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1. ABSTRACT

Sp/KLF family members, of which at least 20
distinct nuclear proteins are known to date, serve as
transcription factors by binding to GC-enriched sites within
target gene promoters. These molecules regulate diverse
cellular processes such as proliferation, differentiation, and
apoptosis, via their interactions with various other nuclear
proteins in promoter- and cell-context-dependent pathways
to effect transactivation or transrepression. Recent studies
indicate that Sp-family members may functionally interact
with ligand-activated nuclear receptors, especially those for
steroid hormones. This review provides a discussion of the
putative mechanisms and important participants involved in
the crosstalk between selected members of this family and
the receptor for the pregnancy hormone progesterone, and
the relevant outcomes to the control of the transcriptional
network in the uterine endometrium.

2. INTRODUCTION

The mammalian uterus is dependent on numerous
extracellular signals for its growth and development. At
maturity when it undergoes the highly orchestrated cycles
of proliferation and differentiation associated with the
estrous cycle and pregnancy, and during aging, when these
physiological processes begin to slow down and eventually
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shut off, key signaling molecules act in synergy to regulate
the temporal and cell-type specific expression of various
gene products that are requisite for the control of these
molecular events. A central participant in these regulatory
processes is the ovarian steroid progesterone, which albeit
normaly considered the pregnancy hormone, is
nonetheless, closely associated with puberty, the estrous
cycle, and reproductive aging. The profound effects of
progesterone on cell growth, development, differentiation,
and homeostasis are mediated through its specific nuclear
receptor, a ligand-activated transcription factor (1). The
events initiated by the binding of progesterone to its
receptor and leading to the transcriptional activation of
numerous target genes have been the subject of excellent
reviews (2,3) and will not be described here. However,
there are as yet pockets of unknowns in the current
understanding of how progesterone mediates its diverse
biological effects and even more so, in the identities of
genes and their products that constitute progesterone
receptor-responsive pathways. More recently, the possible
participation of other transcription factors in steroid
hormone signaling mechanisms has been reported (4, 5). In
this review, we examine the potential contribution of the
Sp/KLF family of DNA-binding proteins to the
transcriptional  control of pregnancy-associated uterine
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genes that are correspondingly, targets of ligand-bound
progesterone receptor (PR), and demonstrate possible
mechanisms of crosstalk in these transcription factors
signaling events.

3. Sp/KLF MEMBERS AND PROGESTERONE
RECEPTOR ISOFORMS

The Sp/KLF family members have received
much attention over the last 5 years due in part, to the
increasing documentation of their existence and
involvement in the molecular mechanisms underlying
cellular proliferation and differentiation in many tissues
and specialized cell types (6-8). There are currently five Sp
(Sp1, Sp2, Sp3, Sp4 and Sp5), and fifteen KLF, family
members (8). The latter derived its name from its similarity
with the Drosophila segmentation gene Kriippel, mutations
of which cause abnormalities in establishment of body parts
(9). Sp and KLF proteins are quite distinct in their primary
sequences (10), however, they are classified as belonging to
the same transcription factor family based on the presence
of three Cys/His, zinc finger motifs in their carboxy-
terminal regions that confer preferential binding affinity for
GC/GT-rich sequences within target gene promoters.
Members of this family have distinct amino-terminal
regions, which contain unique transactivation domains
mediating protein-protein interactions requisite for their
transcriptional regulatory actions. Sp-family members are
characterized by glutamine- and to a limited extent,
serine/threonine-rich domains within their N-termini, while
there is considerable variability in the corresponding region
among KLF members, which may contain acidic, proline-
rich, serine-rich, hydrophobic and other types of
transactivation domains (7). The functional consequences
of these differences are most apparent in the distinct
transcriptional activity of family members, which can
behave as trans-activators or trans-repressors, depending on
cell context and promoter architecture (8). Sp/KLF family
members also exhibit substantial differences in their sizes,
due mostly to variations in the lengths of their N-termini
(11). Spl is the largest, consisting of 717 amino acids,
while KLFO/BTEB1 is the smallest, with 244 amino acids.
Other family members have molecular sizes in between.
The ahility of KLF members to function as transcriptional
activators or repressors does not appear to be related to the
lengths of their respective N-termina regions, but as will
be discussed below, is more a function of the specific
sequences contained within and which mediate interactions
with distinct nuclear protein domains.

