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1. ABSTRACT

Receptors of the various cytokines although
structurally diverse, can yet be grouped into four major
families of receptor proteins.  Most cytokines that function
in the immune system bind to either the Class I or Class II
receptor families.  Two other important receptor families
are the immunoglobulin superfamily receptor and the TNF
receptor family.  Members of these receptor families also
have critical roles in the immune system.  A common
feature of all these receptor families is that they do not
exhibit any intrinsic tyrosine kinase activity.  Receptor
signaling is initiated through recruitment of kinases and
through recruitment of cytosolic proteins to the receptor.  In
this review we will examine receptor signaling pathways
initiated from five receptors that are all involved in either
initiating T helper-1 (Th1) responses, or in downregulating
Th1 responses.  The following receptors: Interleukin (IL)-
12, Interferon (IFN), IL-4, IL-10, and Tumor necrosis
factor (TNF)-alpha will be examined. Signaling initiated
from IL-12, IFN-gamma and TNF-alpha are important for
inducing Th1 responses, and on the other hand signaling
from IL-4 and IL-10 receptors inhibit Th1 responses.  We
will also discuss human immunodeficiencies resulting from
mutations in the genes that encode the Type I cytokine
receptors.

2. INTRODUCTION

Cytokines are low molecular weight proteins that
serve as a means of communication among varying cell
populations.  Numerous cells release cytokines in a brief

and self-limited manner to mediate a response in a targeted
cell.    Once released into the environment, cytokines
transverse small distances to ligate their high affinity
receptors via either autocrine or paracrine fashion.  Upon
ligation of the cytokine receptor, a signaling cascade is
triggered resulting in an alteration in gene transcription by
the target cell.

While a variety of cells can synthesize and
release cytokines, the two primary producers are CD4+ T
helper lymphocytes and macrophages.   These two cell
populations utilize cytokines to direct, enhance or reduce
an inflammatory response.  While there is a milieu of
cytokines released post antigenic stimulation, the immune
response depends on the ligation of the cytokine to the
target cell receptor.  Without receptor cytokine binding, no
signal transduction can take place and therefore no
communication among the cells can occur.  Thus, the
receptor and signaling pathway are as vital as the release of
the cytokine.

While all of the cytokine receptors are
transmembrane proteins, they vary in the structures found
in their extracellular domains.  This variance in structure
provides a means of characterizing the receptors into one of
four families.   The families include the Class I receptors,
the Class II receptors, the Immunoglobulin superfamily,
and the TNF receptor superfamily.  The Class I receptors
have four conserved cysteine residues and a conserved
sequence motif of tryptophan-serine-X-tryptophan-serine
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(WSXWS) where X is a nonconserved amino acid.  Class I
receptors usually consist of two polypeptide chains; one
chain for the cytokine binding and the other for the
triggering of the signal transduction pathway. The class I
receptors are further classified by the number of amino
acids contained in their four alpha helical bundle structure.
Short chain receptors have helices of 15 amino acids and
include the IL-2 family (IL-2, IL-4, IL-7, IL-9, and IL-15).
Long chain receptors have helices of 25 amino acids and
include IL-6, IL-11, and IL-12. The third group of receptors
is known as the Class II or interferon receptors.  Like the
Class I receptors, the Class II receptors contain conserved
cysteine residues.  The two families differ in that the Class
II contain a fibronectin type III domain rather than the
Class I sequence motif of WSXWS.  Cytokine receptors
belonging to the Class II group include interferon-alpha, -
beta, -gamma, and IL-10.

