (85-86). Thus, targeting
Cdk activity appears to contribute to cell cycle deregulation
by E1A. In addition, using a different experimental system,
it was reported that E1A could prevent growth arrest by
p27 without interacting with this Cdk inhibitor (87). These
results suggest that E1A can also target downstream
effectors of Cdk2 to modulate G1/S control.

3.4 E1A, HATs, HDACs, and chromatin remodeling
3.4.1 p300/CBP

A cellular protein of 300kDa has been found
among the E1A-associating proteins. The p300 binding site
on E1A includes the N-terminus (amino acids 1-25) and the
C-terminal half of CR1 (5, 38). As described above, E1A
mutants that lack CR2 and are unable to bind pRb are still
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capable of inducing cellular DNA synthesis. Only mutants
that lack both pRb- and p300-binding sites lose their ability
to drive cells into S phase. Thus, E1A proteins contain two
independent domains that can induce cell cycle progression
from G1 to S phase (39-40, 88). In addition to S phase
induction, the E1A p300-binding domain has also been
shown to contribute to E1A’s ability to repress enhancer
function (38, 89-90). E1A can repress the activity of
several enhancer elements, including some that control
genes associated with cellular differentiation (91-93). The
p300 sequence is highly homologous to the CREB-binding
protein (CBP) (35) and both proteins are transcriptional co-
activators involved in many physiological processes,
including proliferation, differentiation and apoptosis
(reviewed in (94)). Although differences in p300 and CBP
functions have been reported, these proteins are generally
believed to have highly overlapping activities. p300/CBP
act as protein scaffolds, on which multicomponent
transcriptional regulatory complexes are assembled. In
addition, p300/CBP proteins possess a histone
acetyltransferase (HAT) activity (95-96), and they are
found in association with another HAT, PCAF. Histone
acetylation plays an important role in the modulation of
chromatin structure associated with transcriptional
activation (97-99). It has been proposed that histone
acetylation promotes destabilization of histone-DNA
interactions in the nucleosome, resulting in increased
accessibility of the chromatin to the transcription
machinery. Although it has been shown that p300/CBP
HAT activity is directly involved in chromatin remodeling,
a growing body of evidence suggests that transcription
factors and components of the transcription apparatus are
also regulated by acetylation (94, 100). In the context of
cell cycle regulation, it has been shown that the p300/CBP-
PCAF protein complex can arrest cell cycle progression
(101) and might regulate target genes that are involved in
control of the G1/S transition, such as p21/WAF1 (102).
p300 is also known to control E2F activity: as cells
approach S phase, cyclin E/cdk2 phosphorylates E2F-5.
This phosphorylation augments the physical interaction
with p300, thereby enhancing the transcription of E2F
target genes. The Cdk-stimulated interaction of p300 and
E2F may be involved in irreversibly committing cells to
cell cycle progression (103). Furthermore, it has been
proposed that p300 has a dual role in controlling p53
activity. Current studies show that MDM2 mutants that can
bind p53 but not p300 fail to promote efficient p53
degradation. Therefore it has been suggested that a ternary
complex containing p300, p53 and MDM2 controls p53
stability. It has also been shown that a p300-interacting
protein, JMY, augments p53-dependent apoptosis. Thus,
p300 both augments p53 transactivation function and
stimulates its turnover (Reviewed in (94)). P300/CBP
proteins are also important for differentiation (section 3.5).

The  binding of E1A to p300/CBP inactivates a
number of cellular and viral promoters and enhancers (104-
106). Various mechanisms have been proposed to explain
the functional consequences of the interaction between
E1A and p300/CBP. First, binding of E1A to p300/CBP
disrupts  coactivation complexes of p300/CBP containing
PCAF or p/CIP (101, 107), and overexpression of PCAF in

cells could counteract the mitogenic activity of E1A (101).
Disruption of the complex containing PCAF is the
consequence of the fact that E1A and PCAF bind to the
same or overlapping region within p300/CBP. E1A can
also bind PCAF independently of CBP, through CR1 (108).
Second, E1A was reported to act as a potent inhibitor of the
acetyltransferase activity of p300/CBP and PCAF in vitro.
This inhibitory activity was necessary for E1A function in
vivo: E1A inhibited p300-dependent transcription as well as
nucleosomal modifications and p53 acetylation (109-110).
Whereas the N terminus of E1A is required for the
association with p300/CBP, CR2 and CR3 appear to be
required for the inhibition of the acetyltransferase activity
(109). Thus, inhibition of the HAT activity of p300/CBP
may be dispensable for induction of G1 to S phase
progression by E1A, but not for control of cell division. In
contrast with the reports showing that E1A inhibited HAT
activity of p300/CBP, one report demonstrated that E1A
activated HAT activity (111). The authors of this report
suggested that the different effects of E1A on CBP activity
may depend on the system analyzed and the CBP
transactivation domain involved. This may very well be the
case, since p300/CBP proteins were shown to mediate
E1A-induced transcriptional activation, rather than
repression, through some effectors, such as YY1 (112) or
CREB (113). In the latter case, CBP mediated
transactivation of the proliferating cell nuclear antigen
(PCNA), a crucial component of DNA replication
complexes and an effector of E1A, which can contribute to
induction of DNA synthesis.

Interestingly, the presence of pRb and p300/CBP
in a multimeric protein complex with E1A has been
reported to stimulate acetylation of pRb by p300/CBP
(114). Acetylation of pRb hindered its phosphorylation by
cyclin E-Cdk2 and increased its binding to MDM2. It is
unclear, however, how acetylation of pRb could assist in
E1A-induced cell cycle progression.

 Contrasting reports also described the effect of
E1A on p300/CBP phosphorylation. Eckner et al. showed
that E1A stimulated p300/CBP phosphorylation, probably
through cyclin-Cdk complexes (115). Banerjee et al.,
however, reported that E1A blocked p300/CBP
phosphorylation by cyclin-Cdk complexes in vitro, (116).
The C-terminal region of p300/CBP interacts with cyclin E-
Cdk2, as well as with E1A. The 12S E1A protein, which is
an inhibitor of p300-dependent transcription, does not
affect the association between p300 and cyclin E-Cdk2.
However, the 13S E1A product, which contains the
transcriptional activation domain, enhances the association
between p300 and cyclin E-Cdk2 (117). Furthermore, HAT
activity was shown to be elevated at the G1/S border, and
phosphorylation of the C-terminal region of p300/CBP by
cyclin E-Cdk2 appeared to stimulate its HAT activity
(111). Thus, if E1A stimulates HAT activity under some
circumstances, it may mimic events occuring at the G1/S
border. Another group, however, reported that cyclin E-
Cdk2 negatively regulated p300-mediated coactivation of
NF-kB (118), implying that phosphorylation may inhibit
some p300 activities. Since the exact sites of
phosphorylation on p300/CBP have not been mapped, it is
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unclear to date how diverse phosphorylation events may
influence the various activities of p300/CBP, and what
input E1A has on these different events.

In summary, E1A associates with the HATs
p300/CBP and PCAF and modifies their activities. Since
these coactivators affect transcription of several genes,
including cell-cycle related genes, the modulation of their
activity contributes to E1A-induced G1 to S progression of
the cell cycle. In contrast with E1A’s interaction with pRb
family members, which results in activation of E2F-
regulated genes, the interaction of E1A with p300/CBP
results in many cases in repression of genes that are
normally up-regulated by p300/CBP.