The KLF members are designated as xKLF or
KLF1-15, where x refers to the tissue in which the gene
was first identified (e.g. EKLF, erythroid KLF; GKLF, gut
KLF), and 1 to 15, to the chronological order by which the
gene was first reported (e.g. EKLF/ KLF1). Others have
been given names based on their functional DNA-binding
properties (e.g., BTEB for Basic Transcription Element
Binding) (12), but all have now been incorporated into a
single nomenclature system that describes their
phylogenetic relationships (8). Sp family members (Spl-4)
are most related to KLF9/BTEB1 (6), and the recent
discovery of Sp5, exhibiting an N-terminal domain that is

1557

proline-rich, characteristic of KLF rather than Sp family
members, has strengthened this premise and provided the
likely evolutionary link between Sp and KLF proteins (11).
Sp and KLF members are products of distinct genes with
discrete chromosomal locations. In this regard, the genes
for human KLF9/BTEB1, UKLF/KLF7, and Spl are on
chromosomes 9, 2, and 12, respectively (13-15).

In contrast to Sp/KLF transcription factors, the
PR in humans and rodents has only two well-characterized
isoforms, namely PR-A and PR-B. These proteins are
produced from a single gene either by transcription from
two distinct promoters or by translation initiation from two
aternative AUG sites, and differ only by a stretch of 164
amino acids present in the amino-terminus of PR-B. A
novel isoform of human PR (termed isoform S), comprised
of exons 4-8 of the PR gene, has been recently described in
the testis and to a lesser extent, in the uterine endometrium
(16). The physiologica relevance of this PR isoform is
unclear, although it is possibly related to a previously
described cell membrane-associated PR (17). By contrast,
the functions of the PR-A and PR-B isoforms have been
elucidated using gene knockout approaches (18-20).
Results of these studies demonstrated the PR-A and PR-B
isoforms to be functionally distinct, with biologic effects
specific to a target organ or gene (21). In particular, mice
lacking the PR-A isoform are infertile and exhibit severely
impaired uterine phenotype characteristic of PR (A and B)
null mice, while those with ablated PR-B gene are fertile
and exhibit a norma uterine phenotype. The discrete
functions have been attributed in part, to the preferential
affinity of each isoform for distinct co-factors. For
example, human PR-B efficiently interacts with
transcriptional co-activators GRIP1 and SRC-1, and less so
with the co-repressor SMRT, while the reverse holds true
for human PR-A (22). The domain structure of PR has
some similarity to that of Sp/KLF members- the carboxy-
termina portion of the protein contains Zn-finger DNA-
binding domains, and one of its transactivation domains
(AF-1) islocalized within the amino-terminal region of the
molecule. Unlike the Sp/KLF members, however, PR has a
ligand-binding site, and additional transactivation domains
(AF-2 and/or AF-3), dl of which are necessary for full
transcriptional activity. Moreover, dimer (homo- and/or
hetero-) formation upon ligand binding is requisite for PR
to bind to its DNA response elements. No such requirement
has been demonstrated as yet for the basal transactivation
or transrepression activity of Sp/KLF proteins, athough
direct interactions within and among family members,
mediated by their respective non-DNA binding domains,
can result in super-activation of transcriptional activity (23-
25).