Type I and type II cytokines are similar in their
receptor structure and signaling pathways.  An important
feature of these receptors is that they lack intrinsic
enzymatic activity.  Nonetheless, binding of cytokine to its
specific receptor initiates a series of phosphorylation events
within the cell.  With the discovery of the Janus family of
protein tyrosine kinases, it became apparent that these
kinases were involved in the signal transduction.
Following receptor ligation, the receptor subunits dimerize
allowing for the juxtaposition of the cytosolic domains.
Janus tyrosine kinases (Jak) associate with the dimerized
receptor to phosphorylate the receptor and each other.
There are four known Jak kinases including Jak1, Jak2,
Jak3, and Tyk2.  Jak3 is only present in
lymphohematopoietic cells, but the remaining three are
expressed ubiquitously.  Following tyrosine
phosphorylation, signal transducers and activators of
transcription (Stat) are recruited to the receptor.  Stats bind
to the cytokine receptor where they can be phosphorylated
by proximal Jak kinases.  Following their tyrosine
phosphorylation, Stats dissociate from the receptor to form
a dimer via interactions of their SH2 domains.  Stat dimers
translocate to the nucleus where they drive gene
transcription.  In addition to their dimer formation, Stat
proteins are capable of forming tetramers via interactions of
their N terminal domains. Tetramers bind to DNA with a
greater affinity than dimers.  There are seven known stat
proteins: stat1, stat2, stat 3, stat 4, stat 5a, stat 5b, and stat6.
Due to involvement of both the Jak tyrosine kinases and the
Stat proteins, the cytokine signaling cascade is known as
the Jak-Stat pathway.  While cytokines generally utilize the
Jak-Stat pathway for signal transduction, each cytokine
receptor specifically recruits certain Jak and Stat proteins
(1).   While there may be redundancy amongst the signaling
proteins recruited to the receptor, there are differences in
the outcome of the signaling pathways.

Cytokine receptors that contain several
extracellular Ig domains belong to the immunoglobulin
superfamily.  Like Class I and Class II receptors, TNF
receptor is also devoid of any intrinsic enzymatic activity,
and post receptor signaling pathway is characterized by
recruitment of cytosolic proteins through specific protein-
protein interaction domains.

This review will examine the signaling pathway
emanating from IL-12, IFN, TNF-alpha, IL-4 and IL-10
receptors, and also discuss the consequences of defective
signaling from some of these receptors in immunity to the
intracellular pathogen Mycobacterium tuberculosis.

3. SIGNALING AND CYTOKINE RECEPTORS

3.1. Interleukin-4 Receptor
The T helper type 2 cytokine IL-4 has a type I

cytokine receptor consisting of two subunits known as
alpha and gamma.  The alpha chain has a large cytoplasmic
domain while the gamma chain has a shorter one.  When
IL-4 binds to the alpha chain, higher order oligomers form
among the alpha and gamma chains.  The oligomers recruit
Jak 1 and Jak3 to the alpha chain (12).  In contrast, Jak 3 is
constitutively associated with the gamma chain.  Once
bound to the receptor, the Jak kinases phosphorylate each
other and the IL-4R.  Phosphorylation of the receptor
results in the recruitment and activation of Stat 6.  The
phosphorylated Stat 6 molecules form dimers and
translocate to the nucleus to activate transcription of IL-4
inducible genes.  Stat 6 drives transcription by binding to
specific GAS like sequences in IL-4 inducible genes (13).

Beyond the recruitment of Stat 6 to the IL-4R,
Jak 1 and Jak 3 tyrosine kinases activate other IL-4
signaling pathways. Both Jak 1 and Jak 3 are required for
mediating IL-4 activation of insulin receptor substrate
(IRS1/2).  Several studies have revealed that IRS1/2
molecules bind to phosphorylated I4R motifs located in the
IL-4 R (14).  IRS molecules play an integral role in
inducing IL-4 cellular proliferation.

In addition to the IRS1/2 pathway, ligation of the
IL-4 R increases phosphatidylinositol 3'-kinase  (PI3’-K)
activity (15).  Jak3 has been implicated in recruiting the p85
domain of PI3’-K to the IL-4 R since the kinase has been
immunoprecipitated with Jak3 and the IL-4R.  Activation of
PI3’-K allows for IL-4 mediated cell growth and proliferation
via two different pathways.  IL-4 induces association of PI3’-K
with IRS-2 and the protein tyrosine kinase FES in various cell
populations (16).  Secondly, IL-4 activation of PI3’-K ensures
cell proliferation via upregulation of the anti-apoptotic protein
bcl-2 (17).

Down regulation of the IL-4 signaling pathway
occurs via four possible mechanisms.  The first mechanism
implicates Shp-1 as a negative regulator of IL-4 signaling since
mice lacking the tyrosine phosphatase had an increase in Stat 6
activity (18).  Secondly, SHIP, an Sh2 containing inositol 5-
phosphatase, has been implicated as a negative regulator due to
its ability to dephosphorylate the products of PI3’-K.  The third
regulator implicated is the interleukin Four Receptor
Interacting Protein (FRIP).  Mice homozygous for the hairless
mutation express reduced levels of FRIP and are IL-4 hyper-
responsive, thus, implicating FRIP as a negative regulator (19).
The fourth possible regulator is the SOCS (suppressor of
cytokine signaling) family of proteins.  IL-4 increases
expression of CIS, SOCS-1, SOCS-2, SOCS-3, and SSI.
Recent reports have suggested that SOCS-1 is specific for
regulating IL-4 signaling (20).
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3.2. Interleukin-12 Receptor
IL-12 is synthesized and released from antigen