3.4.2 p400
In addition to its interaction with the HATs

p300/CBP and PCAF, E1A also associates with p400, a
SWI2/SNF2-related protein. p400 has been found by
peptide mapping to be related to p300 and it binds to the
same domain on E1A as does p300/CBP (29, 73). The
E1A-p400 complex contains additional components,
including TRRAP, the DNA helicases TAP54 alpha/beta,
actin-like proteins, and the human homologue of the
Drosophila Enhancer of Polycomb (EPc) protein (37). EPc
participates in epigenetic silencing mechanisms, such as
position effect variegation (119). An E1A mutant, defective
in p400 binding, is also defective in transformation. E1A
has been shown to alter the subunit composition of p400
complexes, thus probably modulating their activities.
TRRAP is a subunit of at least two other types of
complexes, which include the HATs GCN5/SAGA and
Tip60/NuA4. The recruitment of TRRAP appears to be
required for oncogenic transformation by E1A and
expression of dominant negative mutants of TRRAP block
E1A-mediated oncogenic transformation  (120-121).

3.4.3 CtBP
CtBP (C-terminal binding protein) is a 48 kDa

cellular phosphoprotein that binds to the C-terminal region
of adenovirus E1A proteins (43, 122). The interaction
requires a PLDLS motif, with adjoining sequences
influencing the affinity of the binding (123). A PXDLS
motif is also found in many other proteins that bind CtBP
and mediates their interaction with it. CtBP family proteins
share a high degree of amino acid homology with NAD-
dependent 2-hydroxy acid dehydrogenases, however, no
significant acid dehydrogenase activity has thus far been
detected. CtBP family proteins associate with a large
number of DNA-binding proteins and function as
transcriptional corepressors (124). CtBP1, the family
member that associates with E1A, has been reported to
associate with endogenous histone deacetylases such as
HDAC2 and Sin3. CtBP-mediated repression of certain
promoters has been shown to be sensitive to the HDAC
inhibitor trichostatin (TSA), whereas repression of other
promoters was insensitive to TSA. Thus, transcriptional
repression by CtBP is either HDAC-dependent or -
independent, depending on the promoter context. HDAC
independent repression could involve interaction with the
human Polycomb protein PcG (reviewed in (125)), or could
be the result of direct interference with transcription

initiation complexes (126). The binding of CtBP to the C-
terminal region of E1A has been shown to be regulated by
the nuclear acetylases p300/CBP and PCAF that interact
with the amino terminus of E1A (127). A Lys residue
found close to the PLDLS motif was acetylated by these
HATs. E1A mutants that mimic the effect of the acetylation
(Lys to Gln or Ala) were defective in CtBP binding,
whereas a substitution of Lys to Arg enhanced CtBP
binding. It could be suggested, therefore, that the HATs
bound to the E1A N-terminus may decrease the interaction
of the C-terminus with CtBP.

Deletions within the C-terminal region of E1A,
which abolish CtBP binding, confer a hypertransforming
phenotype to E1A in cooperative transformation assays
with the activated Ras oncogene (42-43), and tumors
expressing these E1A mutants are highly metastatic, while
tumors expressing wild-type E1A are not. Furthermore,
when E1A was artificially targeted to a reporter gene, it
was shown that deletion of the CtBP-binding motif
(PXDLS) in E1A increased E1A’s transcriptional activity
(128).  The mechanisms by which CtBP binding may
inhibit the oncogenic potential of E1A are not known,
however, several possibilities have been suggested (125).
First, CtBP binding to E1A may antagonize the activity of
the HATs bound at the N-terminus by recruiting HDACs to
the complex. This activity could then inhibit cell growth
stimulation associated with the E1A-bound HATs. Second,
interaction of CtBP with E1A may contribute to repression
of certain cellular genes and deletion of the CtBP-binding
region or acetylation of the Lys residue would relieve this
repression. For example, the E1A mutants that mimic the
effect of acetylation are defective in repressing CREB-
stimulated transcriptional activation (127). Third, wild type
E1A may activate some genes by removing CtBP from
repression complexes. In support of this possibility, the
E1A C-terminal region is involved in activation of some
cellular genes that modulate oncogenesis (129-131). In
addition to the repressor activity of CtBP, a context-
dependent weak transcriptional activation function has been
reported in 293 cells that express Ad E1A (132).
Furthermore, coexpression with E1A turned CtBP from a
potent repressor into a weak activator in NIH 3T3 cells, and
mutations in E1A which delete residues 2-36 or abolish
pRb binding greatly reduce the activation function. These
results suggest that the interaction with E1A may expose a
CtBP activation function, or that it changes the nature of
multiprotein complexes involving CtBP.

The activities of several oncogenes and tumor
suppressor genes appear to be modulated by interaction
with CtBP. Thus, antagonizing CtBP action by E1A may
contribute to the effect of the viral protein on cellular
proliferation.

3.5 E1A and differentiation
Terminal differentiation involves two tightly

linked phenomena: permanent withdrawal from the cell
cycle and biochemical differentiation (133).

E1A can induce terminally differentiated cells to
synthesize DNA and divide. This was shown for skeletal
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Figure 2. Adenovirus proteins affecting p53. Adenovirus
proteins, which modulate p53 at multiple levels, are shown
together with their effects on p53. The details are described
in sections 4 and 5.

muscle cells (134-136), adipocytes and myocardiocytes
(134, 137). In addition, E1A blocks the differentiation of a
number of cell lines, including rat PC12
pheochromocytoma cells and a variety of myoblast cell
lines (Reviewed in (7)). The regions of E1A involved in
repression of differentiation closely correlate with regions
required for transformation (7-8, 138-140). In particular,
the extreme N-terminal region of E1A was consistently
found to be critical, either alone or in conjunction with the
CR2 region. Thus the interactions of E1A with p300/CBP
and pRb family members are most likely involved in
antagonizing differentiation processes.

Terminal differentiation is accompanied by pRb
dephosphorylation. The cell cycle machinery, which
propels cells through the G1/S transition, is frozen in this
state and as a consequence pRb remains dephosphorylated
(45). In addition, the amount of pRb protein, as well as that
of p130, is greatly increased during terminal differentiation
(Reviewed in (133)). The ability of mutant E1A proteins to
bind pRb and/or its relatives p107 and p130 strongly
correlates with their capacity to trigger DNA synthesis in
postmitotic cells (136). E1A activates DNA synthesis by
binding pRb family members, thus releasing transcription
factors of the E2F family (45). This, in turn, would result in the
transcriptional upregulation of host genes that are regulators of
DNA synthesis. However, release of E2F is not sufficient for
the reversal of differentiation. Although E2F is needed to
trigger DNA synthesis in myotubes, as dominant negative DP-
1 mutants inhibit E1A-mediated cell cycle reentry, E2F cannot
replace E1A in inducing S phase, since overexpression of E2F
could not reactivate those cells (141).

p300/CBP plays a critical role in mediating cell
cycle arrest during terminal differentiation. Mutants of

E1A, which were able to bind p300 but not pRb, were still
able to block cellular differentiation in different cellular
systems (133). Furthermore, it has been shown in several
experimental systems that the expression of p21 (a Cdk
inhibitor required for exit from the cell cycle), as well as
terminal differentiation, are blocked if cells are transfected
with an E1A mutant that retains the ability to bind to p300,
but is not blocked by mutants that bind exclusively to pRb
and not p300 (102, 142-144). MyoD is an example of an
inhibitor of the cell cycle that binds p300/CBP and has
been shown to be targeted by E1A. The interaction of
MyoD with p300/CBP has been shown to be essential for
cell cycle arrest and muscle-specific gene expression (105).
By binding to p300/CBP, E1A inhibits these processes
(145-146).

