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1. ABSTRACT

The corpus luteum is a unique hormone-
regulated, transient reproductive gland that produces
progesterone, a required product for the establishment and
maintenance of early pregnancy.  In the absence of
pregnancy the corpus luteum will cease to produce
progesterone and the structure itself will regress in size
over time.  Although the process of luteal regression has
been studied for several decades, many of the regulatory
mechanisms involved in loss of function and involution of
the structure are incompletely understood. More
importantly, we are far from understanding how these
complex mechanisms function in unison.  The factor or
factors responsible for initiating and mediating luteolysis
are no doubt more complex than originally envisioned.

Further, efforts to elucidate the mechanisms responsible for
luteolysis have been complicated by different
interpretations of what is 'luteolysis', discrepancies between
in vitro and in vivo studies, and subsequent biases which
are associated with the different methods of analyses.
Moreover, the complexity of the mechanisms which
regulate the life span of the corpus luteum are compounded
by the presence of a heterogeneous population of cells
which often respond differentially to the same ligand or
stimuli. Attempts to isolate specific luteal cell types for the
intention of defining intracellular signaling mechanisms
have yielded valuable information. However, studies of a
specific cell type taken out of context are often subject to
criticism. The most obvious being that the cells are no
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longer maintained within their three dimensional
environment. Evaluation of the corpus luteum in vivo, is
not without its criticisms either.  A subtle change evoked
within a subpopulation of cells can be overlooked if
measured in whole tissue or in mixed cell preparations.
Furthermore, treatment in vivo with a single agent/ligand
(i.e., prostaglandin F2 alpha) may induce a secondary
ligand that is ultimately responsible for the biological
response.  All arguments are valid and cannot be ignored.
There are secondary levels of complexity in the corpus
luteum brought about by the pleiotropic actions of specific
ligands.  For example, one ligand can be luteotropic to a
steroid producing cell and cytotoxic to a luteal endothelial
cell. Furthermore, a specific cell type within the corpus
luteum may respond differentially depending on the
developmental stage of the luteal phase (i.e., early, mid, or
late luteal phase) suggesting that the intracellular signaling
pathways are key to defining ligand-induced biological
responses.  The purpose of this review is to culminate what
is known regarding signal transduction pathways activated
by initiator(s) and/or mediators of luteolysis. We recognize
that an all-inclusive review describing the molecular
mechanisms involved in the development, maintenance and
regression of the corpus luteum would be impossible within
the context of this review. There are a number of recent
reviews that discuss luteal development, luteal maintenance
and luteolysis with emphasis on neuroendocrine events (1-
3). Consequently, we have focused our review primarily on
potential intracellular signaling events of proposed
regulators and mediators of luteal regression. Where
possible we have attempted to incorporate references that
represent rodents, domestic farm animals and primates.

2. INTRODUCTION

2.1. Role of the corpus luteum
The corpus luteum is a transient endocrine gland

that evolves from the remnants of the ovulated follicle
within the ovary.  In response to luteotropins the granulosa
and theca cells become luteinized and transform from cells
that are responsible for the production of estrogen to cells
that primarily produce progesterone. Following their
differentiation, these steroid producing cells are often
described as small luteal or large luteal cells (SLC and LLC
respectively) based on their size.  Alternatively, these same
cell types are described as theca-lutein or granulosa-lutein
based on their recognized origin (4-7).  Although both cell
types produce progesterone they are regulated by different
mechanisms (8-10).  Evidence for the two steroidogenic
cell types is not limited to a single species and has been
reported in the primates, rodents, domestic farm animals
and lagamorphs (7, 10-17). Regardless of cellular origin,
the steroidogenic cells of the corpus luteum produce
progesterone to initiate uterine quiescence and
glandularization in preparation for the establishment of
pregnancy. Additionally, progesterone serves as a negative
feedback mechanism to the hypothalamus to suppress
further follicular development (18, 19). In the absence of a
successful pregnancy, or at the end of the pregnancy the
corpus luteum will cease to produce progesterone and the
tissue mass will decrease in size accompanied by a loss
cellular integrity.

2.2. Luteolysis
Luteolysis is generally defined as loss of function

and the subsequent involution of the luteal structure.
However, the luteolytic process is typically subdivided,
whereby the decline in progesterone is described as
functional luteolysis and the structural involution is
described as structural luteolysis. Unfortunately the terms
are often misused or over interpreted. Therefore we would
like to re-introduce the word luteolysis. The root of the
word, luteal is derived from the Latin word luteolus
meaning yellow and the suffix of the word luteolysis, lysis,
is derived from the Greek word lyo meaning to loose,
dissolve, or break up (20). Luteolysis is defined in medical
dictionaries as something that promotes death of the corpus
luteum (21) or degeneration of corpus luteum (22).  It is
interesting to note that the term luteolysis does not refer to
a loss of function. It is unclear whether or not the original
definition of luteolysis was meant to include loss of
function. If loss of function was included what term should
be used if only function is lost? This is not to say that the
loss of function is less important than structural regression
or vise versa. Whether these two facets are independent
events or are interdependent is often argued. There are
those that would consider the functional and structural
components of luteolysis a continuum with loss of function
required for structural involution to proceed (23). Much of
the controversy could be attributed to the multiple
definitions that have evolved to describe the process of
luteolysis.  For example, in a review by Greenwald and
Rothchild in 1968, a luteolysin was described as a
substance, which causes a corpus luteum to regress in size
or to stop secreting progesterone or related steroids, or both
(24). This definition was focused on the rodent models and
implied that loss of function or regression of the tissue or
the two events combined could be considered luteolysis.
Anderson and colleagues (25) described the term luteolytic
(and the equivalent nouns) to mean destroying luteal
structure and (or) function.  Irving Rothchild (26) defined
the luteolytic process in all its forms (luteolysis, luteolysin,
etc.) as the exact opposite of luteotropic. More specifically,
the luteolytic process is the quality of stopping the
secretion of progesterone by the corpus luteum.
Furthermore, the subcategorization of functional and
structural helps only to describe differences between the
regression of progesterone and corpus luteum size (26). No
matter how a particular investigator may define luteolysis it
must be made clear within the context of the report so that
others can interpret the results accurately. To some this
may be a mute point, however when trying to discern the
specific mechanisms involved in luteal regression it
becomes important to identify the distinct players and their
signaling components which lead to reduced or altered
steroidogenesis and those involved in the physical
regression of the tissue.

In general, the dichotomy of loss of function
and/or involution of the luteal structure may be attributed to
species-differences.  For example, the hamster corpora
lutea undergoes loss of function on day 2 of the natural
estrous cycle and near complete structural luteal regression
occurs within one cycle (27, 28), while the corpora lutea of
the rat and mouse undergo loss of function in the
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Figure 1.  PGF2 alpha exerts direct and indirect influences
on steroidogenesis and the recruitment and activation of
immune cells.  PGF2 alpha treatment indirectly alters
endothelial cell function.  This cartoon depicts the multiple
opportunities for cytokines (TNF alpha, IFN gamma, FasL,
IL-1 beta) and other peptides (ET-1, MCP-1) to alter
steroidogenesis and influence the fate of ovarian
steroidogenic and endothelial cells.

immediate cycle with the luteal mass involuting/regressing
over several cycles (29). Three or more generations of
corpora lutea are present within the ovary of a normal
cycling adult mouse or rat. There is also evidence to
suggest that the corpora lutea which continually regresses
over a number of cycles also maintains some level of
function (i.e., steroid production) during the subsequent
luteal phases (30, 31).  A similar finding was reported in
the baboon (32). This would argue that the loss of function
observed at the termination of the luteal phase is only
temporary or incomplete and may involve only a subset of
cells. Those luteal cells that survive the initial regression
appear to maintain the ability to be hormonally rescued (30,
31). Another level of complexity can be added when
comparing the hallmark(s) of luteolysis in the corpus
luteum of the luteal phase, pregnancy and
pseudopregnancy. Structural involution of the corpus
luteum following pregnancy occurs at a slower rate than
that of a corpus luteum of the estrous cycle in the ewe (33).
In addition, the corpora lutea of the nonpregnant rat
undergoes apoptosis whereas the corpora lutea of
pregnancy does not undergo apoptosis (34). Together these
studies suggest there are differences in the luteolytic
program among the differential physiological paradigms,
which must be taken into consideration when making
general conclusions about luteolysis or luteolysins.

2.3. Identifying a physiological luteolysin
Hysterectomy prolonged the lifespan of the

corpus luteum in the guinea pig (35) and the rabbit (36)
providing some of the first evidence that a luteolytic signal
could be of a uterine origin.  Subsequent studies in
domestic farm animals (37) supported this notion. In 1969
Pharriss and Wyngarden (38) hypothesized that PGF2
alpha, a uterine secreted vasoconstrictor could restrict
blood flow to the ovary lowering ovarian perfusion and
induce luteolysis. Their hypothesis was based on the
knowledge that PGF2 alpha was a potent vasoconstrictor
and it was present in the endometrium (39).  To test the

hypothesis the investigators infused PGF2 alpha into
pseudopregnant rats, which resulted in reduced
progesterone levels and shortened the length of
pseudopregnancy.  This must have been somewhat of a
surprise since an in vitro study performed a year earlier
suggested that PGF2 alpha had no toxic effect on
steroidogenic tissue and instead stimulated progesterone
synthesis (40). Supporting experiments demonstrated that
injection of PGF2 alpha caused luteolysis in the guinea pig,
rabbit, rat, hamster, sheep and cow (38, 41-45). Further
confirmation that PGF2 alpha had luteolytic actions was
established by inhibition of prostaglandin synthesis with
indomethacin which blocked spontaneous luteal regression
in cows, sheep, and guinea pigs (46, 47).  Consequently,
PGF2 alpha is accepted as a primary luteolysin in most of
the domestic species and the luteolysin during
pseudopregnancy in the rat.  PGF2 alpha may serve as a
mediator of prolactin-induced luteal regression since
indomethicin will prevent prolactin-induced luteolysis in
the rat (48).

Although PGF2 alpha is considered a luteolysin
in domestic farm animals and some laboratory species,
there is some controversy as to whether it is effective in the
human and non-human primates.  Hysterectomy, in the
human or non-human primates does not prolong the luteal
phase suggesting that if PGF2 alpha is luteolytic it is not of
a uterine origin.  Short-term infusion of PGF2 alpha during
the luteal phase can temporarily reduce progesterone levels
(49, 50).  Injection of PGF2 alpha directly in to the corpus
luteum of the human results in a decease in progesterone
and involution of the tissue (51, 52).  These studies provide
limited evidence that intra luteal PGF2 alpha may also
contribute to the demise of the CL in primates.