presenting cells such as macrophages and dendritic cells to
direct a cell mediated immune response.  IL-12 has a type I
cytokine receptor consisting of two chains beta 1 and beta 2
(2).  The beta 1 chain directly binds to the IL-12 cytokine
while the beta 2 chain triggers the signaling pathway (3).
The beta 2 chain is the focal point for the early
maintenance of IL-12 responsiveness.  Beta 2 is not
expressed on naïve T cells, but is induced on CD4+ and
CD8+ T cells for 2 to 4 days following T cell receptor
stimulation (4).

IL-12 binds to the beta 1 and beta 2 receptors
causing heterodimerization and activation of the receptor
associated Jak kinases.  Jak2 and Tyk2 phosphorylate the
IL-12 receptor creating docking sites on beta 2 for the Stat
4 signaling molecule (5).  Stat 4 is phosphorylated by the
Jak kinases and then released into the cytoplasm to form
homodimers capable of entering the nucleus.  Activation of
Stat 4 results in an upregulation of IL-12 R beta 2 and the
production of IFN gamma (6).  The biological effects of
Stat 4 activation are an increase in T cell proliferation, NK
cell cytolytic activity, and Th1 differentiation.

3.3. Interferon Receptor
The interferon receptors (IFNR) are members of

the Class II cytokine receptor family. The receptors are
subdivided into two groups based on the ligands they bind.
The type I interferons include alpha, beta, tau, and omega;
while the type II include gamma (7).  Type I and type II
interferon receptors contain and alpha and beta chain that
are both necessary for IFN binding and signaling.  The two
IFN receptors differ in the Jak and Stat molecules recruited
to the membrane.

The type I interferon receptor transduces the anti-
proliferative signals generated by binding of IFN alpha,
beta, tau, or omega cytokines.  Following cytokine binding,
the receptor forms heterodimers capable of recruiting the
Jak kinases Tyk2 and Jak1.  Tyk2 phosphorylates the alpha
subunit at Y466, Y481, Y527, and Y538 while Jak1
phosphorylates the beta subunit (8).  The beta subunit can
exist in one of three forms – long, short, and soluble (9).
The 515 amino acid (aa) long form is necessary for
signaling since Jak1 binds at the Box1 site located at aa
300-346.  The short form has identical extracellular and
transmembrane domains as the long form, but the
cytoplasmic domains differ.  There has been no real role
elucidated for the short form of the beta chain.  The soluble
form of the beta chain is a truncated version of the long and
short forms since it has a stop codon at the 236 aa.
Following Jak1 phosphorylation of the IFNR, the tyrosine
receptors of the alpha and beta chains bind Stat 2.  There
are three known binding sites for Stat 2 to the alpha and
beta chains (10).  Stat 2 has two binding sites in the beta
chain; binding to one site is constitutive while the other is
dependent on tyrosine phosphorylation.  The third site of
Stat 2 binding is on Y466 and Y481 of the alpha chain.
Stat1 is also phosphorylated as a result of IFNR ligation,
but the sites of Stat1 docking to the receptor are unknown.
Both Stat 2 and Stat 1 are phosphorylated and released

from the receptor enabling them to form heterodimers via
their SH2 domains.  Unlike other Stat dimers, the
Stat2/Stat1 heterodimer cannot enter the nucleus alone.
The heterodimer must interact with a small protein known
as p48 to form the transcription complex ISGF3 (11).  Once
formed, ISGF3 enters the nucleus and binds to GAS sites to
drive the gene transcription resulting in IFN anti-
proliferative effect.