It has also been shown that a region within E1A
(amino acid 40-61), which binds neither p300/CBP nor
pRb, is necessary and sufficient for the repression of
muscle-specific enhancers (147). In particular, a six amino
acid motif (amino acids 55-60) is necessary for this effect.
Apparently, mutagenesis of E1A residues 55-60 partially
disrupts the binding to PCAF (a second PCAF binding site
exists in E1A CR1) and thus partially disrupts the
myogenesis blockade by E1A (108).

It appears, therefore, that E1A functions required
for inducing non-proliferating cells to enter the cell cycle
are also responsible for reversal of the differentiation state.

4. TARGETING THE p53 PATHWAY BY SEVERAL
ADENOVIRUS PROTEINS

As discussed above, expression of E1A in
quiescent cells can efficiently induce cellular DNA
synthesis and transient cell proliferation (5). However, E1A
expression is not sufficient to induce long-term growth of
primary cells. This is because deregulation of the cell cycle
activates p53, which triggers a cellular defense mechanism
to implement growth inhibition and apoptosis. Thus,
whereas E1A expression leads mostly to p53 accumulation
(section 4.2), E1B-55kDa and E4orf6 employ various
mechanisms to inactivate p53 (section 4.3.1), and E1B-
19kDa antagonizes apoptotic processes initiated by p53.
The multitude of mechanisms utilized by adenovirus
proteins (as well as by several other viruses) to inactivate
the p53 pathway (figure 2) underscores the importance of
inactivating this pathway for virus replication in the host
organism. Although the importance of p53 inactivation for
adenovirus replication has lately become the subject of a
heated debate (section 6), it is difficult to accept the notion
that adenovirus invests so much effort to neutralize p53
without it having important consequences to virus
replication. Possible explanations will be discussed in
section 6.

4.1 The p53 tumor suppressor
The p53 protein was first identified more than

twenty years ago as a binding partner of the SV40 T
antigen (148-149).  It was later found to associate with
other viral proteins, such as the adenovirus E1B-55kDa
protein (150), the adenovirus E4orf6 protein (151), the
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human papillomavirus E6 protein (152), and others. The
targeting of p53 by several tumor viruses drew attention to
this protein, and its role in cell growth and tumorigenesis
has been studied extensively.

The p53 gene encodes a tumor suppressor that is
the center of cellular stress response pathways functioning
to prevent the growth and survival of potentially malignant
cells. The p53 protein is defective in most human cancers.
In about half of these tumors, p53 is inactivated directly as
a result of mutations in the p53 gene (153). In many others
it is inactivated indirectly as a result of alterations in genes
that belong to the p53 pathway, or through binding to viral
proteins (154). Activation of p53 by cellular stress can
induce several responses in the cells, including cell cycle
arrest, apoptosis, DNA repair, inhibition of angiogenesis,
differentiation, or senescence (reviewed in (155)).

4.1.1 Transcription modulation by p53
p53 is a sequence-specific transcription factor

that can mediate many of its downstream effects by the
activation or repression of a large number of target genes.
Virtually all naturally occurring mutations in the p53 gene
reduce the ability of the p53 protein to activate
transcription (153). Furthermore, substitution of a gene
encoding a transcriptionally inactive mutant p53 for the
wild-type gene leads to loss of growth inhibitory activity in
mice (156-157). These findings indicate the importance of
the transcriptional activity of p53 to its function as a tumor
suppressor. However, some activities of p53 have been
reported that are entirely independent of transcriptional
regulation (158-160). Whereas p53 activates transcription
of several genes by binding to DNA in a sequence-specific
manner, p53 mediates transcriptional repression of other
genes independently of p53 DNA response elements. To
mediate repression, p53 utilizes at least two mechanisms,
association with histone deacetylases (161) or binding to
the basal transcriptional machinery and interfering with
transcriptional initiation (162-163). Genes that are
upregulated by p53 and control cell cycle progression
include p21/WAF1, 14-3-3 sigma, Gadd45, B99 and
MCG10. Cell cycle regulatory genes whose expression is
repressed by p53 include Wee1 (164), topoisomerase II
alpha (165), cyclin B1 and Cdc2 (166-167).

4.1.2 p53 activation
The p53 pathway is usually inactive in normal

cells, and is activated when cells are stressed. At least three
independent pathways lead to activation of the p53
network. These pathways are triggered by DNA damage,
aberrant growth signals (such as those resulting from
expression of oncogenes), and chemotherapeutic drugs
(154). All three pathways inhibit the degradation of the p53
protein, and cause its stabilization at high levels. The
MDM2 protein, itself a transcriptional target of p53, is an
E3 ubiquitin ligase that targets p53 for degradation by the
proteasome (168-169), thus creating a negative feedback
loop in which activation of p53 results in degradation of its
protein product. MDM2 function is inhibited through
various means, depending on the stress-induced pathway
(170). One inhibitor of MDM2 is p14/ARF, which binds
MDM2 (171) and neutralizes its activity by various means

(171-173). Increased levels of the p53 protein are not
sufficient for its activation. Other mechanisms include
subcellular localization and protein modifications. p53
function depends on nuclear localization, and both nuclear
import and export are tightly regulated (174). The ability of
p53 to function as a transcription factor can be modulated
by various post-translational modifications, including
phosphorylation, acetylation, glycosylation, ribosylation,
and sumoylation (154).

4.1.3 p53 regulation of the cell cycle
One of the first effects of p53 expression, in

almost all cell types, is to block the cell cycle. p53
transcriptionally upregulates p21/WAF1, an inhibitor of the
cyclin-dependent kinases (Cdk) (175). p21 binds and
inactivates cyclin-Cdk complexes that mediate G1
progression and timely entry of cells into S phase. As a
result, pRb is hypophosphorylated, E2F is sequestered by
pRb, and the cell cycle is arrested at the G1/S border.
Through its negative effect on other members of the Cdk
family, p21 also contributes to inhibition of the transition
from G2 to mitosis (175-176). p21 also associates with the
proliferating cell nuclear antigen (PCNA) and prevents
PCNA from mediating recognition of the DNA primer-
template complex, leading to inhibition of the elongation
step in DNA replication (177-178). Thus, p21 mediates
interference of p53 in S phase progression as well.