Studies on the phenotypes of mice null for the
various Sp/KLF family members, abeit currently limited,
have provided important insights into these protein’s
respective physiological functions. Spl null embryos are
developmentally retarded, and die in utero around day 11
of gestation (26). Sp3-deficient embryos, although similarly
growth-retarded, survive to term, but immediately die
thereafter due to respiratory failure (27). A curious
phenotype of these fetuses is a defect in late tooth
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formation due to a deficiency in synthesis of dentin and
enamel-related proteins. Two laboratories reporting on the
phenotypes of Sp4 knock-out mice (28, 29) noted the lack
of embryonic lethality, albeit neonatal death occurs within
4 weeks of hirth for two-thirds of the offspring, and growth
retardation for the surviving litters as well as breeding
defects in males accompany the gene ablation. Female
mice were also observed to have smaller uteri and to
experience delayed sexua maturation (29). The phenotypes
generated from KLF members, which exhibit greater tissue-
and cell-type specificities as well as diversity in primary
structures, are anticipated to be more complex and muilti-
dimensional. Indeed, inactivation of the erythroid Kriippel-
like Factor EKLF/KLF1 resulted in fetal death due to
reduced expression of the beta-globin gene (30), while
mice lacking LKLF/KLF2, the most related member to
KLF1, exhibited embryonic lethality at gestation day 11.5
to 135 and multiple defects including craniofacia
abnormalities, retarded growth, and anemia (31). Sp/KLF
family members are, thus, crucial for tissue growth and
development, although they do not necessarily exhibit
functional redundancies within a tissue, as would be
predicted from the extensive similarities in their DNA-
binding properties and expression patterns. Additiona
studies to ablate other KLF members are presently
underway in various laboratories, which should further
delineate the distinct as well as overlapping functions of
these nuclear proteinsin vivo.

4. EXPRESSION OF Sp/KLF MEMBERS IN THE
UTERINE ENDOMETRIUM

Of the 20 or so presently identified members of
the Sp/KLF family, only a few (Spl, Sp2, Sp3, Sp4,
KLF9/BTEB1, and KLF5/IKLF/BTEB2) were shown as
being expressed in the mammalian uterine endometrium
and associated cell types (32-35; unpublished data from our
laboratories). Their distinct localization to the endometrium
was largely the consequence of detailed functional analyses
carried out on numerous endometrial-associated gene
promoter and 5'-regulatory regions which exhibit GC/GT-
rich sequences, using a variety of methodological
approaches including DNAse | footprinting and
methylation protection assays, transient transfection assays
of promoter constructs with mutated GC/GT-rich regions,
gel retardation “supershifts’” with recombinant proteins and
their specific antibodies, and measurements of
transcriptional activities of promoter constructs upon over-
expression of specific Sp/KLF members (36-41). A
“uterine phenotype’ resulting from genetic ablation of
specific family members, as was observed for Sp4 (29),
was also considered to be indicative of endogenous uterine
expression and function. In human endometrial carcinoma
cell lines (i.e., Ishikawa, Hec-1-A, RL95), Spl, Sp3, Sp4,
BTEB1, and BTEB2 are co-expressed, abeit their relative
levels appear to differ. The expression of Spl and Sp4 (32)
as well as of BTEB1 and BTEB2 (unpublished data from
our laboratories) has been demonstrated in the mouse
uterus, however, their specific patterns of expression have
yet to be carefully examined as a function of the estrous
cycle or pregnancy. In primary cultures of endometrial
cells from pseudo-pregnant rabbits, endogenous Spl was
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shown to mediate the estrogen activation of the uteroglobin
gene (42). The expression of KLF9/BTEB1 gene in the pig
uterine endometrium was found to be predominantly
epithelial cell-associated, coincident with that of the gene
for the glandular epithelial-specific transplacental iron
transport protein uteroferrin  (34). Consistent with this,
BTEB1 transactivates the uteroferrin gene promoter in
endometrial epithelial, but not in stromal, cells (38).
However, unlike uteroferrin, KLF9/BTEB1 protein is
ubiquitously expressed across pregnancy (34, 43),
suggesting that BTEB1 alone does not confer epithelial-
specificity and pregnancy regulation to this gene's
expression (38). It is not known whether other Sp/KLF
family members exhibit endometrial cell-specific action;
however, Spl and Sp3 are able to induce the promoter
activities of distinct genes in both endometrial stromal and
epithelial cells, suggestive of alack of cell specificity in the
transactivation properties of these nuclear proteins (40, 44).
The recent demonstration that co-expression of distinct
KLF members in the human placenta is correlated with
specific stages of development argues for their cooperation
in coordinating tissue-specific developmental processes
(45).