In the sequence of luteolytic events initiated by
exogenous PGF2 alpha it was determined that the
endothelial cells and small luteal cells were the first to
undergo cell death in the sheep corpus luteum.  This is of
particular interest since in sheep the large luteal cells
contain the receptors for PGF2 alpha (53).  This raises the
possibility that PGF2 alpha elicits its death response
indirectly. Prostaglandin F2 alpha is an accepted initiator of
luteolysis yet, the available evidence from in vitro and in
vivo experiments suggest that it is not the sole mediator of
luteal regression. These studies would include but are not
limited to studies that show that 1) if the corpus luteum is
removed from the cow immediately following
administration of PGF2 alpha and the cells are placed in
culture the luteolytic signal is terminated and the cells
remain viable (54), 2) treatment with PGF2 alpha does not
induce death of the luteal steroidogenic cells in vitro (55),
3) treatment of luteal tissue with PGF2 alpha in vitro
resulted in an acute increase progesterone production (8,
56, 57), 4) PGF2 alpha does not appear to prevent the
interaction of LH or IGF-1 (luteotrophic hormones) with
their receptors when reductions in serum levels of
progesterone are observed (1, 2). Consequently, PGF2
alpha's primary role during luteolysis may be to disrupt
steroidogenesis, initiate a cascade of signaling events
involving hormones and cytokines, and possibly disrupt
intracellular growth factor signaling  (see figure 1).  Cell
death may happen as an indirect effect. Studies which have
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Figure 2.  PGF2 alpha exerts pleiotropic actions on the
steroidogenic cells of the corpus luteum.  PGF2 alpha
activates intracellular signaling pathways that are
responsible for regulating cytoskeletal organization,
transcription factor activation, gene expression, and
secretion of peptide and steroidogenic hormones.

provided data to support this argument include the
demonstration that infusion of phorbol myristate acetate
(PMA) in the ovarian artery caused a dramatic decline in
progesterone (58).  The decline in progesterone was not
associated with a dramatic increase in cell loss.  In addition,
the progesterone levels returned to normal after the infusion
of PMA was ceased and by all appearances the cycle
resumed.  This study was further corroborated by Juengel et
al (59) who demonstrated a reduction of progesterone
followed administration of sub-lytic concentrations of
PGF2 alpha (3 mg) in the ewe without a dramatic increase
in cell death or loss in luteal weight. Prostaglandin F2 alpha
may also regulate steroidogenesis by down regulating sterol
carrier protein 2 (60), tubulin (61) and steroid acute
regulatory protein (StAR) expression (62-64). Each of these
proteins plays a role in transporting cholesterol to the
mitochondria where it can be used for progesterone.
However, there is no evidence to suggest that inhibition of
one or more of these proteins will lead to cell death.
Together these studies provide evidence that PGF2 alpha
may be responsible for loss of function, however its role as
a direct initiator of cell death may be overstated.

3. SIGNALING VIA THE PGF2 ALPHA RECEPTOR

3.1 Prostaglandin F2 alpha Receptors
The PGF2 alpha receptor (FP) is a member of the

guanine nucleotide binding (G) protein-coupled receptor
(GPCR) family containing seven-membrane spanning
regions (65)(see figure 2).  PGF2 alpha receptors have been
identified in ovaries and isolated luteal cells of many
species by ligand binding and immunohistochemistry
techniques, as well as by in situ hybridization and Northern
analysis.  Immunoreactive FP sites are present in the luteal
cells, theca cells of Graafian follicles, and some interstitial
cells of the rat ovary (34).  Based on studies of corpora
lutea from mice, rats, sheep, and cows (66-70), and studies
on isolated bovine luteal microvascular cells (71-76), the
microvascular endothelial cells of the corpus luteum do not
possess significant amounts of FP, although a rare subset of
luteal endothelial cells has been reported to possess FP (74)

and respond to PGF2 alpha (77).  Prostaglandin F2 alpha
binding sites (78) and mRNA (79) have been identified in
both bovine large and small luteal cells.  However, levels of
binding sites in large and small cells are not consistent with
levels of FP mRNA.  Sakamoto et al (69, 80) using in situ
hybridization reported that levels of FP mRNA are
abundant in large but not small luteal cells.  Based on the
documented presence of FP binding sites (78) and
responsiveness of bovine small cells to PGF2 alpha  (8, 81),
it seems likely that PGF2 alpha receptor mRNA and protein
are not coordinately expressed in bovine small cells.  In
sheep, the large luteal cell possesses FP, whereas the small
cells do not possess FP and are unresponsive to PGF2 alpha
(1, 82). These differences can be possibly explained by
methodologies that have used size exclusively to
characterize luteal cells, versus consideration of cellular
origins or other characteristics of luteal cells.

 In most species studied to date, FP mRNA levels
are elevated following ovulation, increase during the luteal
phase, and decrease during natural or PGF2 alpha-induced
luteolysis.  The rat (67) and mouse (83) are different,
however, in that treatment with PGF2 alpha elevates levels
of FP mRNA in the corpus luteum.  These differences may
provide clues to the role of PGF2 alpha in regulating
functional or structural regression of the corpus luteum.  In
FP-deficient mice ovulation, fertilization and implantation
occur (84, 85).  However, in FP-deficient mice, the animals
do not undergo parturition because the prepartum decrease
in progesterone does not transpire.  This strongly suggests
that FP-initiated signals that reduce progesterone are
required at this critical period in mice.  Since the structure
of the mouse corpus luteum remains intact for an extended
period following the reduction in progesterone (24, 86), it
appears that signals in addition to those provided by PGF2
alpha are required to initiate luteolysis.

Investigations utilizing PGF2 alpha radioligand
binding approaches have demonstrated high- and low-
affinity binding sites in rat (87), ovine (65, 88), porcine
(89) and bovine (90) corpora lutea.  The physiological
significance of these sites is presently unknown, but
McCracken et al (3) have suggested that activation of high
affinity binding sites with low levels of PGF2 alpha may be
coupled to the secretion of oxytocin from ovine large luteal
cells without affecting the secretion of progesterone.  In
contrast, high levels of PGF2 alpha are required to activate
low affinity receptors and results in both oxytocin secretion
and a reduction in progesterone secretion.  It is unclear
whether these in vivo experiments reflect the ability of high
levels of PGF2 alpha to activate additional signaling
mechanisms by one or more receptor types.

Recent studies present evidence for the presence
of FP receptor subtypes that may either exert inhibitory
actions or activate additional intracellular signals.  The
newly identified FP isoforms are generated by alternative
mRNA splicing.  This is very similar to other prostanoid
receptors (e.g., EP and thromboxane A2 receptors) in
which alternative mRNA splicing gives rise to a variety of
isoforms in humans and in other species (91, 92).  The
novel FP isoform identified by Ishii and Sakamoto (93) is
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spliced in the middle of the sixth transmembrane segment
resulting in a truncated protein lacking the VII
transmembrane segment and the carboxyl-terminal
intracellular tail.  The levels of mRNA for the normal FP
and the splice variant were similarly expressed in bovine
corpora lutea during the estrous cycle and during pregnancy
(93).  Using COS-7 cells in which transiently expressed FP
isoforms were introduced, these authors provided data
suggesting that the alternatively spliced FP isoform acts as
negative regulator to attenuate normal FP function.   This
observation raises a question, does the FP normally
function as a dimer as has been suggested for other G-
protein coupled receptors (94)?

Other studies demonstrate that alternative mRNA
splicing gives rise to a novel ovine FP receptor that possess
additional signaling capabilities (95). The amino acid
sequences of the ovine FP and slice variant (FPB)
prostanoid receptor isoforms are the same throughout their
amino termini and seven-membrane-spanning domains, but
the FPB isoform is truncated and lacks the last 46 carboxyl-
terminal amino acids normally present in the cytoplasmic
tail (96).  The physiological significance of these receptor
isoforms is not clear, although differences have been shown
to exist with respect to some aspects of second messenger
coupling and receptor desensitization (95, 97).  A brief
summary of these differences is presented in the following
sections.  Future studies designed toward understanding the
factors and mechanisms responsible for regulation of FP
isoform expression and function during luteal development
and regression will greatly expand our understanding of the
physiology of corpus luteum regression.

3.2. Phospholipase C and Adenylyl Cyclase
An initial intracellular event following PGF2

alpha binding to FP involves the activation of a G-protein-
sensitive phospholipase C that causes the hydrolysis of
phosphatidylinositol 4,5 phosphate (PIP2).  Activation of
phospholipase C generates the second messengers
diacylglycerol and inositol trisphosphate (98) (see figure 2).
Inositol trisphosphate (InsP3) binding to receptors in the
endoplasmic reticulum stimulates the release of calcium
ions, resulting in an elevation in the concentration of
cytoplasmic calcium.  PGF2 alpha–induced activation of
phospholipase C involves the coupling of Gq/11 to
phospholipase C beta (91, 99-101).  The ability of PGF2
alpha to activate phospholipase C has been reported in rat,
bovine, ovine, porcine, primate, and human luteal cells (65,
66, 99, 102).  In the cow, both large and small luteal cells
respond to PGF2 alpha with increases in InsP3 and
intracellular calcium (103-105).  In keeping with studies on
the selective distribution of PGF2 alpha receptors to ovine
large luteal cells, in the sheep only large luteal cells
respond to PGF2 alpha with increases in InsP3 (82) Ca2+

(106, 107).  The ovine FP and FPB receptor isoforms have
similar pharmacological properties and PGF2 alpha
stimulates phospholipase C to a similar extent in cells
expressing these isoforms (96).

Although PGF2 alpha elevates cAMP levels in
NIH3T3 cells (108), PGF2 alpha does not stimulate Gs and
the adenylyl cyclase/cAMP pathway in ovarian cells.