Whereas p21 is the principal mediator of p53-
induced cell cycle arrest at the G1/S border, several
different gene targets of p53 are involved in regulation of
the G2 to M transition (reviewed in (179)). In addition to
p53-enhanced expression of p21, and the resulting
inhibition of cyclin B1-Cdc2 activity (175), p53 also
represses the transcription of cyclin B1 and Cdc2 (166,
167). Constitutive activation of the cyclin B1-Cdc2
complex overcomes p53-mediated G2 arrest. Moreover, in
epithelial cells, p53 stimulates the expression of protein 14-
3-3 sigma, which sequesters cyclin B1-Cdk1 complexes
outside the nucleus, thus helping to maintain a G2 block
(180). Another transcriptional target of p53 implicated in
regulating the G2/M transition is Gadd45. Enhanced
expression of Gadd45 in primary fibroblasts leads to G2
arrest. This effect is p53-dependent since overexpression of
Gadd45 in p53-deficient fibroblasts fails to mediate G2
arrest (181). The effect of Gadd45 on G2/M transition may
be due to its ability to dissociate Cyclin B1-Cdc2
complexes (179). Reprimo, a glycosylated, cytoplasmic
protein, is also induced by p53, and overexpression of this
protein leads to arrest of the cells in G2 (182). Two other
genes induced by p53, and which may contribute to p53-
mediated G2/M arrest are B99 and MCG10 (179). Cyclin
G, which is induced by p53, may play a role in G2/M arrest
or in induction of apoptosis (183-185).

4.2. E1A and p53
The p53 protein appears to be a target for several

adenovirus proteins (figure 2), and some of these proteins
affect p53 in more than one way. Ad E1A proteins have
been shown to induce elevated p53 levels and to enhance
p53-dependent apoptosis (186-187). p53-deficient primary
fibroblasts expressing E1A are resistant to apoptosis and
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become oncogenically transformed (188).  Both the pRb-
and p300/CBP-binding domains of E1A are required to
promote p53 accumulation and apoptosis in primary cells
(189-190). However, inactivation of pRb and not p107 or
p130 is involved in these events (190).  Other oncogenes,
such as Myc or Ras, can also activate p53. The ability of
E1A to induce p53 and its transcriptional targets is severely
reduced in p14/ARF-null cells, which remain resistant to
apoptosis following serum depletion or adriamycin signals.
Thus p14/ARF mediates p53 activation induced by E1A
proteins (191).  As discussed above, E1A releases free E2F
by binding pRb, thus activating E2F-dependent gene
expression (section 3.2). E2F-1 transactivates p14/ARF
(192), and p14/ARF protein binds MDM2 (171) and
neutralizes its activity (171-173). Disruption of MDM2
function by p14/ARF allows p53 levels to rise, leading to
induction of cell cycle arrest and apoptosis. In addition to
E1A-pRb, the E1A-p300 interaction also affects p53
stability. Inhibition of p300 by E1A can interfere with
either direct effects of p300-MDM2 complexes on p53
stability (193), or p53-dependent transactivation of MDM2
(194). Furthermore, it has been shown that p53 acetylation
in vivo is mediated by p300/CBP. MDM2 actively
suppresses p53 acetylation and this activity is abrogated by
p14/ARF. Functionally, inhibition of deacetylation has
been reported to promote p53 stability, suggesting that
acetylation contributes to p53 accumulation (195). Since
E1A was shown to modulate p300/CBP HAT activity both
positively and negatively, depending on circumstances (see
section 3.4.1), it is possible that E1A also modulates p53
acetylation by p300/CBP, and this could have an impact on
p53 stabilization by E1A. In addition, it has recently been
reported that E1A can bind Sug1, a regulatory component
of the proteasome, (196) via E1A’s N-terminus. This
interaction may also play some role in stabilization of E1A
target proteins, including p53 (197).

E1A may affect not only p53 stability but also its
transcription. Recent studies in mice have shown that E1A
can activate transcription of p53 by inducing the binding of
the cellular transcription factors ETF and E2F to the p53
promoter. ETF binding is essential for activation of the p53
promoter while E2F binding is not (198).

In contrast with the positive effect E1A has on
the accumulation of p53, E1A has been reported to have a
negative effect on p53 function. E1A represses stimulation
of transcription by p53 through a mechanism that does not
affect p53 binding to DNA or phosphorylation of the p53
transactivation domain (199). Furthermore, some E1A-
expressing cells have lost the ability to arrest in G1 after
DNA damage, suggesting that E1A can inhibit the
biological functions of p53. The inhibition of p53-mediated
transactivation has been mapped to the p300/CBP binding
domain of E1A (200). Mutant analysis revealed that p53
stabilization and inhibition of p53 transactivation were two
independent functions of the p300/CBP binding region of
E1A (200). Inhibition of p53-dependent p21 expression by
E1A correlated with suppression of cell cycle arrest
following DNA damage. The 13S E1A product can also
antagonize the repression function of p53 by dissociating
the complex formed between the carboxy-terminal domain

of p53 and the TATA-binding protein (201). Thus, E1A
counteracts, at least in part, its own activity as inducer of
p53 accumulation, by inhibiting p53 function.

4.3 E1B proteins
The E1B transcription unit encodes two proteins,

E1B-55kDa and E1B-19kDa, both of which can block p53-
induced growth inhibition and apoptosis. The E1B-19kDa
protein is homologous in sequence and function to the Bcl-
2 family of apoptosis regulators, and the mechanisms by
which it blocks both p53-dependent and p53-independent
apoptosis are reviewed elsewhere (15-16). E1B-19kDa may
also affect growth inhibition by p53, by alleviating p53-
mediated repression of genes, while not blocking p53-
mediated transactivation (202-203).

The E1B proteins cooperate with E1A to
oncogenically transform cultured cells. The contribution of
E1B proteins to cellular transformation is due, at least in
part, to antagonizing apoptosis and growth arrest, which
result from the stabilization of the cellular tumor suppressor
protein p53 by E1A (186-187). Oncogenic transformation
reflects the ability of these proteins to interfere with the
normal function of cell cycle regulators and tumor
suppressor genes.

4.3.1 E1B-55kDa protein
The E1B-55kDa protein plays an important role

during human Ad5 productive infection in certain cell
types, although it has been reported to be dispensable for
virus replication in others (204-205). In the early phase of
viral infection, E1B-55kDa counteracts E1A functions that
would otherwise lead to the accumulation of p53 and the
induction of cell cycle arrest and apoptosis, thus allowing
efficient replication of the virus. During the late phase of
infection, E1B-55kDa is required for efficient
nucleocytoplasmic transport and translation of late viral
mRNAs, as well as for the shutoff of host mRNA nuclear
export and of host protein synthesis (reviewed in (2, 206)).
Here we will focus on E1B functions involved in p53-
dependent and -independent modulation of the cell cycle.

4.3.1.1 Transcriptional repression of p53-regulated
genes by E1B-55kDa

The Ad5 E1B-55kDa protein binds to p53 in
infected cells (150) and blocks its transcriptional activity.
Analysis of mutant E1B-55kDa proteins has revealed a
strong correlation between their ability to inhibit p53-
mediated transcriptional activation and their ability to
cooperate with the adenovirus E1A protein in the
oncogenic transformation of primary cells (207). Since
transcriptional activation by p53 accounts for most of its
functions (section 4.1.1), including induction of cell cycle
arrest, blocking p53 function by E1B contributes to the
ability of the cell to transit from G1 to S phase, despite p53
stabilization. Expression of E1B-55kDa protein alone is not
sufficient to stimulate quiescent cells to enter S phase,
consistent with the finding that deletion of both p53 alleles
does not directly lead to loss of regulated cell division
(208). However, the finding that p53 is targeted by several
viral oncoproteins suggests that the neutralization of p53 is
important for the viral life cycle. Presumably, the E1B-
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55kDa protein collaborates with E1A to more effectively
activate quiescent cells. Since E1A expression leads to
stabilization of p53, the E1B proteins must allow cell cycle
progression of the activated cells by preventing a cell cycle
block induced by p53, as well as preventing p53-induced
apoptosis.