The uterine endometrial expression of PR
isoforms is not strictly temporally or spatially co-incident
with those of Sp/KLF family members. Moreover, recent
studies have indicated that the expression and localization
of distinct PR isoforms to either endometria stroma or
glandular epithelial cell types varies with physiological or
pathological status. For example, while PR-A is located in
endometrial stromal cells throughout the human menstrual
cycle, PR-B is found only in glandular epithelial cells
during the mid-secretory phase (46). Morever, only PR-A is
detectable in endometriotic tissues (47) and in uterine
endometrial cancer cells (48), the latter being a
consequence of the preferential inactivation of the PR-B
gene by hypermethylation of associated CpG idands.
Further, uterine endometrial epithelial expression of PR in
many species, athough not definitively classified, as either
PR-A or PR-B, is cyclica in nature, with levels up-
regulated by estrogen and down-regulated by progesterone
(49). Interestingly, the stimulatory effects of estrogen on
PR-A were reported to be greater than on PR-B (50). Of
the Sp/KLF members expressed in the uterine
endometrium, no distinct pattern of expression with
reproductive status has emerged, a likely consequence of
the limited investigations carried out to date on any of these
proteins.

5. TRANSCRIPTIONAL ACTIVITY OF Sp/KLF
MEMBERS ON PROGESTERONE-REGULATED
GENES

A number of uterine endometrial genes whose
expression is under the regulation of Sp/KLF transcription
factors are similarly modulated by progesterone. Examples
of these include rabbit uteroglobin, human |IGFBP-1,
human tissue factor, porcine uteroferrin, rat insulin-like
growth factor-I, and human glycodelin (33, 51-56).
Although the expression of these genes are not necessarily
pregnancy stage- or uterine-specific, their collective
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functions during pregnancy appear to be related to
particular aspects of endometrial cell differentiation
requisite for conceptus implantation and subsequent
growth. Progesterone regulation of these genes expression
has been demonstrated to occur at the transcriptional level,
although the induction for each may be transient or
delayed, suggesting distinct mechanisms of hormonal
control. In addition, the promoter regions for a number of
these genes do not contain canonical progesterone-
responsive elements (PRE) that typically confer progestin
sensitivity to target gene transcription. The finding that
GC-rich sites binding Sp/KLF family members are present
within most promoter regions that are progesterone-
responsive, and the recent demonstration that Sp family
members can, by binding to their recognition motifs,
mediate transcriptional regulation by steroid hormones
have provided a novel regulatory mechanism by which
Sp/KLF members can modulate progesterone effects on
gene expression. The latter mechanism is best illustrated by
the example of the transcriptional control by progesterone
of the cyclin-dependent kinase inhibitor p21"A® gene,
which does not exhibit PRE motifs in its promoter region
(57). Although this study was carried out in the breast
cancer cell line T47D, p21 gene expression is ubiquitous,
suggesting that similar mechanisms are likely operative in
endometrial cells. The mechanism proposed is that the
progesterone/PR complex serves to bridge Spl bound to its
recognition motif, to transcriptional co-activators and basal
transcription factors, leading to the formation of a
functional transcriptional complex. In this scenario,
physical interactions between the PR dimer and Sp1 occur,
which as recent evidence suggests, are likely to be
mediated by the carboxyl-terminal DNA-binding domain of

Spl (58).