However, PGF2 alpha has been shown to inhibit (109) LH-
stimulated cAMP accumulation in rat luteal cells by a
mechanism independent of elevations in cytosolic calcium
(110).  Similarly, PGF2 alpha inhibits gonadotropin-
stimulated cAMP accumulation in human granulosa-luteal
cells (81). Michael and Webley (111) reported that in
human luteal cells PGF2 alpha reduces agonist-stimulated
accumulation of cAMP by a protein kinase C-dependent
activation of phosphodiesterase.  In contrast, PGF2 alpha
has no effect (112, 113) or amplifies (114) gonadotropin-
stimulated cAMP accumulation in bovine luteal cells.  The
ability of PGF2 alpha to amplify agonist-induced cAMP
accumulation in bovine luteal cells is thought to be
mediated by protein kinase C (114, 115).  Considerable
progress has been made in the study of adenylyl cyclase
isoforms in other tissues (116), but little is known about the
expression adenylyl cyclase in luteal cells.  One report
indicates that adenylyl cyclase types three and six are
present in the bovine corpus luteum (114).  Given the
important role for cAMP in luteal function (117) and the
differential sensitivities of this family of enzymes to
elevations in cytosolic calcium, additional studies are
needed to identify the adenylyl cyclase isoforms present
during the development and regression of the corpus
luteum to determine their contribution to luteal physiology.

3.3. Calcium Signaling
Luteal cells respond to PGF2 alpha with a rapid

transient increase in calcium, as a result of InsP3 action,
followed by a secondary sustained increase in intracellular
calcium concentrations, apparently due to influx of
extracellular calcium ions (103, 104, 106, 118, 119).  The
increase in intracellular calcium not only promotes
translocation of some protein kinase C (PKC) isozymes to
the plasma membrane, but in concert with DAG, is
essential in activating the conventional isoforms of protein
kinase C (120).  Manipulations of extracellular and
intracellular calcium have been shown to have detrimental
effects on basal and gonadotropin-induced luteal
steroidogenesis (107, 112).  Thus, calcium appears to be
required for optimal steroidogenesis in luteal cells.

Calcium activation of calcium-calmodulin (CaM)
-dependent enzymes regulates vital process in all cells
(121).  Some actions of PGF2 alpha require activation of
calcium-CaM-dependent enzymes.  Duncan and Davis
(122) demonstrated that a CaM-sensitive enzyme, InsP3-3-
kinase, is apparently activated following treatment with
PGF2 alpha.  This enzyme phosphorylates InsP3 to produce
an InsP4 isoform that may regulate calcium influx across
the plasma membrane in bovine luteal cells.  Other inositol
phosphates play important roles in regulating ion flux (123,
124).  Upon agonist stimulation calcium CaM signals
activate a calcium-activated chloride channel in many cell
types.  Sustained activation of phospholipase C, as
observed in response to PGF2 alpha (99), results in the
gradual elevation in cytoplasmic levels of Ins 3,4,5,6-P4
which serve to inhibit calcium-triggered opening of the
channel (125).

Calmodulin-dependent protein kinases also play a
role in ovarian function.  Mice deficient in CaM kinase IV
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(126) exhibit numerous reproductive defects.  Recent
studies by Stocco et al (127, 128) demonstrate that PGF2
alpha activates a CaM-protein kinase-dependent process
that leads to the rapid induction of the orphan nuclear
receptor nerve growth factor inducible protein-B (NGFI-B
also referred to as Nur77) in rat corpora lutea.  This group
reports that Nur77 (a nuclear transcription factor) is
required for the induction of 20 alpha-hydroxy steroid
dehydrogenase, an enzyme that converts progesterone into
an inactive metabolite that cannot support pregnancy.  The
observation that the early response gene Nur77 is involved
in PGF2 alpha action is intriguing because in studies on T-
cells, the calcium-dependent phosphatase calcineurin
mediates the induction of Nur77 (129) and Nur77 is
implicated in T-cell apoptosis (129, 130).  Furthermore,
Nur77 appears to be a substrate for the anti-apoptotic
protein kinase Akt (131), and phosphorylation of Nur77 by
Akt reduces the transcriptional activity of Nur77 (132).  A
role for nuclear receptors like Nur77 in the regulation of
ovarian cell death is presently unknown, but has been
suggested in other tissues (133).   It is tempting to speculate
that luteotropic factors such as gonadotropins (134, 135)
and IGF-I (136, 137), which can activate Akt, may prevent
or reduce PGF2 alpha-induced Nur77-mediated
transcription of 20 alpha hydroxysteroid dehydrogenase.  It
seems likely that Nur77 may also be involved in the
regulation of other steroidogenic enzymes as it is up
regulated by LH in rat ovarian follicles (138) and testicular
Leydig cells (139), and is thought to regulate genes for
androgen (140), estrogen (141, 142) and cortisol (143,
144).  These reports indicate that the Nur77 / NGFI-B
transcription factor may be important for discerning the
physiologic role of calcium signals in the induction of
specific genes responsible for regulating steroidogenesis
and other metabolic processes (145).

3.4. Protein Kinase C
Protein kinase C is involved in the mechanism of

PGF2 alpha action.  Studies in isolated luteal cells have
demonstrated PGF2 alpha is capable of inducing
translocation of protein kinase C isoforms from the
cytoplasm to the plasma membrane by measurement of
enzyme activity and protein content in cytosolic and
particulate cellular fractions (146).  Of interest is the
observation of Orwig et al (147) who demonstrated that
PGF2 alpha treatment in vivo resulted in an increase in the
activity of calpastatin.  This enzyme could conceivably
inhibit the action of proteolytic enzymes (e.g., calpain
(148)) and reduce proteolytic degradation of protein kinase
C to maintain the pool of active protein kinase C.
Elevations in cellular calpastatin could also result in
controlled proteolytic activity during corpus luteum
regression.  The understanding of the role protein kinase C
in the corpus luteum is made more complex by the
expression of multiple protein kinase C isoforms in luteal
cells (99, 147, 149-151) and a newly described family of
receptors for activated C-kinase (RACKs) which serve as
anchoring proteins for specific protein kinase C isoforms
and other signaling molecules (152).

Treatment of ewes with PGF2 alpha in vivo
results in regression of the corpus luteum characterized by

reductions in serum progesterone, luteal weight, levels of
mRNA for 3-beta hydroxysteroid dehydrogenase (58), LH
receptors (153), and the steroidogenic acute regulatory
(StAR) protein (154) and increases in oligonucleosome
formation (58).  These in vivo studies also demonstrated
that protein kinase C activating phorbol esters can mimic
only some of the inhibitory effects of PGF2 alpha (i.e.,
reductions in progesterone and levels of mRNA for 3-beta
hydroxysteroid dehydrogenase and the steroidogenic acute
regulatory protein) but did not cause a reduction in luteal
weight or induction of apoptosis.  Phorbol esters are also
known to target other cellular proteins and exert actions
that are unrelated to protein kinase C (155).  It seems likely
therefore that the complete process of luteolysis may
involve additional responses to PGF2 alpha (i.e., calcium
mobilization) and interactions among the various luteal
cells types (i.e., endothelial cells, immune cells,
macrophage and the steroidogenic large and small cells)
(156, 157).

A specific protein kinase C isoform has been
identified and studied during luteal development in the rat
(158-160).  Protein kinase C delta is dramatically increased
in rat corpora lutea in the latter portion of pregnancy, a
period of time dependent on rat placental lactogens for the
maintenance of corpus luteum function and pregnancy.
The expression of this isoform is induced by estrogen and
placental lactogen-1 (158), and prolactin activates protein
kinase C delta in rat corpora lutea during this period of
pregnancy (159).  Furthermore, Peters et al (160)
demonstrated that protein kinase C delta is required for
prolactin to induce the expression of relaxin.  These results
demonstrate that specific protein kinase C isoforms are
required for maintenance and normal function of the corpus
luteum.

It is well established that the corpus luteum
secretes PGF2 alpha.   Recent studies clearly demonstrate
that PGF2 alpha and protein kinase C activators can induce
the expression of cyclooxygenase 2, a rate-limiting enzyme
for prostaglandin synthesis, and up-regulate the synthesis of
PGF2 alpha in luteal cells (161, 162).  Thus, PGF2 alpha
may activate an autocrine signaling mechanism that
provides PGF2 alpha in sufficient quantities to ensure that
corpus luteum steroidogenesis is interrupted, and the
cascade of events leading to luteolysis is initiated.  Wu and
Wiltbank (161) reported that PGF2 alpha and protein
kinase C activation of cyclooxygenase gene expression
required a functional E-box response element.  The
upstream stimulatory factors 1 and 2 (USF-1 and –2),
basic-helix-loop-helix-leucine zipper transcription factors
with homology to Myc oncoproteins, were found to be
present in luteal cells and bind to the E-box.  Surprisingly,
the levels of the USF transcription factors were not altered
in response to PGF2 alpha or protein kinase C activators.  It
may be that other co-activators or co-repressors are
regulated by PGF2 alpha and are required to provide full
activation of E-box-mediated transcription of the
cyclooxygenase gene.

Prostaglandin F2 alpha also stimulates the
secretion of oxytocin in vivo and in vitro.  This ability of
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PGF2 alpha to increase oxytocin secretion is likely to be
mediated by activating the phospholipase C/protein kinase
C signaling system.  Bovine large luteal cells contain high
levels of vesicles carrying dense granules of
neurophysin/oxytocin between Days 7 and 14 of the estrous
cycle (163).  Administration of PGF2 alpha during the
midluteal phase of the cycle causes rapid degranulation of
bovine large luteal cells (164), and an increase in blood
levels of oxytocin (147).  These secretory granules in luteal
cells exist as a large paranuclear cluster.  The clustered
pattern of secretory granules in the bovine luteal cell differs
from the more diffuse distribution of granules observed in
luteal cells of the sow (165) and ewe (166).

Stormshak et al (146) provide an interesting
model for the involvement of the protein kinase C substrate
myristoylated alanine-rich C-kinase substrate (MARCKS)
in the exocytosis of oxytocin.  The effector domain of the
MARKS protein allows cross-talk with many signaling
systems; it is phosphorylated by protein kinase C, binds
calmodulin and enhances polymerization of actin filaments
in vitro (167).  The MARCKS protein is associated with the
actin filaments of bovine luteal cells and is phosphorylated
in response to both PGF2 alpha and protein kinase C
activators (146, 168, 169). The proposed sequence of
signaling events begins with the activation of
phospholipase C leading to protein kinase C-induced
phosphorylation of MARCKS (see figure 2). The
phosphorylated MARCKS protein is released from
cytoskeletal actin binding sites which then leads to changes
in the cytoskeleton that promote the exocytosis of oxytocin.
It has been suggested that MARCKS may bind a significant
fraction of PIP2 in a cell, sequestering a portion of the
cellular pool of PIP2 for use in other cellular responses
involving calcium or protein kinase C (170). Therefore, it
seems likely that phosphorylation of MARCKS in
conjunction with reductions in levels of PIP2 and increases
in calcium levels may all individually contribute to actin
depolymerization and promote the exocytosis response.
Activation of the Rho family of small G-proteins may also
participate in regulating the cytoskeletal changes and
exocytosis (171).