The E1B-55kDa protein binds to the amino-
terminal transactivation domain of p53 (209). Mutation of
p53 at either the proline at position 24, or the tryptophane
at position 27, reduces the affinity of p53 for E1B-55kDa,
although its transactivation function remains wild type
(210). Thus, it is possible that the viral protein simply
masks the p53 activation domain. However, interaction
between E1B-55kDa and p53 was found to be necessary
but not sufficient for the repression and transformation
functions of E1B-55kDa, since an E1B-55kDa insertion
mutant at position 443 bound to p53 with wild-type affinity
but was defective for repression of p53 transcriptional
activation and for transformation (207, 211). These studies
have suggested that E1B-55kDa actively represses p53
transcription, and does not simply prevent p53 from
binding DNA or sterically blocking its activation function.
The mutation analysis of E1B-55kDa indicates that,
whereas the p53-binding domain of E1B-55kDa lies in the
center of the viral protein between residues 216 and 354
(209, 212), the carboxyl terminus of this protein is
important for its repression functions (207, 211). This is
supported by the report that phosphorylation of serine
residues 490, 491 and threonine 495 within the carboxyl
terminus of E1B-55kDa is required for repression of
transcription, since substitution of these residues to alanines
abolished repression activity of the viral protein (213-214).

The suggestion that E1B-55kDa has a general
transcriptional repression activity gained support from
transient transfection experiments in which Gal4-E1B-
55kDa fusion protein was shown to repress expression from
several target promoters containing Gal4 binding sites.
These promoters did not contain common activator binding
sites, suggesting that E1B-55kDa does not inhibit a specific
activation mechanism, but rather inhibits a general process
required for transcription. The inhibition was observed in
cells lacking p53, suggesting that the repression function
was independent of p53 (211). It appears, therefore, that
E1B-55kDa acts as a general repressor of transcription, and
that the repression is targeted to p53-activated promoters by
binding of the viral protein to p53. Indeed, in vitro
experiments demonstrated that E1B-55kDa bound directly
to purified p53, causing a 10-fold increase in p53 affinity
for tandem p53 binding sites, and specifically repressed
p53 activation (215). Thus, E1B-55kDa protein converts
p53 from a stress-regulated transcriptional activator into a
strong constitutive repressor of p53-targeted genes. Using a
highly purified in vitro transcription system, Berk and
coworkers further analyzed p53 repression by E1B-55kDa
(216). Since repression was observed in reactions
containing purified general transcription factors, it was
concluded that E1B-55kDa could operate through a
mechanism that did not involve histone deacetylation. They
could show that E1B-55kDa repression required tethering
of the viral protein to the promoter, through its interaction

with p53, since a point mutation in p53 that reduced the
affinity to E1B-55kDa caused a markedly reduced
repression. Furthermore, E1B-55kDa repressed
transcription under conditions that did not allow p53
activation due to lack of TFIIA or substitution of TBP for
TFIID. Thus, E1B-55kDa appeared to inhibit basal
transcription, rather than block p53-specific activation.
However, transcription could not be inhibited in reactions
containing only purified general transcription factors, but
required a corepressor that copurified with RNA
polymerase II. The identity of the corepressor has not yet
been published.

Although the large E1B proteins of Ad2/5 and the
highly oncogenic Ad12 share the ability to neutralize p53,
there are a number of differences between them. The Ad2/5
proteins bind p53 strongly, and the complex is localized to
cytoplasmic dense bodies in E1-transformed cells (150,
217-219). The Ad12 large E1B protein interacts weakly
with p53, and p53 and much of the E1B protein are found
in the nucleus of Ad12-transformed cells. This is probably
due in part to a nuclear localization signal found in Ad12,
but not in Ad2/5 large E1B protein (212, 219).
Furthermore, the large E1B protein from Ad5 but not Ad12
contains a nuclear export signal (NES) of the HIV-1 Rev-
type, and continuously shuttles between the nucleus and the
cytoplasm (220). The presence of a NES in Ad5 E1B-
55kDa might further explain the differences observed in the
subcellular localization of Ad5 and Ad12.  Despite these
differences, the binding sites for p53 on both types of large
E1B proteins have been mapped to homologous sites in the
center of the molecules (212). It has been reported that the
large E1B protein of Ad12 is not only an inhibitor of
transcription activation by p53, but can also interfere with
p53-mediated repression of transcription through CAAT-
TATA sequences (221). Expression of the Ad12 large E1B
protein has been shown to result in the loss of G1 cell-cycle
arrest after X-ray irradiation, presumably due to p53
neutralization (221). Disruption of the E1B-p53 complexes,
using peptides identical to the p53 binding sites on both
Ad2/5 and Ad12 large E1B proteins, resulted in release of
transcriptionally active p53, as well as a reduction in cell
growth and DNA synthesis due to cell cycle arrest, induced
by p53 (222).

4.3.1.2 Acetylation of p53 as a target of E1B-55kDa
p53 can be acetylated by the p300 histone

acetyltransferase on several lysine residues at its extreme
carboxyl terminus (223), as well as by another HAT,
PCAF, which acetylates p53 at a different location (224-
225). Several groups showed that p53 can be acetylated in
vivo in response to a variety of cellular stress signals
(reviewed in (226)). The exact functional consequences of
p53 acetylation are still controversial (226), and may
include effects on DNA binding, coactivator recruitment,
influencing transcriptional activity, stability and cellular
localization. It is also possible that p53 acetylation might be
a mechanism to recruit deacetylases to downregulate
transcriptional activation by this protein, once p53 is no
longer needed and the cell should overcome p53-mediated
cell cycle arrest. It has been reported that p53 can associate
with mSin3A, a corepressor reported to be involved in
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transcriptional repression of several genes. This interaction
is required for p53 to recruit HDAC1 and to repress at least
two of its targets (161). It has later been shown that p53 can
associate with additional histone deacetylases (226). It is
not yet fully understood how the interactions with HDACs
silence p53-activated expression, although it is likely to
result, at least in part, from deacetylation of nucleosomes
near the target promoter.