The PR is a phosphoprotein that becomes highly
phosphorylated upon binding its ligand, and this
modification is important for its transcriptional activity.
The phosphorylation of distinct sites within PR is
controlled by specific kinases, including MAPK (mitogen-
activated protein kinase), the cyclin-Cdk2 complex, and
casein kinase Il (59) and may result in opposing effects on
receptor activity (60). At least 14 phosphorylation sites,
mostly at the serine-proline motifs, have now been
identified in the human PR (61). Some of these are unique
to the PR-B form while some are shared with PR-A, and
seven of these appear to be substrates for Cdk2 in vitro
(61). The latter is suggestive of the involvement of the
Cdk2 pathway in PR activity. A cell cycle-associated gene
whose mRNA level is induced by KLF9/BTEB1 over-
expression in the human endometrial carcinoma cell line
Hec-1-A, is Cdk2 (41). The possibility that KLFO/BTEB1
regulates cellular Cdk2 levels, the activity of which is
important for PR transcriptional function, suggests a
potential pathway for cross-talk between PR signaling and
that of this KLF family member.

A novel mechanism by which PR and Sp/KLF
family members may influence each other’s transcriptional
activity has been recently demonstrated using human
endometrial carcinoma Hec-1-A sublines with high and low
expression of KLF9/BTEB1 (43). Sublines with higher
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BTEB1 expresson had increased sensitivity to
progesterone in a PR-B-dependent manner, with maximal
activity of the transfected reporter construct, which
contained recognitions matifs for both PR and BTEBL1 in
the regulatory sequences, observed at 10-fold lower
concentrations of the hormone than in sublines with much
diminished BTEB1 expression. The latter was shown to be
due to the ability of BTEB1 and ligand-bound PR-B (i.e,
PR-B homodimer) to physicaly interact, forming a
functional complex (43). Interestingly, in contrast to the
previously documented interaction of PR-B and the
Sp/KLF member, Spl, which was mediated by Sp1 binding
sites, rather than by the canonical PRE which are lacking in
the p21"*"! gene promoter (57), the functional complex
formed between ligand-bound PR-B and BTEB1was aso
observed in the absence of GC-rich regions that are known
to bind BTEB1, and appeared to occur through the PRE.
Thus, although the specific mechanisms by which Sp/KLF
members promote progesterone-responsive gene expression
may differ with promoter architecture, the functional
interaction of PR with these family members may be a
common phenomenon in progesterone target cells.