3.5. Mitogen-Activated Protein Kinase
Whereas it seems clear that the initial event in

PGF2 alpha action involves the activation of phospholipase
C, other downstream signaling pathways are activated by
PGF2 alpha.  One such pathway is the mitogen-activated
protein (MAP) kinase pathway.  Four distinct MAP kinase
cascades have been described in yeast and three in
vertebrates (172).  The MAP kinases in vertebrates are the
extracellular signal-regulated kinases (Erks), the Jun N-
terminal kinases (JNKs) or stress-activated protein kinases
(SAPKs) and the p38 MAP kinases.  Each of these MAP
kinases is activated by dual-specificity MAP kinase kinases
(MAPKK or MEK) which phosphorylate MAP kinases or
threonine and tyrosine residues.  The MAPKK or MEKs
are distinct for each pathway and are phosphorylated by
several MAPKK kinases (MAP3K) or MEK kinases
including Raf, c-Mos and MEKK1. These upstream
regulators of MAP kinases are activated by receptor
tyrosine kinases, soluble tyrosine kinases, G protein-

coupled receptors and other mechanisms (172).  All the
components of the ras-Raf, MEK, ERK pathway are
present in luteal cells (99, 173-176). Recent studies
demonstrate that PGF2 alpha activates Erk MAP kinase
signaling in rat, pig, cow and human luteal cells.

The exact mechanisms that lead to activation of
MAP kinase signaling in the corpus luteum have not been
firmly established.  In bovine luteal cells (173, 174) and
human granulosa-luteal cells (176-177) PGF2 alpha and
phorbol esters rapidly increase phosphorylation and
activation of Erk1 and Erk2.  Chen et al (173-174)
proposed that PGF2 alpha activates phorbol ester-sensitive
protein kinase C isoforms which phosphorylate and activate
Raf-1 or B-Raf to initiate the Erk MAP kinase signaling
cascade.  Activated Raf then phosphorylates MEK1 which
leads to the phosphorylation and activation of Erk1 and
Erk2.  In contrast, in a luteinized granulosa cell line derived
from the rat, Stocco et al (127, 128) proposed that PGF2
alpha induces activation of Erk signaling by a CaM
dependent mechanism, apparently independent of protein
kinase C.  Although the studies by Stocco et al (127, 128)
did not identify the signaling pathways upstream of Erk, in
many systems ligand-induced calcium signals have been
shown to regulate the activation of Ras (178).  Given the
complexities of various cell models and multiple
mechanisms available for activating Raf/MEK/Erk
signaling it seems unlikely that a single initiating
mechanism will emerge that is responsible for Erk signal
transduction.  However, identification of these signaling
pathways is a prerequisite for understanding the processes
regulated in luteal cells of various species.  One emerging
theme is that activation of Erk MAP kinase signaling
represses the ability of gonadotropins to elevate the
expression of StAR mRNA, StAR protein and progesterone
secretion in ovarian cells (176, 179, 180). However, the
role of Erk signaling in the control of steroidogenesis is
likely to be more complex, as a stimulatory role for Erk
MAP kinase activity was found in cAMP regulation of
steroidogenesis and StAR expression in adrenal Y-1 cells
(181).

Prostaglandin F2 alpha has been shown to
activate calcium-dependent tyrosine kinase signaling
pathways that promote the growth of NIH 3T3 cells (182).
Subsequent reports have linked the actions of PGF2 alpha
to hypertrophy of A7r5 vascular smooth muscle cells (183)
and rat ventricular myocytes (184-187).  Adams et al (184)
suggested that the PGF2 alpha-induced myocyte
hypertrophy occurs independent of protein kinase C, as
well as p38 and Erk MAP kinases.  However, in those
studies the actions of PGF2 alpha were coupled to the
activation of Jun N-terminal kinase.  Chen et al (188)
demonstrated that PGF2 alpha was also capable of
activating p38 MAP kinase and Jun N-terminal kinase in
bovine luteal cells.  It is well established that granulosa
cells undergo hypertrophy during their differentiation into
the so-called large luteal cells of the corpus luteum (4, 8).
The observation that PGF2 alpha receptors are highly
expressed in the granulosa cells following ovulation (2, 3)
raises the possibility that PGF2 alpha-initiated MAP kinase
signaling may contribute to luteal cell hypertrophy during
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Figure 3.  Illustration of the complexity involved in
delineating the signaling pathways and their potential roles
as regulators of steroidogenesis and/or cell death.

corpus luteum formation.  Although little is known about
the regulation of the MAP kinase cascade during corpus
luteum development and regression, a report by Maizels et
al (175) demonstrated that p38 MAP kinase and its
upstream activator MAP kinase kinase-6 (MKK6) were
chronically activated during the maturation of rat corpora
lutea.  Furthermore, a downstream target of p38 MAP
kinase, MAP kinase-activated protein kinase-3 was induced
and active during corpus luteum formation.  The activation
of p38 MAP kinase and MAP kinase-activated protein
kinase-3 were linked to the phosphorylation of the cAMP
regulatory element binding protein CREB.  This study
clearly provides evidence that components of MAP kinase
signaling are active and may support corpus luteum
development maturation.

3.6. Early Response Genes
Activation of MAP kinase results in its

translocation to the nucleus where it phosphorylates and
activates the ternary complex factor p62TCF other wise
known as ELK-1 (172, 189).  This transcription factor is
part of a ternary complex that interacts with the serum
response element (SRE) which promotes the expression of
the c-fos gene.  Members of the JNK or SAPK family can
also phosphorylate and activate ELK-1 (172).  The
JNK/SAPK enzymes are also capable of phosphorylating
N-terminal serine residues on another transcription factor,
c-jun.  These events appear to be responsible for
stimulation of transcriptional activity of genes containing
AP-1 sequence elements.  The ability of PGF2 alpha to
induce the transcription of the early response gene c-jun in
vivo was reported by Khan et al (190) and Bertrand and
Stormshak (191) in rat and bovine corpora lutea,
respectively.  Chen et al (173, 174) recently reported that
activation of PLC/protein kinase C is correlated with Erk
activation, translocation of Erk to the nucleus, and rapid
induction of both c-fos and c-jun mRNA in cultures of
bovine luteal cells.  Stocco et al (128) demonstrated in
luteinized granulosa cells that Erk signaling was required
for the PGF2 alpha-induced phosphorylation of jun-D and
the induction of the early response gene Nur77.

3.7. Additional signaling mechanisms
Cellular interactions with the matrix and with

neighboring cells profoundly influence a variety of

signaling events (192) including those involved in
mitogenesis, vesicle trafficking, survival, cell motility and
differentiation.  Pierce et al (193) have recently
demonstrated that stimulation of 293EBNA cells
expressing FP or FPB with PGF2 alpha activates Rho
leading to the formation of actin stress fibers,
phosphorylation of p125 focal adhesion kinase, and cell
rounding.  Stimulation of Rho in response to PGF2 alpha is
thought to require the activation of the G-proteins G12
and/or G13, although other mechanisms involving the
calcium-dependent thiol protease calpain has been
implicated in Rho activation (148).  Of interest are recent
reports demonstrating that another lipid, lysophosphatidic
acid, (lysoPA) activates Rho in bovine luteal cells (194).
The actions of Rho were correlated with the ability of
lysoPA to inhibit LH-induced stellate morphology in
primary cultures of luteal cells.  It is well established that
Rho proteins regulate the actin cytoskeleton, secretory
events, and cell migration (171, 195).  These observations
provide fertile ground for investigation into the role of Rho
GTPase signaling in the control of corpus luteum
development and regression.

Recent studies demonstrate that the PGF2 alpha
signaling pathway may cross-talk with the Wnt signaling
pathway.  Wnt gene family members (over 13 in mammals)
encode glycoprotein hormones that bind to members of the
Frizzled family of cell surface receptors (196).  Activation
of Wnt receptors results in an increase in the concentration
of beta-catenin in the nucleus where it acts to promote the
expression of Wnt-responsive genes.  In both FP and FPB
expressing 293 cells, PGF2 alpha-stimulated increases in
cytosolic beta-catenin. In FP-expressing cells this was
accompanied by increased beta-catenin phosphorylation. In
FPB-expressing cells this was accompanied by decreased
beta-catenin phosphorylation.  In FPB-expressing cells
PGF2 alpha also stimulated T-cell factor/lymphoid
enhancer factor (Tcf/Lef) reporter gene activity that was
not present in FP-expressing cells.  A key control point
could be in the differential phosphorylation of beta-catenin
after agonist stimulation of FP or FPB.  It seems possible
that Rho may also be involved in this response since
constitutively active mutants of G12 and G13 interact with
E-cadherin resulting in a release of beta-catenin and
stimulation of Tcf/Lef reporter gene activity (197).  Since
the Tcf/beta-catenin signaling pathway is known to mediate
the actions of Wnt acting via Frizzled receptors it will be
important to clarify the crosstalk between PGF2 alpha
signaling and this little understood signaling pathway in the
ovary.  The possible role of FPB receptors in corpus luteum
function is intriguing and awaits future studies.

4. MEDIATORS OF LUTEAL REGRESSION

Whether or not one single factor is responsible
for initiating both the functional and structural aspects of
luteolysis has not been conclusively demonstrated (see
figure 3).  Moreover, the potential luteolytic agents vary
among the mammalian species.  Consequently, a number of
factors have been implicated in the luteolytic process
including prolactin (31, 198-200), prostaglandin F2 alpha
(44), elevated levels of reactive oxygen species (201-208),
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Figure 4.  FASL activates multiple pathways in non-
ovarian cells.  The known pathways include activation of
sphingomyelinase with the accumulation of ceramide,
activation of the mitogen-activated protein kinase cascade,
and/or activation of the caspase cascade leading to
apoptosis.  Current understanding of FASL actions in
whole luteal tissue, preparations of mixed luteal cells, or
specific luteal cell types is limited to the accumulation of
ceramide, onset of cell death and the regulation of
steroidogenesis.

tumor necrosis factor alpha (TNF alpha) (209-211)
interferon gamma (IFN gamma) (210-215) Fas ligand
(FasL) (216, 217), nitric oxide (207), endothelin -1 (218-
221), heat shock protein 70 (222-226), steroid withdrawal
or receptor inhibition (227, 228), inadequate gonadotropin
and/or receptor (229), and inhibition of cell survival
pathways (230), to name a few.  It is also important to
realize that not all potential mediators of steroidogenesis
have the capacity to directly regulate apoptosis.  Likewise,
mediators of apoptosis may not directly inhibit
steroidogenesis associated with loss of function, again
suggesting that the processes of structural regression and
loss of progesterone synthesis are separately regulated
entities.