Akusjärvi and his colleagues have reported that
the Ad2 E1B-55kDa protein forms an enzymatically-active
complex with HDAC1 and the transcriptional corepressor
protein mSin3A, both in Ad-infected and -transformed cells
(227). However, although it is tempting to speculate that
this complex contributes to repression of p53 as a
transcriptional activator, they have not been able to
demonstrate that overexpression of HDAC1 had an effect
on E1B-55kDa repression of p53, or that E1B repression of
basal transcription was affected by the HDAC inhibitor
trichostatin. Liao and his coworkers found that E1B-55kDa
protein specifically inhibited p53 acetylation by PCAF in
vivo and in vitro, while acetylation of histones and PCAF
autoacetylation were not affected (228). Moreover, the
DNA binding activity of p53 was reduced in cells
expressing E1B-55kDa. PCAF bound to E1B-55kDa and to
a region near the COOH terminus of p53, surrounding Lys-
320, the specific PCAF acetylation site. E1B-55kDa was
shown to interfere with the physical interaction between
PCAF and p53, suggesting that E1B-55kDa inhibits PCAF
acetylation of p53 by preventing enzyme-substrate
interaction. Liao and his colleagues propose that inhibition
of p53 acetylation by E1B-55kDa complements the
mechanism of direct targeting of DNA-bound p53 by the
viral protein to achieve a more complete inhibition of p53.
However, they did not directly show that interfering with
the ability of E1B-55kDa to interact with PCAF (but not
with p53) affects the ability of the viral protein to repress
p53. Thus, the contribution of the interaction of E1B-
55kDa with HATs and HDACs to repression of p53
transcriptional activation should be further investigated.

4.3.1.3 Regulation of p53 protein stability by the
adenovirus E1B-55kDa and E4orf6 proteins

As described above, expression of the adenovirus
E1A protein alone induces stabilization and accumulation
of p53, however, accumulation of p53 is not usually
observed upon infection of cells with wild-type adenovirus.
Several studies have shown that the E1B-55kDa and E4orf6
proteins cooperate to counteract E1A-induced stabilization
of p53 through accelerated p53 degradation (229-240). It
appears that p53 degradation requires interactions of E1B-
55kDa with both p53 and E4orf6, but occurs independently
of MDM2 and p14/ARF, regulators of p53 stability in
mammalian cells (235-236, 241). A protein fragment
containing the amino-terminal 58 residues of the E4orf6
protein binds both E1B-55kDa and p53 (151, 242). A
region toward the carboxyl terminus of p53 is involved in
E4orf6 binding (151), whereas the E1B-55kDa-interacting
domain is located at the amino-terminus of the tumor
suppressor (209). The p53-binding domain of E1B-55kDa
lies in the center of the viral protein (209, 212) and various
domains in the E1B-55kDa protein contribute to stable

association with E4orf6 (242). The sum of these
interactions generates a ternary complex containing
adenovirus E1B-55kDa and E4orf6 proteins and p53.

Several amino- and carboxyl-terminal domains
on the E4orf6 protein are involved in p53 degradation in
vivo (232, 235, 238-239, 241, 243), including the putative
zinc-coordinating cysteine and histidine residues located at
the amino-terminal p53-binding region. This sequence may
share similarities with RING finger motifs, mediating
protein interactions between ubiquitin conjugating enzymes
(E2) and ubiquitin ligase complexes (E3), which target
proteins for degradation by the proteasome (244). Another
E4orf6 region involved in p53 degradation is the arginine-
faced amphipathic alpha-helix located at the carboxyl
terminus of the E4 protein (241, 245-246). This region
appears to be required for many of the functions of the
E4orf6 protein that contribute to efficient virus replication
and is believed to be responsible for targeting E4orf6 and
E4orf6-E1B-55kDa complexes to the nucleus (245-247).
Identification of E4orf6-associating cellular proteins
participating in a multiprotein complex has suggested a
mechanism underlying adenovirus-mediated p53
degradation. The E4orf6-containing complex includes a
novel Cullin-containing E3 ubiquitin ligase composed of
Cullin family member Cul5, Elongins B and C, and the
RING-H2 finger protein Rbx1(ROC1) (248). This complex
is similar to the von Hippel-Lindau (VHL) tumor
suppressor and SCF (Skp1-Cul1/Cdc53-F-box) E3
ubiquitin ligase complexes, and is capable of stimulating
ubiquitination of p53 in vitro in the presence of E1/E2
ubiquitin-activating and -conjugating enzymes. Further
studies are required to elucidate other levels of control that
may regulate this complex.

4.3.1.4 Adenovirus proteins affect cellular localization
of p53

When expressed alone, or in Ad5-transformed
cells, E1B-55kDa can be detected in perinuclear,
cytoplasmic bodies where it is associated with p53 (218-
219). The presence of E1B-55kDa in the cytoplasm most
likely reflects its continuous shuttling (220), and its lack of
nuclear retention signal (212, 219). Physical sequestration
of p53 outside the nucleus in Ad5-transformed cells could
contribute to its inactivation.  The tumor suppressor WT1 is
also found in these cytoplasmic complexes, and Ad5 E1B
was shown to abrogate WT1-mediated apoptosis (249).
However, upon coexpression of the adenovirus E4orf6 gene
product, an E1B-E4orf6 complex is formed (242).
Subsequently, the equilibrium between nuclear export and
import of the E1B-55kDa protein is changed and the E1B-
55kDa-E4orf6 complex accumulates in the nucleus, where
it is distributed evenly (247). During lytic infection, both
proteins localize to the periphery of virus replication
centers in the nucleus (250). E4orf6-mediated nuclear
accumulation of E1B-55kDa requires an additional primate
cell-specific factor (247). In addition, sumoylation of the
E1B-55kDa protein has been reported to drive its nuclear
accumulation, and a mutant that cannot be sumoylated is
defective in nuclear transport and in inhibition of p53-
mediated transcriptional activation (251). It is currently
unknown whether E4orf6 modulates the sumoylation of
E1B-55kDa.
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The adenovirus protein E4orf3 also physically
associates with E1B-55kDa (252, 253), and redirects it to
nuclear tracks (254). p53 is then released from its
association with E1B-55kDa, resulting in p53-mediated
transcriptional activity. However, as described above
(section 4.3.1.3), E4orf6 cooperates with E1B-55kDa to
inactivate and degrade p53, even in the presence of E4orf3.
During adenovirus infection, E4orf3 is expressed
considerably earlier than E4orf6, suggesting that E4orf3
acts transiently on E1B-55kDa, allowing a passing
activation of p53, before it is inactivated by E4orf6 and
E1B-55kDa (254-255). Why a transient activation of p53
may be beneficial during adenovirus infection remains an
open question.

4.3.1.5 E1B-55kDa protein does not target the p53
family members p63 and p73

p73 is a cellular protein that shows a significant
homology to p53 (256). The homology between p53 and
p73 is particularly extensive in the DNA binding domain
and includes all residues known to form contact sites
between p53 and DNA. When overexpressed, p73 can
activate p53-responsive promoters, and can block cell
proliferation and induce apoptosis in a manner analogous to
p53 (256-257). The similarities between p53 and p73 raised
the question whether viral oncoproteins were capable of
inactivating p73, as they did p53. However, four different
groups could not detect a physical interaction between Ad
E1B-55kDa protein and p73 (236, 258-260). The difference
in binding between p53 and p73 was traced to five amino
acids near the amino termini of these proteins. When these
residues, originating from the p53 protein, were transferred
to p73, they conferred on this protein the ability to bind
E1B-55kDa (236). The large E1B proteins of both Ad2/5
and Ad12 also have no effect on transcriptional activation
by p73, and several studies have shown that E1B-55kDa
and E4orf6 selectively target p53 for degradation, but not
the related p63 and p73 proteins (236, 240, 260). Other
viral oncoproteins, such as SV40 T antigen and the human
papillomavirus E6 protein also target p53 but not p73 (259,
261), suggesting that inactivation of p53 is crucial for viral
infection, whereas p73 can be tolerated. Similarly,
p63/p51/KET, another p53 family member, is also not
targeted by the viral oncoproteins tested (240, 262).