While similar to the Type I receptor, the Type II
IFNR differs in its specificity and signaling molecules.  The
type II receptor is composed of two subunits, IFN-gamma
R1 (alpha chain) which is the IFN-gamma binding chain
and IFN-gamma R2 (beta chain or accessory molecule)
which is the signaling chain.  Binding of IFN-gamma to its
cognate receptor results in the auto- and
transphosphorylation of Jak1 and Jak2 tyrosine kinases
previously bound to the receptor.  Jak kinases
phosphorylate the receptor on specific tyrosine residues
including Y440, the docking site for Stat 1 (11).  Stat1
binds to the IFN-gamma R and is phosphorylated at Y701.
Stat1 is released from the receptor and forms homodimers
via the interactions of the SH2 domains.  Unlike the Stat
1/Stat2 heterodimer, Stat1 homodimers can access the
nucleus without the aid of an accessory protein.  Once
inside the nucleus, Stat 1 homodimers bind to GAS sites
driving transcription of IFN-gamma response genes.

3.4. Interleukin-10 Receptor
The anti-inflammatory cytokine IL-10 binds to its

class II receptor to downregulate an immune response.
Functional IL-10 receptors (IL-10R) are tetramers
consisting of two IL-10R1polypeptide chains and two IL-
10R2 chains (21).  IL-10R1 is the signal transducing chain,
while IL-10R2 is considered the accessory chain.  Although
IL-10R2 is termed the accessory chain, ligation of both IL-
10R1 and IL-10R2 is necessary for optimal IL-10 signal
transduction (22).  IL-10 R1 is associated with Jak 1, while
IL-10R2 is associated with Tyk2.  Ligation of the receptor
results in the formation of IL-10R1 and IL-10R2
heterodimers.  The close proximity of the receptor chains
allows for the phosphorylation of Jak 1, Tyk2, and the
receptor.  Phosphorylated Y446 and Y496 on IL-10 R1
serve as docking sites for Stat3, while IL-10R2 does not
bind the recruited Stat 3.  In addition to Stat3 recruitment
and phosphorylation, there is a small amount of Stat 1
activated in the IL-10 signaling pathway (23).  Activation
of Stat 3 and to a lesser degree Stat 1 results in the
formation of three distinct dimers: Stat 1 homodimers, Stat
3 homodimers, and Stat1/Stat 3 heterodimers.  The Stat3
dimers enter the nucleus where they bind GAS sites.

The ability of IL-10 to drive transcription of GAS
regulated genes suggests a relationship between IFN-
gamma and IL-10 signaling pathways.  Studies have shown
IL-10 is capable of down-regulating the expression of IFN-
gamma, LPS and IL-4 inducible genes. While the
mechanism of IL-10 suppression of all of these pro-
inflammatory genes has not been clearly defined, IL-10
generated SOCS 3  (Suppressor of Cytokine Signaling) has
been implicated.  In addition to the GAS sites, Stat 3
homodimers bind to SBE regions of DNA to drive
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transcription of SOCS-3 (24).  The SOCS-3 molecule has a
central SH2 domain enabling it to bind to phosphorylated
tyrosine residues of Jak kinases, thus inhibiting the
activation of the Jak-Stat pathway (25).  The ability of IL-
10 to induce expression of SOCS-3 is a possible
explanation for how this cytokine inhibits the induction of
pro-inflammatory genes.

3.5. Tumor necrosis factor-alpha (TNF-alpha)
Tumor necrosis factor-alpha (TNF-alpha) is a

pleiotropic cytokine that signals through two distinct
receptors, TNF-receptor (TNFR)1 and TNFR2. Activation
of TNFR signaling pathway causes apoptosis, and
induction of major transcription factors, AP-1 and NF-κB,
which induce a variety of genes involved in TNF-alpha
induced cellular responses (26,27).  Recent data suggest
that TNFRs are pre-aggregated before ligand binding
through pre-ligand-binding assembly domains (PLAD)
(28,29). Upon ligation, the conformational changes of pre-
aggregated receptors facilitate signal transduction.
Triggering of TNFRs induces receptor aggregation
followed by the recruitment of various adaptor molecules.
The cytoplasmic domain of TNFRs does not have intrinsic
enzymatic activity, but serves as a docking site for
signaling molecules. Activation of Death domain (DD)
containing TNFR1 leads to the recruitment of TNFR1-
associated death domain protein (TRADD), which serves as
a platform for three other mediators, receptor-interacting
protein 1 (RIP1), Fas-associated death domain protein
(FADD), and TNF-receptor-associated protein-2 (TRAF-2)
(30,31).