6. CO-ACTIVATORS AND CO-REPRESSORS OF
PROGESTERONE RECEPTOR AND  Sp/KLF
TRANSACTIVATION FUNCTIONS

A number of co-activators and co-repressors that
are required for transcriptional control by nuclear receptors,
including that for progesterone, have now been identified
(62, 63). These nuclear receptor-interacting proteins were
isolated by various approaches including yeast two-hybrid,
far-Western, and expression cloning, using the
transactivation domains of a broad range of nuclear
receptors as “bait” (63). Co-activators appear to modulate
transcription by interacting with nuclear factors bound to
their cognate elements within gene promoters; this results
in the formation of a stable multi-subunit coactivation
complex with components of the genera trancription
machinery for the initiation of RNA Polymerase action. A
large number of nuclear activators fall under the category
of Histone Acetylases (HATS), which are now widely
regarded to be crucial for transcriptional activation, not
only for their role as chromatin modifiers through their
ability to acetylate lysine residues within histones, but also
as specific modifiers of transcription factors (64, 65). The
findings that PR (66) and several Sp/KLF members interact
with and are distinct subtrates of several well-known
HATSs, which include CREB binding protein (CBP) and its
homolog p300, p300/CBP associated factor (P/CAF) and
Steroid Receptor Coactivator-1 (SRC-1) (67-69), suggest
commonality in the mechanisms underlying these factors
transcriptional  activities, and more intriguingly, the
likelihood of these proteins to be engaged as co-members
of a functional coactivation complex. Similar to PR, Spl,
FKLF2/KLF13/BTEB3, KLFL/EKLF and GKLF/KLF4
physicaly interact with p300/CBP (70-72), and acetylation
of FKLF2/KLF131/BTEB3 and KLFL/EKLF enhanced
their respective transcriptional activities towards target
promoters. Further, upon acetylation, EKLF exhibited a
higher affinity for the SW1/SNF chromatin remodeling
family (73), and this interaction, specifically with two
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SWL/SNF subunits, namely BRG1 and BAFL, is requisite
for its transcriptional activity (73, 74). Interestingly,
however, distinct HATs may fulfill the acetylation
requirements for these transcription factors; indeed, while
KLFVEKLF is superactivated by CBP/p300, but not
P/CAF (70), FKLF2 is a substrate for all three HATs (72).
Our recent observations (Zhang X-L, Zhang D, Simmen,
FA and Simmen RCM, manuscript in preparation) from
transient transfection studies using human endometria
epithelial cells, that the transcriptional activity of
KLF9/BTEBL is enhanced by the addition of human CBP
expression vector, but only in the presence of liganded PR-
B, points to the selective utilization of co-activators by
KLF family members to achieve functional specificity.
Thus, functional redundancy of co-activators may not apply
to KLF members, as has been suggested for nuclear
receptors (62, 63). A mechanism employed by PR, when
bound to antagonists rather than agonists, resulting in
transcriptional repression (75) also appears to be utilized by
certain KLF members acting as repressor proteins. BTEB3
and BKLF2/KLF8 were recently shown to recruit and
interact with the co-repressor proteins histone deacetylase-1
(HDAC) and mSin3A, the latter occurring through the
conserved alpha-helical repression motif that is common to
other transcriptional repressors (76-78). Consistent with its
function as a trans-activator or trans-repressor of gene
promoter activity, BTEB3 can bind both HAT and mSin3A.

A novel nuclear receptor co-regulator, termed
SNURF (for small nuclear RING finger protein) that was
initially isolated using the DNA-binding domain of the
androgen receptor as “bait” in yeast two-hybrid assay, has
also been shown to mediate PR-dependent transactivation
(79). The possibility that SNURF may aso serve as a link
between PR- and Sp/KLF-mediated target gene
transactivation is suggested by the observations that Spl
physicaly interacts with SNURF via the |atter’s C-terminal
RING finger domain, which is distinct from the N-terminal
region recognized by steroid hormone receptors (80). Other
KLF member-interacting proteins have also been identified
thaa are not utilized for ligand-dependent PR
transactivation; these include the co-repressor protein CtBP
(carboxyl-terminal Binding Protein) which binds KLF8 and
BKLF/KLF3 (76, 81), and the Zn-finger domain of GATA-
1, which binds Spl and EKLF (82). Thus, although PR and
KLF members may employ a genera mechanism for
superactivation involving common co-interacting proteins,
this does not necessarily preclude the use of distinct
pathways that may confer specificity to Sp/KLF members
within the context of cell and promoter functions.