4.3.1.6 p53-independent interactions of E1B-55kDa with
the cell cycle

By antagonizing p53-mediated cell cycle arrest
and apoptosis, E1B-55kDa provides suitable conditions for
virus replication and facilitates cellular transformation.
However, recent reports by Goodrum and Ornelles (263-
264) have demonstrated that E1B-55kDa relieves growth
constraints imposed on viral replication by the cell cycle
using additional mechanisms that are independent of p53.
They showed that, in randomly cycling cells, an E1B-
55kDa mutant virus was restricted for growth and produced
progeny virus in only a fraction of infected cells. By
contrast, the wild-type virus produced progeny in almost
every infected cell. They further analyzed virus growth in
synchronized populations of cells and showed that growth
of the mutant virus was severely restricted in cells infected
during G1, whereas this restriction was partially relieved in

cells infected early in S phase. The E4orf6 and E4orf3 gene
products of adenovirus also contributed to cell-cycle-
independent adenovirus replication. However, replication
of the E1B-55kDa mutant viruses was not related to the
status of p53 in the cells (263, 265), suggesting that a p53-
independent mechanism contributes to cell cycle-
independent adenovirus replication. Thus, E1B-55kDa
appears to deregulate the cell cycle by different
mechanisms, all of which contribute to the lytic infection.
In contrast to these findings, Gallimore and coworkers
reported that viral replication occurred more efficiently in
cycling cells, compared to quiescent cells, irrespective of
whether they express E1B-55kDa (266). Thus, additional
mechanisms to deregulate the cell cycle may be employed
by adenovirus, depending on the cellular
microenvironment. This by no means reduces the
importance of p53 inactivation for adenovirus replication,
at least in some cellular systems, as demonstrated by
Harada and Berk (267). They have shown that in H1299, a
p53-deficient cell line that contained a temperature-
sensitive allele of wild-type p53, there was only a modest
difference between the abilities of wild-type and E1B-
55kDa mutant (dl1520) viruses to replicate at the non-
permissive temperature. However, when a high level of p53
function was restored for 24 hrs prior to infection by
shifting the cells to the permissive temperature, a
substantial additional defect in the dl1520 yield was
observed. Under these conditions, virtually no dl1520
replication occurred, whereas the presence of E1B-55kDa
allowed replication to an extent similar to that for wild-type
Ad5 in the parental H1299 cells. In contrast, Goodrum and
Ornelles reported only a mild effect of p53 on replication of
the same mutant virus (265). These results suggest that,
under some cellular circumstances, E1B-55kDa is required
to eliminate p53, whereas in other situations p53’s presence
may be tolerated.

5. INTERACTIONS OF ADENOVIRUS E4
PROTEINS WITH CELL CYCLE REGULATORY
PATHWAYS

The E4 region includes seven open reading
frames (orfs), some of which encode proteins that interact
with cell cycle regulators, and contribute to cellular
transformation by the virus. The role of adenovirus E4
proteins in virus replication and oncogenesis has recently
been thoroughly reviewed (6, 268), and the interactions of
E4 proteins with cell cycle regulators will be briefly
mentioned here.

5.1 E4orf6
As described above (section 4.3.1.3), E4orf6

together with E1B-55kDa causes degradation of p53.
However, a controversy exists in the literature whether
E4orf6 also blocks p53- and p73-mediated transcriptional
activation (reviewed in (268)). In addition, one group
reports that E4orf6 moderately inhibits transcriptional
activation by p63/p51 (240). E4orf6 also alleviates
transrepression mediated by the carboxyl-terminus of p53
(151, 232), which correlates with the ability of the viral
protein to enhance focus formation in primary cells in
cooperation with the E1 genes. Besides its effect on p53,
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overexpression of E4orf6 was also reported to result in
accumulation of 293 cells in S phase. This S phase arrest
was accompanied by degradation of cyclin A and inhibition
of Cdc2 activity, caused by enhanced inhibitory
phosphorylation on tyrosine (243). This effect of E4orf6
presents an additional mechanism to ensure that the
infected cell provides the virus with the best conditions, i.e.
S phase conditions, for its replication.

5.2 E4orf3
E4orf3 also cooperates with E1 in cellular

transformation, however this effect is probably not linked
to modulation of p53 function. The oncogenic properties of
E4orf3 may involve its binding to E1B-55kDa and the
reorganization of nuclear bodies, also called PODs (PML
oncogenic domains) (253, 268). Reorganization of PODs
may be involved in the cell cycle independent adenovirus
replication mentioned in section 4.3.1.6 (264).

5.3 E4orf4
When expressed alone, the adenovirus E4orf4

protein induces p53-independent apoptosis in
transformed cells, and this effect requires an interaction
between E4orf4 and an active protein phosphatase 2A
(PP2A) complex containing a B alpha/B55 subunit (269-
272). E4orf4 also induces irreversible growth arrest in
S. cerevisiae, by a mechanism requiring the yeast
homologue of B alpha/B55 (CDC55) (273-275). The
analysis in yeast suggests that E4orf4 targets PP2A to
the anaphase-promoting complex/cyclosome (APC/C),
leading to APC/C inactivation and arrest in mitosis
(274). At the same time, E4orf4 partially counteracts its
own inhibition of APC/C by enhancing Cdc28 (the Cdc2
kinase homologue in yeast) activity through a
mechanism that requires MIH1, the yeast Cdc25
phosphatase homologue (274-275). However, the net
effect of E4orf4 action in wild-type yeast cells is G2/M
arrest. Similarly, E4orf4 can induce G2/M arrest in
mammalian cells prior to induction of apoptosis (274).
Other studies further indicate that unidentified E4 gene
products (excluding E4orf6) cause a delay in cell cycle
progression, associated with elevated levels of cyclin B
(a substrate of APC/C) and partial G2 growth arrest.
However, this effect is seen only in cells infected with
adenovirus mutants lacking the E1 region (276-278).
Thus, it is unclear to date how this interaction with the
cell cycle machinery contributes to normal virus
replication.

5.4 E4orf6/7
The E4orf6/7 protein is a viral transactivator

that acts through an interaction with the E2F family of
transcription factors, stabilizing their binding to DNA,
to activate viral and cellular genes, including E2F-1
itself (reviewed in (6)). In addition, a recent study
suggests that E4orf6/7 alone is sufficient to displace
pRb and p107 from E2F complexes, hence activating
genes controlled by E2F, even in the absence of E1A
(279). Thus, E1A and E4orf6/7 complement each other
in releasing E2F from repression by pRb family
proteins, and enhance expression of E2F-driven genes,
including those involved in cell cycle progression.