4.1. Cytokine-involvement in regression of the corpus
luteum

It is becoming increasingly clear that loss of
function and the involution of the luteal structure is
mediated in part by a number of cytokines including FasL,
TNF alpha and IFN gamma. The cytokines, FasL and TNF
alpha are members of the TNF superfamily (a.k.a. TNSF)
which consists of 18 genes encoding 19 type II
transmembrane proteins (231). Members of the TNF
superfamily interact with members of the TNF receptor
superfamily (a.k.a. TNFRSF) of which there are 29 known
members in the human (231). Despite the continually
expanding number of ligands and receptors within these
two families, studies involving members of TNF and TNF
receptor superfamilies in the ovary are limited and are
essentially restricted to FAS (a.k.a. TNFRSF6)/FasL (a.k.a.
TNFSF6), TNFR (a.k.a. TNFRSF1)/TNF alpha (a.k.a.
TNFSF1) and TRAIL (a.k.a. TNFSF 10) (209, 232-243).
The majority of these studies focus on correlative
expression of the receptor and/or ligand or binding studies.
Essentially no detailed information is available on the

signaling events, which occur in luteal cells upon receptor
activation.

Within the TNF alpha superfamily there are a
handful of cytokines which bind a specific subclass of TNF
superfamily receptors known as death receptors (231).  The
death receptor classification is based on either function
and/or the presence of a homologous amino acid segment
located within the carboxy-terminal of the cytoplasmic
region of the receptor known as the death domain (DD)
(244-246).  For example, activation of FAS results in the
recruitment of cytoplasmic proteins (i.e., FAS associated
death domain protein, FADD) which bind and interact via
the DD and the DED (death effector domain). The death
effector domain of FADD recruits caspase-8 (a.k.a.
FLICE).  Collectively, this complex is named the death
inducing signaling complex or DISC propagating the death-
signaling cascade (247).  Although it has not been
demonstrated, it is not unrealistic to depict the death
receptors as integral active mediators of luteal cell death
via apoptosis since FasL or TNF alpha have the potential to
stimulate death via apoptosis. Many factor(s) implicated as
primary or secondary luteolysins include ligands that would
bind members of the death receptor family.

4.1.1 FAS/ FasL
The temporal and spatial expression of FAS and

FasL mRNA and/or protein in the human (248), bovine
(249), rat (242, 250) and mouse (250) corpora lutea are
strongly correlated with luteolysis. Based on
immunohistochemical analysis Kondo et al (248)
demonstrated the presence of FAS in the granulosa-lutein
cells of the human corpus luteum during the early luteal
phase and the levels increase during mid-luteal phase.  The
theca-lutein cells do not express FAS in the early luteal
phase, however the receptor is evident in the mid-luteal
phase.  During the late luteal phase the overall expression
of the Fas antigen increases.  The levels of FAS diminish
only when the corpus luteum undergoes transition to the
corpus albicans.  Similar results were found in the mouse
with the highest levels of FAS being observed during luteal
regression (250).

From a mechanistic standpoint, FasL or FAS
activating antibodies induce luteal cell death in the human
(217), mouse (216), rat (237, 242) and cow (251) (see
figure 4).  These in vitro studies are supported by in vivo
experiments in which IV or IP administration of FAS-
activating antibody induces luteolysis in the mouse (250).
FAS-mediated cell death results in the activation of
caspase-3, a central effector caspase (Carambula and Rueda
unpublished results).  More interestingly, the onset of FAS
mediated cell death was attenuated in caspase-3 deficient
mice when compared to wild type mice (Carambula and
Rueda unpublished data).  Further support for a functional
role of FasL or FAS in luteolysis is evident in the
homozygous gld (non-functional FasL) and lpr (reduced
FAS expression) mice (250). The corpora lutea of these
mice undergo luteolysis but at irregular intervals (250).
Together these studies provide evidence to suggest that
FAS mediated events are critical to the cyclicity of the
female mouse.
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Figure 5.  TNF alpha activates NF kappaB and mitogen-
activated protein kinase signaling cascades in luteal cells.
These events are known to regulate steroid and luteal PGF2
alpha secretion.   In combination with IFN gamma, TNF
alpha can induce apoptosis in the steroidogenic cells of the
corpus luteum.  The exact signaling mechanisms by which
these events occur are unknown.  However, we do know
that the pathways activated in response to TNF alpha are
likely to be influenced by the presence of other cytokines
(i.e., FasL and IFN gamma).

4.1.2. Tumor necrosis factor alpha
Other cytokines have the capacity to either inhibit

steroid synthesis or induce cell death including IFN gamma
and TNF alpha (209, 215-217, 252-254) (see figures 5 and
6).  Tumor necrosis factor alpha mRNA or protein has been
detected in the corpus luteum of the rabbit, rat, pig, cow
and human (232-235, 255-258). It’s origin is typically
thought to be that of monocytes or macrophages, however,
a significant concentration of TNF alpha is found within
the endothelial cell component of the corpus luteum (232,
257). The message encoding TNF alpha does not change in
the corpus luteum during the bovine estrous cycle (234,
259). However, at the protein level TNF alpha
concentrations in the bovine corpus luteum are low in the
early to mid luteal phase and increase dramatically during
the late luteal phase and decline after regression (234).
Although TNF alpha mRNA was undetectable by Northern
analyses, TNF alpha bioactivity increased in after the
progesterone levels declined (260). This increase in activity
was believed to correspond to an increase in immune cells
(260).

Tumor necrosis factor alpha normally can bind
one of two TNF receptors, TNFRI or TNFRII (261, 262).
To date the majority of what has been published with
respect to TNF receptors subtypes within the corpus luteum
has been focused on TNFR1 (209, 233-235, 263). An
increase in the levels of mRNA encoding the TNFR1
subtype is observed in luteal tissue derived from natural or
PGF2 alpha-induced luteolysis (209). These results,
however, contrast an earlier study by Sakumoto et al (234),
who provided evidence that TNFR mRNA levels remained
unchanged throughout the luteal phase.  These results were
similar to those reported by Petroff et al (259).  The reason
for the discrepancy is unknown. Tumor necrosis factor
alpha binding sites are present in luteal cells of multiple
species (234, 235, 240) and are present throughout the
luteal phase in the cow (234). Interestingly, Okuda et al

(233) provided evidence of low and high affinity binding
sites in the microvascular endothelial cells of the bovine
corpus luteum.

Tumor necrosis factor alpha can initiate
luteotropic or luteolytic effects that are likely stage, species
or environment dependent (see figure 5). Tumor necrosis
factor alpha can increase human chorionic gonadotropin
(hCG) binding and hCG-stimulated progesterone in
steroidogenic cells derived from human preovulatory
follicles (264). Tumor necrosis factor alpha can also
stimulate proliferation of human granulosa luteinized cells
taken prior to ovulation following a gondotropic
stimulation regime (265). However, TNF alpha has
opposing effects in luteal cells derived from mid to late
luteal phase of the human, mouse and pig.  In cells derived
from these stages, TNF alpha inhibits the response to
luteotropins in vitro (264-268). The TNF alpha initiated
response in the pig is somewhat complex in that it can
inhibit the luteotropic effect of estradiol (269), yet in the
absence of TNF alpha, PGF2 alpha can stimulate
progesterone synthesis in young corpora lutea of the pig.
Alternatively, pretreatment with TNF alpha and subsequent
treatment with PGF2 alpha will further reduce progesterone
levels than that of TNF alpha alone (270). The effect of
TNF alpha is not limited to regulating steroid producing
cells and it has been proposed to play a role in the vascular
development of the pig corpora lutea and serve as a growth
factor or regulator for epithelial cells and fibroblasts (257).
Interestingly, TNF alpha is cytotoxic to endothelial cells
derived from the bovine corpus luteum (209, 271).

Further evidence for the involvement of TNF
alpha in corpus luteum function is provided by an
investigation using knockout mice.  Roby et al (272)
demonstrated that TNFR1 deficient mice become ‘locked’
into a diestrous phase and do not proceed through the
estrous cycle.  This study implicates TNF alpha as a critical
regulator of luteal regression.  These results are supported
by an earlier study in which anti-thymocyte antiserum was
injected in rats to inhibit immune function (273). Similar to
the TNFR1 null mice these rats failed to progress past the
diestrous phase. Although this study does not directly
implicate TNF alpha, it does support the notion that the
immune system plays an integral role in luteal regression.

Few studies have focused on delineating the
various signaling pathways activated in the corpora lutea or
in dispersed luteal cells in response to TNF alpha (see
figure 5). Tumor necrosis factor receptor I, like FAS,
contains the DD segment and activation of the receptor
results in the recruitment of TNF receptor associated death
domain (TRADD) protein.  TRADD can serve as an
adapter protein to link the TNF alpha death signal to FADD
and the formation of the DISC (274-276) which propagates
the signal through the same downstream pathway as has
been described for FAS. The formation of this complex
activates downstream pro-caspase zymogens propagating
the apoptotic signaling. Direct evidence for cytotoxic
effects of TNF alpha treatment is limited to endothelial
cells in culture derived from the corpus luteum of the cow
(209).  However, TNF alpha can augment IFN gamma-
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Figure 6.  Treatment with IFN gamma can increase PGF2
alpha synthesis, decrease progesterone secretion, and
elevate caspase-3 activity which corresponds to an increase
in cell death via apoptosis.  The specific mechanism(s) by
which these events occur has not been demonstrated. IFN
gamma can activate the JAK-STAT pathway and elevate
the cytokine-specific transcription factor IRF-1.  Whether
or not this pathway is critical for the regulation of
steroidogenesis and/or luteal cell fate remains to be
determined.

induced cell death in luteal steroidogenic cells derived from
the cow (215, 249, 252).  To date, the utilization of the
death receptor paradigm in the cytotoxic actions of TNF
alpha or FasL in the ovary has not been conclusively
demonstrated.