Triggering of TNFR2, which lacks DD domain,
can directly induce the recruitment of TRAF-2 and TRAF-1
(32). While FADD mediated signaling is essential for
apoptosis, RIP1 and TRAF-2 are involved in the activation
of NF-kappaB and AP-1 (30,33-35).  AP-1 and NF-kappaB
induce genes involved in inflammatory responses. Some of
these genes have anti-apoptotic functions, explaining why
in most cases, TNF-alpha induced apoptosis depends on the
inhibition of protein synthesis (36-38). Both RIP and
TRAF-2 deficiencies sensitize TNF-alpha response towards
apoptosis, indicating that these molecules may mediate a
survival signal (27,34). Furthermore, TRAF-2 recruits anti-
apoptotic molecules, cellular inhibitors of apoptosis (cIAP)
1 and 2, which protect cells from apoptosis by inhibiting
caspases (39,40). Thus distinct adaptor molecules provide
the receptors with ability to induce proinflammatory
responses as well as apoptosis.

Whether TNF-alpha induces death or activation
of cells seems to be dependent on cell type and a balance of
TRAF-2/RIP/FADD recruitment to the receptor complex.
The mechanism regulating the balance of these molecules
remains to be elucidated. Structural and biochemical
studies revealed that TRAF-2 has higher affinity to
TRADD than the receptor, which may explain why TNF-
alpha is a better activator of TNFR1 than TNFR2 (41).
FADD was originally identified as an adaptor molecule of
CD95. Like CD95 induced apoptotic pathway, it activates
caspase-8, which cleaves downstream caspase molecules to
initiate apoptosis. RIP recruits RAIDD through DD-DD

interaction, and then N-terminal caspase recruitment
domain (CARD) of RAIDD mediates interaction with a
similar CARD motif in capase-2 (42). The physiological
importance of this apoptotic pathway is unclear because of
lack of TNFR1 mediated cell death in caspase-8 deficient
mice and also a full apoptotic response in caspase-2
deficient cells (43,44).

TRAF-2 null cells or TRAF-2 dominant negative
(DN) transgenic mice, and transfection experiments
demonstrate that TRAF-2 is essential for TNF-alpha
induced activation of MAPK, JNK and p38, which activate
AP-1. Transient overexpression of MAPK kinase kinases
(MAPKKKs) suggests that TRAF-2 can be associated with
MAPKKKs capable of activating JNK and p38. These
reports also showed that MAPKKKs such as NIK,
MEKK1, ASK1, GCK and GCKR are involved in JNK and
p38 activation (45-47).  However, studies with kinase
deficient cells failed to show that ASK1, MEKK1, and NIK
are responsible for JNK and p38 activation in response to
TNF-alpha (48-51).

Thus, none of these MAPKKKs so far have
proved to play essential roles in TRAF mediated JNK and
p38 activation under physiological condition. Different
MAPKKKs may affect MAPKs signaling in a partial and
additive way, in a cell type specific way or there may exist
other novel MAPKKKs responsible for TNF-alpha induced
JNK and p38 activation. Therefore, how TRAF-2 activates
MAPKs remains to be elucidated. The RIP proteins also
contain DD and serine/threonine protein kinase domain
(52). Overexpression of RIPs induces apoptosis and NF-
kappa B activation (33,38). However, their primary roles
under physiological conditions may be to activate NF-
kappa B, because experiments with knockout mice and RIP
null cells failed to show TNF-alpha induced NF-kappa B
response, but are sensitive to TNF-alpha induced cell death
(33,34). These null cells exhibit normal JNK activation
response to TNF-alpha, suggesting RIP involves NF-kappa
B and not SAPK/JNK activation (33,34). Biochemical
analysis of TRAF-2 and RIP deficient fibroblasts showed
that both molecules are required for TNFR-1 mediated I
kappa B kinase (IKK) activation since neither one of them
alone can induce TNF-alpha mediated IKK activation
(53,54). These papers also demonstrated that TRAF-2 is
required for the recruitment of IKK to the TNFR1, while
RIP mediates IKK activation.

The mechanism of how TRAF-2 and RIP1
activate IKK is still not clear since RIP1 kinase activity
seems not to be involved in phosphorylation of IKK. RIP
may signal to IKK complex, which leads to autoactivation
of IKK. The other possible mechanism may be the
phosphorylation of recruited IKK complex by TRAF
associated kinases. NIK can bind to TRAF-2 and
overexpression experiments have showed that NIK is
required for TNF-alpha induced NF-κB activation pathway
by phosphorylation of IKKα activation loop. But
examination of NIK-knockout mice and mice carrying the
alymphoplasia (aly) mutation, which maps to the gene
encoding NIK, indicated that this kinase is not essential for
the activation of NF-kappa B (49,50).
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Figure 1. Interactions of IL-12, IFN-gamma, TNF-alpha,
IL-4 and IL-10 in generating Th1 responses.