6. EXPLOITING THE INTERACTIONS BETWEEN
ADENOVIRUS AND CELL CYCLE REGULATORY
PATHWAYS TO GENERATE ONCOLYTIC
VIRUSES FOR CANCER GENE THERAPY

As described in this review and summarized in
figure 3, adenovirus E1A proteins eliminate the pRb
checkpoint through direct binding to pRb and the related
proteins p107 and p130. Subsequently, an active E2F
transcription factor is released from a pRB-E2F complex,
and is free to activate genes required for S phase entry and
DNA replication. However, forced E2F activity results in
p53 activation, and induction of both p53-dependent and -
independent apoptosis. The adenovirus E1B and E4orf6
proteins are then required to antagonize p53 activity that
may lead to induction of cell cycle arrest and apoptosis.
The pRb-E2F and p53 pathways are the most frequently
altered regulatory pathways in human cancers.
Deregulation of E2F occurs in almost all cancers as a result
of mutations or deletions of RB1 (encoding pRb) or
CDKN2A (encoding  the Cdk inhibitor p16 and p14/ARF),
or overexpression of the CCND 9 (encoding D-type
cyclins)-CDK4 complex (50). Thus viral oncogenes
inactivate regulatory checkpoints that are also defective in
cancer cells. Presumably, inactivation of these targets is
beneficial for virus replication, and it has been suggested
that mutant viruses unable to inactivate such targets are
incapable of replicating in normal cells, where the
checkpoints can be activated. However, they will be able to
replicate in cancer cells with inactive checkpoints. Based
on this principle, such mutant viruses, known as oncolytic
viruses, will selectively replicate in and kill cancer cells,
but will not harm normal cells, where the checkpoints are
intact.

The most extensively studied oncolytic
adenovirus to date is dl1520/ONYX-015. This virus,
created by Berk and coworkers, contains a complete
deletion of E1B-55kDa (280). Originally, based on results
obtained from a few cell lines, it was suggested that
neutralization of p53 by E1B-55kDa was required for virus
replication and thus the E1B-55kDa mutant could replicate
in and destroy tumor cells lacking p53, but not normal cells
(281). After preliminary work in cell culture and in
animals, the mutant virus was injected into tumors, and
preliminary trials in patients revealed moderate success,
greatly enhanced by the application of the mutant virus
together with chemotherapy (282). However, the theoretical
basis for this approach has been challenged by several
groups who discovered that replication of the mutant virus
does not always correlate with p53 status of infected cells
(reviewed in (283)). In some cases, the mutant virus could
not replicate well in p53-deficient tumors. This could be
due to the fact that E1B-55kDa has functions other than
p53 neutralization, such as its functions in late phase RNA
transport and protein translation (206, 267). To solve this,
more specific E1B-55kDa mutants should be investigated,
in which only the p53 neutralization function is inactivated,
but not the other E1B-55kDa functions (229). In other
cases, dl1520/ONYX-015 could replicate well in cells
containing wild-type p53. Further experiments showed that
in many of these cells, upstream modulators of the p53
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Figure 3. Interaction points between adenovirus proteins and major cell cycle regulatory pathways. Adenovirus proteins
modulate the pRb and p53-regulated pathways. The E1A and E4orf6/7 proteins interact with the pRb pathway, whereas E1B-
55kDa and E4orf6 affect the p53 pathway. Details are in the text.

pathway were missing. Specifically, loss of p14/ARF was
shown to facilitate replication of the mutant virus in some
tumor cells containing wild-type p53 (284). Yet another
work utilized a p53 mutant, which was altered only in five
residues that conferred on the protein resistance to
inhibition and degradation by adenoviral proteins, but did
not affect its ability to act as a transcriptional transactivator
(285). This mutant did not inhibit viral replication in tumor
cells and in primary endothelial cells. The authors
concluded that active p53 did not inhibit adenovirus
replication and could not serve as a basis for preferential
replication of adenovirus in p53-deficient tumor cells.
However, the findings that many DNA tumor viruses
evolved numerous mechanisms to inactivate p53 indicate
that, at least under some circumstances encountered in the
host organism although not necessarily in all cultured cells,
inactivation of p53 may be highly beneficial for the virus. It
is also possible that p53 inactivation is redundant with
other activities of adenovirus and is thus not required under
some conditions. For example, p53-induced p21 activation
leads to inhibition of pRb phosphorylation and cell cycle
arrest. Thus p53 inactivation by E1B-55kDa and direct
inactivation of pRb by E1A proteins provide redundant
mechanisms converging on a checkpoint that must be
inactivated by the virus to facilitate its replication. It is

quite common for viruses to utilize several different
mechanisms to ensure the performance of a vital function.

The interaction of the adenovirus E1A proteins
with the pRb cell cycle checkpoint has been recently
exploited for creating additional oncolytic adenoviruses.
dll922-947 is a mutant E1A protein carrying a deletion of a
short amino acid sequence in the CR2 region of E1A,
required for the interaction between E1A and pRb family
proteins. This virus was shown to replicate in and lyse a
broad range of cancer cells with abnormalities in cell cycle
checkpoints (286), but it demonstrated reduced S phase
induction and replication in non-proliferating normal cells.
In animals, this virus possessed a superior potency against
tumors compared with other mutant adenoviruses.

A combination of both pRb- and p53-regulated
pathways was exploited in a most recent example of
oncolytic adenovirus (287). A protein containing the DNA-
binding domain of E2F and the transrepression domain of
pRb was constructed for use as an E2F antagonist. This
protein is expressed under control of a p53-responsive
promoter. Thus, the virus will express an E2F antagonist in
normal cells containing wild-type p53, resulting in
attenuation of virus replication. However, this virus will not
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express the antagonist in tumor cells lacking p53, and will
be able to replicate. These, and additional modifications,
resulted in a vector that was attenuated in normal cells, but
exhibited potent antitumor activity.

It is highly likely that several more variations on
oncolytic adenoviruses, exploiting cell cycle checkpoints,
will be described and utilized for cancer therapy in the
future.

7. SUMMARY AND PERSPECTIVE

Adenovirus infection has long been known to
induce quiescent cells to enter the S phase of the cell cycle.
This phase is permissive for virus replication, presumably
because host nucleotide pools and proteins involved in
DNA synthesis are necessary for viral DNA replication.
The E1A proteins are primarily responsible for transition of
the host cell into S phase, by inactivating the pRb
checkpoint and by activating or repressing transcription of
several genes required for cell cycle progression. However,
deregulation of the cell cycle by E1A also induces
accumulation of p53. This inhibitor of cell proliferation has
to be neutralized to facilitate continued proliferation of the
cells. The adenovirus E1B and E4orf6 proteins employ
several mechanisms to inactivate p53, thus preventing cell
cycle arrest and apoptosis. Additional E4 gene products
also contribute to cell cycle deregulation by the virus.
Adenovirus mutants that cannot inactivate the pRb and p53
checkpoints are defective in their replication in cells with
the intact checkpoints. The pRb and p53 pathways are
compromised in most cancer cells. Thus, these cells could
support replication of mutant adenoviruses that cannot
normally replicate in cells with intact checkpoints.
Understanding the interaction between adenovirus and the
cell cycle allows us, therefore, to better understand the
mechanisms of virus replication, and to devise viruses that
can replicate only in cancer cells. Such viruses, called
oncolytic viruses, are already being tested as new cancer
therapeutic drugs. However, we obviously do not yet have
a complete picture of the interactions between adenovirus
and the cell cycle, giving rise to controversies such as the
one involving the role of p53 inactivation in virus
replication. Further analysis must be carried out in animals
as well as in tissue culture, to solve such issues and allow
the development of better oncolytic viruses.
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