It is important to recognize that the limited
number of cytokine receptors that are members of the death
receptor family do not necessarily always fall within the
'death' signaling category. The binding of TNF alpha to its
receptors commonly causes activation of two major
transcription factors, nuclear factor-kappa B (NF kappa B)
and activator protein–1 (AP-1), that in turn induces genes
that are typically involved in inflammatory responses.  In
fact some of these genes serve to inhibit TNF alpha-
induced apoptosis (277-281). This anti-apoptotic process is
initiated by the recruitment of yet another cytoplasmic
protein, TNF-receptor-associated factor 2 (TRAF2)(282).
The formation of the TNFR1-TRADD-TRAF2 complex
recruits an additional protein described as receptor-
interacting protein 1 (RIP) (283). The NF kappa B
activation step is regulated primarily by phosphorylation of
inhibitory proteins, the I kappa Bs, which retain NF kappa
B in the cytoplasm of unstimulated cells.  In response to
TNF alpha, the receptor protein complex initiates the
phosphorylation of I kappa B and its degradation in a
proteosome (274, 280). Upon its separation from I kappa B,
the freed NF kappa B translocates to the nucleus where it
initiates transcription, and translation of new gene products;
presumably those which are anti-apoptotic in nature. Often
times both pathways are activated simultaneously.  In
mixed luteal cells derived from the cow, treatment with
TNF alpha results in rapid I kappa B degradation and
translocation of NF kappa B (215) suggesting that this
pathway may be functional, however, its role in luteal
function remains to be determined.

Activation of TNFR also leads to the stimulation

of the mitogen-activated protein (MAP) kinases, p38 MAP
kinase and jun-n-terminal kinase (172, 284) (see figure 5).
The mechanisms leading to the activation of these MAP
kinases are complex and involve multiple upstream (e.g.,
ASK1, MEKK1).  However, studies indicate that
overexpression of TRAF2 is sufficient to activate signaling
pathways leading to NF kappa B and MAP kinase (285,
286).  Recent results demonstrate that treatment with TNF
alpha stimulates the phosphorylation and activation of p38
MAP kinase and jun-n-terminal kinase with minimal
activation of ERK 1 or 2 (287).  Based on the above in vitro
studies, is seems clear that TNF alpha can activate multiple
signaling pathways, whether or not these events occur in
vivo have yet to be determined.

4.1.3. Interferon gamma
Interferon gamma, a type II interferon (and not a

member of the TNF superfamily) can inhibit basal (266)
and gonadotropin-stimulated progesterone production in
human luteal cells (211, 266, 288); yet it has no effect on
progesterone production in dispersed luteal cells derived
from normally cycling cynomolgus monkeys derived from
different days of the cycle (289). Treatment with interferon
gamma can induce cell death in human (213), bovine (215,
249, 252) and mouse luteal cells (216).  In contrast to IFN
gamma-induced cytotoxic effects in human, murine and
bovine, IFN gamma has a luteotrophic effect in the porcine
corpora lutea (269). It is not clear why there are dissimilar
effects. It is possible that the difference can be attributed to
species variability.  Alternatively, and perhaps more
importantly, the origin of the recombinant IFN gamma
protein may play a factor since the recombinant protein is
based on IFN derived from different species in each of
these studies.  Therefore, it is possible that the biological
activity of the compounds is different, consequently, the
outcome is different. It was initially proposed that IFN
gamma may exert its deleterious effects by increasing
prostaglandin levels since an increase in PGF2 alpha was
observed in response to IFN gamma in cultured bovine
luteal cells (288).  Subsequent experiments demonstrated
that treatment with indomethacin did not reduce the
capacity of IFN gamma to reduce gonadotropin-stimulated
progesterone (288) suggesting that PGF2 alpha did not
mediate the antisteroidogeneic action of IFN gamma.  In
contrast to the bovine model, no increase in PGF2 alpha
was observed in response to IFN gamma in the luteal cells
derived from the normally cycling cynomolgus monkey
(290).

The majority of what is known with respect to
IFN gamma signaling in the corpus luteum is related to
cause and effect.  There is little information on the cellular
mechanisms used by IFN gamma to elicit its responses in
ovarian cells.  It is known that IFN gamma can signal via
the janus activating kinase (JAK)-signal transducers and
activators of transcription (STAT) pathway in non-ovarian
cells (291, 292).  Similarly, IFN gamma treatment results in
an increase in nuclear levels of phosphorylated STAT-1 in
the steroidogenic cells of the cow corpora lutea (215) (see
figure 6).  The increase in STAT-1 phosphorylation in other
cell types results in the formation of STAT-1 dimers and
translocation to the nucleus.  STAT-1 dimers are known to
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bind GAS sites on the promoters of interferon responsive
genes (293, 294).  Suter et al (215) demonstrated that IFN
gamma treatment also resulted in a rapid induction of the
cytokine-specific transcription factor interferon regulatory
factor 1 (IRF-1). The expression of IRF-1 is driven
predominately by cytokines that utilize STAT-1 or NF
kappa B signaling pathways (293, 294).  In bovine luteal
cells, IRF-1 protein levels were elevated for up to 48 hours
following treatment with IFN gamma.  The significance of
IRF-1 to luteal cell physiology is unclear at present, but in
other systems, IRF-1 has been implicated in processes
which include induction of cyclooxygenase, nitric oxide
synthase, major histocompatibility antigens, p21waf/cip
inhibitor of cell cycle progression, caspases 1 and 7, and
cellular apoptosis susceptibility genes (293, 294).
Alternatively, IFN gamma, like many of the other
cytokines, can activate alternative signaling pathways, e.g.,
the sphingomyelin pathway.

4.2. Vascular contributions to luteal regression
The corpus luteum is a highly vascularized organ

with roughly 50 % of its cellular make up being endothelial
cells (295-298).  The highly vascular nature of the mature
corpus luteum corresponds to the volume of blood flow that
passes through this structure (299).  Luteal regression has
been attributed in part to changes in luteal blood flow.
Whether the changes observed are causal or secondary
events and contribute to luteolysis remains controversial.
What is known is that acute changes in blood flow in
response to luteolysins have been measured.
Administration of PGF2 alpha can decrease blood flow to
the rat and rabbit ovaries (300, 301).  Subsequent studies in
the ewe, supported the ability of PGF2 alpha to reduce
blood flow concomitantly with progesterone levels (302,
303).  These data, combined with morphological studies,
led Nett, Niswender and colleagues to suggest that PGF2
alpha affected the vascular component of the corpus luteum
(302, 303).  More recent studies in the ewe utilizing the
autotransplanted ovarian model (3) provide evidence to
suggest that low levels of PGF2 alpha are sufficient to
reduce progesterone prior to decreases in blood flow. The
differences in the results between the two studies have been
attributed to the different concentrations of PGF2 alpha (3).
Depending on how an individual defines luteolysis could
dictate how this discrepancy is interpreted. Reduction of
circulating progesterone independent of any evidence of
reduced blood flow implies loss of function is independent
of luteal regression. However, if luteolysis is defined as the
loss of function and cellular involution then a decrease in
progesterone would not be directly attributed to a structural
regression.  The decrease in blood flow could however, be
associated with structural involution of the luteal mass
(304).

Prostaglandin F2 alpha reportedly acts directly on
microvascular endothelial cells within the corpus luteum
(77, 79).  This information must be interpreted with caution
since recent evidence indicates that the cells utilized for
this study are considered a rare luteal endothelial cell type
that has a phenotype similar to endothelial cells derived
from the bovine aorta, a large blood vessel (71, 74, 75).
Endothelial cells display variable morphology and function,

which may be attributable to tissue specificity.  At least
five different microvascular endothelial cell phenotypes
have been described in the bovine corpus luteum (76, 305-
307). The more predominate luteal endothelial cell type
which lack prostaglandin E or F receptors is cytokeratin 18
negative, whereas the rare cells with morphology similar to
large vessels are responsive to PGF and are cytokeratin 18
positive (71, 74). The functional significance of the other
individual endothelial cell phenotypes and their potential
response to luteotrophic or luteolytic stimuli is yet to be
determined.  Moreover, the number, phenotype and
response observed by the varied endothelial cell types
could vary with the stage of development, the stage of the
estrous or menstrual cycle or in response to pregnancy.
However, no evidence for the expression of FP in
endothelial cells has been reported in studies using in situ
hybridization to identify luteal cell types expressing FP
mRNA.   Additionally, no PGF2 alpha receptors were
evident in the blood vessels within the rat corpora lutea of
the estrous cycle or pregnancy as measured by
immunohistochemistry (34).  It seems possible that species
differences and cell type specific responses will have to be
considered until further studies are available to argue
convincingly for the endothelial cell as a direct target of
PGF2 alpha.

Sawyer et al (308) demonstrated that there was a
sequential pattern of cell type specific death within the
corpus luteum during luteolysis.  The endothelial cells are
first to succumb to cell death, followed by the parenchymal
cells. These results supported previous studies in the ewe
where luteal endothelial cells were shown to undergo
apoptosis and sloughed into the lumina of small blood
vessels during luteolysis in vivo (309, 310).  The rapid
decrease in blood flow could result in luteolysis.  Even
today there is still supportive evidence to suggest that
hypoxia induced by decreased blood flow could elevate
reactive oxygen species and possibly lead to luteal cell
death.  This idea was first reviewed by Phariss et al (300),
however, whether or not alterations in blood flow can
directly affect luteal function or regression is a topic of
debate (3).

4.3. Reactive oxygen species
Elevation of reactive oxygen species (ROS) can

result in damage to DNA and RNA, damage to proteins,
and initiate lipid peroxidation which can compromise
cellular signaling and/function. Therefore, it is logical to
expect that an increase in ROS may contribute to the loss of
function and/or the demise of the luteal structure. It is well
known that the PGF2 alpha-initiated decrease in
progesterone in rats is associated with an increase in
reactive oxygen species including superoxide radicals
(311). Likewise, Sugino and colleagues (312) demonstrated
that that ischemic reperfusion of the ovary of day 15
pregnant rats results in a decrease in progesterone in the
corpus luteum and a decrease in superoxide dismutase
activity. Treatment with PGF2 alpha also results in an
increase in hydrogen peroxide (201, 202, 313).  Hydrogen
peroxide can inhibit LH and cAMP - stimulated
progesterone but does not effect basal progesterone
production (314).  Since progesterone synthesis can be
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restored by cell and mitochondrial membrane permeable
cholesterol analogs it was proposed that hydrogen peroxide
disrupted substrate availability for steroidogenesis (314).
Subsequent studies by Musicki et al demonstrated that
hydrogen peroxide inhibits rapidly inducible proteins that
are known to mediate cholesterol within the mitochondria
(315).