A new model for TRAF mediated IKK activation
has been recently proposed (55).  TRAF-6 (TRAF-2)
complexes with an ubiquitin conjugating enzyme complex
composed of Ubc13 and Uev1A and mediates the synthesis
of polyubiquitin chains required for the activation of IKK.
However, in this report the ubiquitination of IKK complex
was not observed. Thus the substrates of this ubiquitination
remain to be identified.  In addition to the basic pathways
discussed above, there are other ways to modulate AP-1
and NF-kappa B activities. Phosphatidylinositol 3'-kinase
(PI3'-K) and glycogen synthase kinase 3-beta (GSK3-beta)
can contribute to TNF-alpha induced NF- kappa B
transcription activity but not to IKK activation (56-58).
Dominant negative mutants and antisense experiments
show that in response to TNF-alpha, atypical protein kinase
C (aPKC) may be involved in IKK activation by binding to
RIP1 through p62, which is aPKC-associated protein (59).

 3.6. Mutations in IFN-gammaR and IL-12R lead to
defects in clearing mycobacterial infections

Protective immunity to intracellular mycobacteria
relies on the ability of the host to generate an effective cell-
mediated immune response with subsequent containment of
the infection in well-organized granulomas.   A critical
component of the granulomatous response is the activation
of mycobacteria-infected macrophages by IFN-gamma,
whose production is regulated by IL-12 (60).  Dendritic
cells and activated macrophages secrete IL-12 following
M.tuberculosis infection in a TLR-dependent manner (61).
The secreted IL-12 binds to its cognate receptors on naïve
T cells and through a Stat 4 dependent activation pathway
modulates their differentiation towards Th1-type (62).
IFN-gamma secreted by Th1 cells, together with TNF-
alpha has potent anti-mycobacterial activity (Figure 1).
The Th2 cytokines, IL-4 and IL-10 severely diminish Th1
activity, either through direct effects on Th1 cells or
through effects on macrophages (63,64).  A series of
murine studies have shown that the circuitous relationship
between IL-12, IFN-gamma, and TNF-alpha is important
for combating intracellular mycobacterial infections (65-
70).  Defective macrophage activation leading to disease
susceptibility appears to be common to all the murine gene
knock-out studies.

Recently several laboratories have studied
individuals who have clinically presented themselves with
severe infections caused by either poorly pathogenic or
pathogenic mycobacterial species (71).  Genetic analysis of
these patients revealed that they all had mutations in either
the IFN-gamma R or the IL-12R signaling pathway.  These
“experiments of nature” highlight the essential and non-
redundant role of signaling from the IFN-gamma and IL-12
receptors in immunity to mycobacterial infections.   Further
genetic analysis has identified mutations in five different
genes including mutations in the genes that encodes the IL-
12p40 subunit (72), the IL-12R beta 1 chain (73-75), in
both receptor subunits composing the IFN-gamma R (76-
78), and Stat1 molecule (79).  These mutations include both
point mutations and frame-shift deletions that result in
either recessive-null or dominant-negative alleles (71).  The
comparable clinical, immunological and histopathological
phenotypes of patients with mutations in any of these four
genes indicates that IL-12-regulated IFN-gamma-dependent
signaling by Stat 1 is critical for anti-mycobacterial defense
in humans.

Identification of these mutations in the IL-
12/IFN-gamma axis forces us to reevaluate the possibility
that the development of mycobacterial infections in man
may be partly determined by inherited differences in host
immune response.

4. SUMMARY

In summary, we have discussed signaling
pathways that emanate from the receptors of several
different cytokines that are important in regulating Th1
cellular responses.  Significant progress has been made
towards defining the signaling pathways activated by
several cytokines and in identifying components specific to
individual cytokines.  However, recent progress in the
identification of germ-line mutations in several components
of this signaling pathway reveals a crucial role for this
pathway in the induction of protective immune responses to
intracellular pathogens.  The coming years are likely to
identify mutations in several other components of the
cytokine signal transduction pathway, paving the way to a
better understanding of the genetic basis of susceptibility to
tuberculosis and to diseases caused by other intracellular
pathogens.
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