7. REGULATION OF Sp/KLF GENE EXPRESSION

Sp/KLF members, while belonging to the same
family of DNA-binding proteins, are distinctly regulated.
By virtue of their perceived roles as largely “housekeeping”
transcription factors, the expression of genes encoding Spl
and its closely related members (e.g., Sp2, Sp3, Sp4) are
considered to be constitutive, and their activities are altered
mostly  through  protein  modifications  involving
phosphorylation events. Indeed, Spl and other members of
this family are targets of the cyclin A/CDK complex (83),
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and their phosphorylation status has been correlated with
distinct biological processes including differentiation and
apoptosis (84). The recent findings that P regulation of the
Tissue Factor gene in human endometrial stromal cells
occurs through the induction of Spl and the concomitant
inhibition of Sp3, gene expression, resulting in atered
nuclear Spl/Sp3 ratios, is the first demonstration of the
hormonal regulation of these transcription factors (40).
Consistent with this, pregnancy status in mice was
correlated with changes in the nuclear profiles of Spl and
Sp3 proteins, which were distinct for uterine endometrium
and mammary gland (85). Members of the KLF family,
however, appear to be more subject to hormona control,
consistent with their presumed distinct tissue, cell- and
developmental-associated  expression, athough these
studies remain quite limited and largely absent for
endometrial cells. KLF5/BTEB2 mRNA levels were
induced by the phorbol ester PMA and basic fibroblast
growth factor in vascular smooth muscle cells, and this was
shown to occur at the level of its promoter (86). KLF5 was
also identified in the mouse mammary epithelial cell line
C57MG, as a downstream target gene for Wnt-1 signaling
through a protein kinase C transduction pathway (87).
KLF9/BTEB1 gene expression was induced by thyroid
hormone in Neuro-2A cells, consistent with the observed
increase in the levels of BTEBL1 transcripts in developing
rat brain (88). In hepatic stellate cells, acetaldehyde
increased BTEB1 mRNA levels, a process transduced by
the stressrelated JINK system (89). In  porcine
endometrium, BTEB1 mRNA and protein levels did not
change across pregnancy (34, 43), suggesting that at least
in this tissue and in this species, BTEB1 is refractory to
steroid hormone control. In breast tumors and
immortalized human mammary epithelial  cells,
KLF4/GKLF gene expression, measured at the levels of
both mRNA and protein, is increased relative to normal
tissues and non-transformed mammary epithelia cell lines
(90). Since normal mammary epithelial cells are major
targets of the steroid hormones estrogen and progesterone,
the latter mostly mediated by the PR-B isoform (18, 19),
and the receptor levels for estrogen and progesterone are
altered in normal vs. neoplastic tissues (91), this finding
suggests potential control by estrogen and/or progesterone,
of the expression of this KLF member.

A hint of regulation by Sp/KLF members of PR
gene expression is provided by a recent study
demonstrating the presence within the promoter region of
the human PR-A, of two Spl-binding sites, that together
with an estrogen response element half-site, mediates
estrogen responsiveness of this promoter in transient
transfection studies (92). Little is known about a similar
regulation of the PR-B isoform gene expression by any of
the Sp/KLF members.

8. PERSPECTIVES

The emerging crosstalk between specific
members of the Sp/KLF family and ligand-bound PR,
albeit quite limited in scope at the present time, imply that
the multiple transcriptional regulatory pathways mediated
by PR in norma endometria cells are complex and far
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from being well understood. In this regard, considerations
for the further elucidation of these pathways should
include: a) a detailed description of the temporal and spatial
patterns of expression of distinct Sp/KLF family members
in uterine endometrium, including their regulation by
steroid hormones and by autocrine/paracrine-acting
endometrial growth factors, b) the identification and
analysis of additional progesterone-responsive genes for the
involvement of uterine-expressed Sp/KLF members,
including whether these interactions occur by direct and
indirect mechanisms; c) in vivo manipulation of the
expression of these family members, aone and in
combination, either by “knock-in" or “knock-out” of
corresponding genes, and andysis of the functional
consequences on endometrial  tissue growth and
differentiation, including loss or gain of progesterone-
sengitivity; d) investigation of the potential competition
between PR and Sp/KLF members for the limiting amounts
of co-factors within the context of target promoters and
physiological status; and €) the dissection of the functional
domains involved in the “crosstalk” between PR and
Sp/KLF members by mutational analysis. Given that the
involvement of Sp/KLF members on target gene
transactivation is aso common to the signaling
mechanisms mediated by other steroid hormone receptors
(93, 94), paralldl analyses of their interactions with these
nuclear receptors, and consequences thereof on hormone-
mediated cellular events, will likely facilitate further
understanding of the critical aspects of steroid-dependent
functions in reproduction and normal tissue growth that
significantly impact human health.
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