Nitric oxide (NO), another free radical is
synthesized by oxidation of L-arginine by nitric oxide
synthase (316, 317). NO levels are stimulated by TNF
alpha or IFN gamma or the combination of the two (318).
NO is synthesized by luteal cells of the rat and mouse (253,
319) and has been implicated as a mediator of luteal
regression (319, 320). Interestingly, others have suggested
that cytokine-induced luteal cell death in culture is
independent of NO (253, 321). However, a recent in vivo
study demonstrated that administration of L-NAME, an
inhibitor of NOS, extended the life span of the corpus
luteum in the cow (320).  Moreover, L-NAME attenuated
the luteolytic actions of exogenous administration of PGF2
alpha in the cow. In vitro studies on isolated corpora lutea
of pseudopregnant rabbits demonstrated that PGF2 alpha
treatment resulted in an increase in NOS and reduced
progesterone synthesis (101, 322, 323).  It is not clear why
there are such dramatic differences between the in vitro and
in vivo studies unless the culture conditions are such that a
particular cell type is missing or deficient, or alternatively,
NO is not obligatory but may actually serve to make luteal
regression more efficient.  Only future studies will be able
to address this in more detail.

4.4. Non-traditional lipid signaling (sphingomyelin
pathway)

Prostaglandin F2 alpha can increase lipid
peroxidation and initiate a change in membrane fluidity
(324, 325) presumably by reorganization of phospholipids.
An increase in lipid peroxidation and alteration in
membrane fluidity can alter ROS levels.  Carlson and
colleagues used wide angle X-ray defraction and
fluorescence polarization techniques to describe events
which occur at the membrane level of steroidogenic cells
derived from the cow (326) and the rat (324, 327-329)
during luteal regression. In response to PGF2 alpha there
was a change from a liquid-crystalline to a gel phase
transition state in phospholipid molecules of the cellular
membranes prepared from regressing corpora lutea (326).
The authors concluded that membrane proteins contribute
to the ordering of lipids in membranes of the regressing
corpora lutea.  These results were further supported by
Hansel and colleagues (324, 328, 330) who concluded that
the plasma membrane may be the main source of this gel
phase.  Furthermore, the overall lipid composition of the
microsomal preparations from these cells indicates a role
for sphingomyelin, in the presence of cholesterol, for the
generation of a gel phase. More importantly, the change in
membrane composition was associated with a loss in luteal
function (325, 326).  Subsequent, studies have
demonstrated that there is a decrease in membrane fluidity
during induced luteolysis which could be involved in the
mechanisms that inhibits LH-stimulated steroidogenesis
during luteolysis (328). This change in membrane

characteristics occurred in accordance with fluctuations in
the sphingomyelin levels. The number of reports
investigating alterations in membrane composition and
lipid ordering in non-ovarian cells are increasing
exponentially.  The increased interest in signaling within
membranes is paralleled by the increased interest in
microdomains and other members of the sphingomyelin
pathway which may serve as a platform for downstream
signaling events.

The sphingomyelin pathway is a ubiquitous,
evolutionarily conserved signal transduction system (see
reviews 331-335).  Although not as well defined as other
signaling pathways (e.g., the adenylate cyclase and
phospholipase C pathways), the second messenger
ceramide and other intermediates (e.g., sphingosine or
sphingosine-1-P) of the sphingomyelin pathway have been
shown to transmit signals initiated on the cell surface to the
nucleus and likely elsewhere within the cell.
Sphingomyelin, a phospholipid, was originally found
concentrated in the outer leaflet of the plasma membrane of
mammalian cells (335). Sphingomyelin is hydrolyzed via a
sphingomyelinase (SMase) generating ceramide. There are
three known sphingomyelinases, commensurate with their
pH (acid, neutral and basic) (334-337).

The specific enzyme responsible for generating
increased intracellular ceramide may be secondary to the
subcellular location in which the ceramide is generated.
The physical location of the elevated levels of ceramide
may be the critical determinant of how the cell is going to
respond. It is also possible that cytokines can stimulate de
novo synthesis of ceramide by the enzyme ceramide
synthase that is localized to mitochondria and the
endoplasmic reticular membranes (338). It is clear
ceramide can be generated at multiple levels within the cell
including the outer and inner leaflet of the plasma
membrane as well as in the mitochondria.

The significance of the sphingomyelin pathway
in reproductive tissues has only been recently recognized as
evidenced by the following examples.  ASMase null female
mice are born with an over-endowment of germ cells (339).
Sphingosine-1-phosphate, the natural inhibitor of ceramide-
induced cell death, suppresses developmental, radiation-
and drug-induced apoptosis in oocytes (339-341).
Exogenous SMase and/or ceramide have been shown to
mimic TNF alpha inhibition of gonadotropin-induced
progesterone production (342-344). Ceramide mediates
TNF alpha inhibition of P450 side-chain cleavage enzyme
(342), 3 beta-hydroxysteroid dehydrogenase isomerase and
p450 aromatase activity (342, 343). Finally, ceramide is
involved in the FAS-mediated apoptotic processes of
mouse granulosa cells (345-346). With regard to the corpus
luteum, few studies have focused directly on the role of the
sphingomyelin pathway. Sphingosine, an intermediate
product of the sphingomyelin pathway can inhibit LH- and
forskolin-induced cAMP in luteal cells (107, 347, 348).
Furthermore sphingosine treatment of non-stimulated luteal
steroidogenic cells can decrease progesterone production
and reduced cell viability (107).  It is important, however,
to realize that ceramide can be metabolized to sphingosine
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Figure 7. TNF alpha has been shown to elevate ceramide, a
lipid byproduct resulting from sphingomyelin hydrolysis.
Ceramide is considered to be a second messenger and can
activate members of the mitogen-activated protein kinase
family, induce cell death and alter steroidogenesis.

by ceramidase and sphingosine can be converted to
ceramide by a yet unknown enzyme.  Therefore to
implicate ceramide or sphingosine as a direct mediator of
luteal function will require additional studies.

More recently, cytokines have been shown to
elicit their response by signaling through the
sphingomyelin pathway (see figure 7). For example, FasL
signaling via the sphingomyelin pathway has been
demonstrated in a number of cell lines (Jurkat, BAEC,
HeLa, etc.) and more recently in primary cell models
including hepatocytes, lymphocytes, and splenocytes (334,
349, 350). Investigations into the involvement of FasL or
TNF alpha activated ceramide in luteal function is ongoing
(251, 271). At this time it is not known if the cytokine
induced inhibition of steroidogenesis or luteal cell death
involves sphingosine in vivo.

4.5. Endothelin-1 (ET-1)
Endothelin-1, a potent vasoconstrictor, has been

implicated as a mediator of PGF2 alpha-induced steroid
inhibition in luteal cells (219, 221).  The actions of
endothelin-1 in non-ovarian tissues resemble those initiated
by PGF2 alpha.  Endothelin-1 activates Gq and initiates
calcium and protein kinase C signals involving the
activation of Erk, p38, and JNK (186, 351).  The levels of
preproET-1 mRNA and/or ET-1 are elevated in the mid
luteal phase and increase during spontaneous or PGF2
alpha-induced luteal regression (77, 218, 352, 353). The
increase is believed to be sustained by an autoregulatory
loop (218, 354).  This increase of ET-1 mRNA at the mid
luteal phase is not without controversy, Wright et al (355)
reported no significant change in ET-1 levels under similar
conditions. Endothelin-1 reportedly binds to ETA and ETB
receptors with equal affinity however a majority of the
effects are believed to be mediated by ETA in domestic
farm animals (218, 355) and humans (356), but ETB
appears to be involved in ET-1 actions in the rat (357-359).
The levels of ETA mRNA do not change during the mid
luteal phase in the cow corpus luteum in response to PGF2
alpha as reported by Wright et al (355). However, an earlier
study by Levy and coworkers provided evidence to the

contrary (353). Regardless of whether PGF2 alpha
regulates the levels of mRNA encoding the receptor or
ligand, the ET-1 peptide is elevated during loss of function
(221, 354).

Endothelin-1 can inhibit basal and gonadotropin-
induced progesterone synthesis in a dose dependent fashion
(218).  The mechanism by which ET-1 inhibits
gonadotropin-induced progesterone synthesis in luteal cells
is not yet known. However, ET-1 stimulates an increase in
PGF2 alpha levels, which may serve to regulate
steroidogenesis.  Alternatively, the fact that ET- stimulates
prostaglandin E at a much higher rate than PGF2 alpha in
human luteal cells (360) can not be ignored since
prostaglandin E activates the cAMP pathway and is often
considered a luteotropin (360-362).  In vivo administration
of ET-1 to ewes resulted in an acute increase in
progesterone levels within 4 hours of treatment, however
the levels of progesterone had decreased when reassessed at
24 hours.  Interestingly, in the same experiment PGF2
alpha treatment only transiently decreased progesterone
levels and eventually the levels returned to the same as the
saline treated animals without reducing the life span of the
corpus luteum. Administration of ET-1 in concert with a
sub-luteolytic dose of PGF2 alpha resulted in premature
luteal regression (363).  These data support the finding that
ET-1 is not sufficient in of itself to induce luteolysis as
defined by decrease in steroid levels and involution of the
luteal structure.  Juengel and colleagues previously
demonstrated that administration of reduced concentrations
of PGF2 alpha can decrease progesterone but have no
effect on luteal weight (59).  Together these data raise some
interesting questions. Prostaglandin F2 alpha can increase
the levels of ET-1, ROS and decrease blood flow.
Additionally, hypoxia or oxidative stress can induce ET-1.
It is not clear which event occurs first in the sequence of
events.

5. STRUCTURAL REGRESSION

5.1. Apoptosis
The structural involution process reportedly

involves apoptosis in the mouse (216, 364), rat (204, 242,
365, 366), hamster (28, 367), rabbit (205, 227), sheep (308,
368-370), cow (371-373), pig (374) and the primate (289,
375, 376).

Apoptosis is a physiological form of cell death
distinguishable from necrosis by morphological and
biochemical parameters. Apoptosis is typically associated
with a growing family of Bcl-2-related proteins (377) that
interact forming hetero- and homodimers to mediate
function of the mitochondria (377-379).  The Bcl-2 related
proteins are segregated into three subclasses based on
apparent function: the anti-apoptotic multi-domain
members, the BH3 multi-domain members that facilitate or
induce apoptosis, and the BH3 only domain members.   The
BH3 only domain members serve to bring together pro-
apoptotic multi-domain members of the Bcl-2 family, by
multiple mechanisms into heterodimeric units between the
inner and outer wall of the mitochondrial membrane (377,
380-383). These components by nature can form pores
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resulting in the release of 'apoptogenic' factors (cytochrome
c, Smac/Diablo, apoptosis inducing factor; IAP) (377, 384,
385) which can be inhibited by antiapoptotic multi-domain
members (377, 378, 386). Cytochrome c is essential for the
generation of the apoptosome, a complex containing
apoptosis activating factor-1 (APAF-1) and procaspase-9
(387-390). The resulting interaction generates procaspase-9
oligomers, leading to auto- or transcatalytic processing of
the precursor enzyme to fully activated caspase-9.
Activated, caspase-9 sequentially activates death effector
caspases (e.g., caspase-2, -3, -6 and/or -7) in the apoptotic
cell death program (387, 389). Caspases regulate selective
destruction of key structural and functional proteins in the
cell including cytoskeletal proteins, mediators of signal
transduction, DNA repair enzymes, RNA repair
components, cell cycle regulatory proteins, nuclease
activity-modulating factors and nuclear matrix proteins
(387, 391, 392).

The belief that luteolysis of human and the non-
human primate corpus luteum involves apoptosis, is not
without controversy.  Whereas some studies demonstrate
primate luteal cells are dying by apoptosis (376, 393, 394)
others provide evidence that luteal cell death occurs by
autophagocytosis (395, 396).  In support of apoptosis in the
corpus luteum there are numerous reports which utilized a
variety of techniques including terminal deoxynucleotidyl
transferase-medited dUTP nick end-labeling (known more
commonly as TUNEL) and the highly sensitive
electrophoretic analysis of low molecular weight DNA
fragmentation which suggest apoptosis is occurring (376,
393).  Moreover, the incidence of apoptotic cells increases
in the regressing corpus luteum when compared to mid-
luteal phase human corpus luteum or the corpus luteum of
pregnancy (376, 394).  In contrast, large vacuoles were
observed within the steroidogenic cells of the non-human
primate corpus luteum by electron microscopy prompting
investigators to suggest that luteal cells were dying by
autophagocytosis and not apoptosis (289, 395).  The
formation of autophagic cells in the corpus luteum is not
new and was first described in the 'atretic' human corpus
luteum in 1971 (397) has since been supported by Fraser et
al (395).  Although the controversy has not been
completely resolved it is possible that both apoptosis and
autophagocytosis occur within the same structure. The
corpus luteum consists of a heterogenous cell population,
and it is not unrealistic that both forms of cell death could
be occurring concomitantly and/or maybe specific to one
cell type or another.

5.2. Bcl-2 family members
With identification of apoptosis in the corpus

luteum, numerous studies were initiated to elucidate the
mechanism(s) by which apoptosis was regulated within the
corpus luteum.  One of the first studies to report evidence
of BCL-2 in the human corpus luteum was conducted by
Rodger and colleagues (398).  The Bcl-2 protein was found
to be localized in the granulosa-lutein, theca-lutein and in
endothelial cells of some blood vessels by
immunohistochemistry. Using Western blotting techniques
the authors detected no difference in the levels of Bcl-2
protein in the normal luteal phase or in response to

chorionic gonadotropin.  In contrast, more recent studies
have provided evidence that BCL-2 is, in fact, regulated
during the human luteal phase, early pregnancy and in
response to human chorionic gonadotropin (207, 394). The
controversy over whether Bcl-2 related proteins are truly
involved in luteal regression is not limited to Bcl-2.

An early study investigating the levels of Bax
protein in the human corpus luteum suggested that the
levels of BAX did not vary through the luteal phase (399);
yet again, more recent studies have suggested that BAX
levels increase in the regressing corpus luteum, remain low
in the mid-luteal phase corpus luteum, and are absent in the
corpora lutea of pregnancy (394).  It is not clear to what the
differences in the two studies can be attributed.  It is
possible that the differences can be the result of different
conditions related to fixation, embedding, antigen retrieval
methodology or simply different antibody specificity.
Whatever the difference(s), it is also important to realize
that the level of change of a particular death agonist may
not be as important as its location.  BAX has been shown to
be translocated to the mitochondria and nuclear regions
following a death stimuli (400). The mitochondria is
considered a pivotal player in steroidogenesis and the
apoptotic process.  Moreover, marked ultrastructural
changes in the mitochondria were described during
luteolysis as early as 1966 (401) whereby it was noted that
the mitochondria swelled and underwent rarefication of the
matrix which preceded the decline in progesterone in sheep
luteal cells.  This early description is similar to the
morphological characteristics used today to describe a cell
undergoing apoptosis.

BAX homodimers can form pores in the
mitochondria membrane disrupting the membrane potential
(386, 402, 403) which can ultimately lead to disruption of
steroidogenesis and cell death.  Therefore, it may not only
be the levels of BAX and BCL-2 which are important but
where they are localized.  Furthermore, with the ever
growing numbers of Bcl-2 family members being
identified, there are sure to be an increased number of Bcl-
2 family members which are being implicated in the
growth, maintenance, and regression of the corpus luteum
in the future.

5.3. Caspases
Since members of the Bcl-2 family have been

implicated in the regulation of caspases (386), more recent
studies have been designed to elucidate the role of caspases
in the corpus luteum.  Caspase-3 was localized to the
human (404) and rat corpus luteum (405).  Prostaglandin
F2 alpha-induced luteal regression in the rat is associated
with cleavage of putative caspase-3 substrates PARP and
actin (405). No difference in the levels of caspase-3 in the
healthy and the luteolytic rat corpora lutea was detected.
This is not unexpected since many of the early antibodies
were unable to distinguish between the active and inactive
caspases.  However, PGF2 alpha treatment in the ewe
resulted in an increase in caspase-3-like activity as
demonstrated by a substrate cleavage assay (406).
Furthermore, cleavage of the pro-caspase 9 and 3 was
evident in human luteinized granulosa cells in response to
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staurosporine treatment (407) providing support that the
enzymes were present and had the potential to be activated.
Using an antibody which recognizes the active form of the
effector caspase, it was recently shown that stress can activate
caspase-3 which is coordinately associated with the decrease in
progesterone levels and the onset of apoptosis in bovine luteal
steroidogenic cells (287). The importance of caspase-3 to luteal
regression is only becoming apparent with recent studies
utilizing caspase-3 deficient mice (408).  Whereas corpora
lutea derived from wild-type mice will undergo apoptosis
within 24 hours of culture in a serum free medium, the corpora
lutea from caspase-3 deficient remain intact.  Eventually, the
corpora lutea from caspase-3 deficient mice will succumb
overtime to apoptosis, but the onset is much delayed.  The
same result was observed in vivo (408). Corpora lutea derived
from gonadotropin-induced luteal phase of caspase-3 deficient
mice had a delayed onset of structural involution when
compared to their wild-type sisters. Interestingly, regardless of
the genotype, the serum levels of progesterone did not differ.
This phenomenon provides an interesting clinical question.
Can the lifespan of the corpus luteum be extended in a patient
who has undergone in vitro fertilization to allow time for
adequate generation of endogenous hCG levels for continued
support of the conceptus? Alternatively, is the corpus luteum
of the caspase-3 deficient mice hormonally functional and can
it be rescued?

Aside from Bcl-2 and Caspase family members
there have been efforts to characterize the role of proto-
oncogenes like c-myc or p53.  c-myc has been shown in the
human corpora lutea, however, its relevance to luteal function
or demise has not been fully demonstrated (409, 410).  Similar
to c-myc, p53 expression has been shown in the corpora lutea
at the level of mRNA and protein, nonetheless, the changes
detected were not necessarily associated with luteal regression
in vivo (411).  In vitro experiments, however, have shown that
levels of p53 protein and/or mRNA are elevated in apoptotic
human granulosa-lutein cells in response to serum withdrawal
(254, 412).  More importantly, the increase p53 protein and/or
mRNA levels is inhibited by hCG (254, 412).

5.4. Immune cells and phagocytosis
Although apoptosis is often considered a non-

inflammatory response, the cells, which undergo apoptosis,
are often phagocytized by immune cells. Macrophages and
T-lymphocytes are present in the corpus luteum throughout
the cycle (413, 414), however, they accumulate in
regressing corpora lutea of many species (415-418).
Macrophages and T-lymphocytes likely take an active role
in luteolysis via phagocytosis of luteal cells (419),
degradation of extracellular matrix (23), and secretion of
pro-inflammatory mediators that influence luteal
steroidogenesis (252). For example, monocyte
chemoattractant protein-1 (MCP-1), a chemokine, is
produced in the corpora lutea during luteal regression and
might aid in its destruction (416, 420-425).

5.5. Monocyte chemoattractant factor-1
MCP-1 has the potential to facilitate the

attachment and migration of immune cells, specifically
monocytes, macrophages and T-lymphocytes, from the
blood stream (426) into the corpus luteum. Whether this

occurs in the luteolytic corpora lutea is unclear.  However,
there is mounting evidence including MCP-1 expression
increases during luteal regression (241, 420, 424).
Furthermore, the endothelial cells of the bovine corpus
luteum have been identified as a putative source of mRNA
expression and MCP-1 secretion (416, 425). Although it is
well established that treatment with PGF2 alpha elevates
MCP-1 mRNA in vivo, the large luteal cells possessing the
PGF2 alpha receptor were not the source of MCP-1 mRNA.
Recent experiments by Caviccio et al (75, 427)
demonstrate that PGF2 alpha treatment in vitro was
incapable of elevating MCP-1 in mixed luteal cells or
luteal-derived endothelial cells.  Furthermore, these
investigators demonstrated that the cytokines TNF alpha
and IFN gamma stimulated MCP-1 mRNA expression and
protein secretion in purified populations of endothelial cells
(75).  These results suggest that PGF2 alpha may contribute
to the activation of a variety of cytokine signaling cascades
in various cell types in the corpus luteum.

6. SUMMARY

To date there is a wealth of knowledge implicating a
number of factors in the inhibition of steroidogenesis and/or
the involution of the luteal structure. To what extent each of
these factors play a role is questionable. Clearly, not all the
factors identified are directly involved in loss of function and
the structural involution of the corpus luteum. Attempts to
delineate their importance have often yielded conflicting
results.  A majority of the contradictions can be attributed to
differences in species, models (in vitro vs. in vivo),
concentration and/or route of administration of a particular
ligand or overall technique. Despite the differences in
methodology, progress has been made and will continue to be
made.  The present review was designed to look beyond the
cause and effect relationships and to discuss the mechanisms
by which these events occur and to identify where information
was lacking in order to provide some insight as to potential
pathways that may be involved.
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