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1. ABSTRACT

The human endometrium develops new
capillaries from existing microvessels, i.e. angiogenesis,
which then undergo maturation and remodeling, i.e.
investment of microvessels with periendothelial mural
cells, into a new vascular network during each menstrual
cycle.  Improper vascularization of the endometrium may
cause implantation failure and infertility.  Estrogen and
progesterone have pivotal roles in establishing this vascular
bed, but the cellular sites and mechanisms of action of
these steroid hormones are incompletely understood.
Vascular endothelial growth factor (VEGF), angiopoietin-
1, and angiopoietin-2 and their receptors are expressed in
the human and nonhuman primate endometrium and
interact to control vascular development and remodeling.
VEGF synthesis within and neovascularization of the
endometrium seem to be sustained and ongoing processes
designed to progressively promote growth and development
of the endometrium with advancing stages of the menstrual
cycle.  However, estrogen rapidly upregulates VEGF
expression by endometrial glandular epithelial and stromal
cells in vivo in the nonhuman primate and in vitro in the
human.  Reports of the effects of progesterone on
endometrial VEGF formation, however, are inconsistent
and may reflect regulatory actions on particular isoforms of
VEGF.  In addition, estrogen has effects on vascular

endothelial and smooth muscle cells, which may be direct
or mediated by VEGF.  Very little is known, however,
about the steroid hormone regulation of other
angiostimulatory and angioinhibitory factors, e.g.
angiopoietin-1 and -2, in the endometrium.  Moreover, the
role of steroid hormones acting directly, or indirectly via
VEGF and other angiogenic factors, on expression of
integrins, cell adhesion and other molecules required for
cell-cell and cell-extracellular matrix interactions important
for angiogenesis in the human and nonhuman primate
endometrium is largely unknown.  Finally, further study is
needed of cell-specific responsivity and function in the
human endometrium with respect to steroid hormone
regulation of angiogenesis.

2.  INTRODUCTION

The endometrium undergoes extensive
development of new capillaries from existing microvessels,
i.e. angiogenesis, as well as vascular maturation and
remodeling during each menstrual cycle (1-3).  The newly
developed vascular system in turn supplies nutrients and
oxygen to support the growth and cellular differentiation of
the endometrium for blastocyst implantation.  Abnormal
vessel development may cause implantation failure and
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lead to dysfunctional bleeding, endometriosis, and
menorrhagia, major health problems and causes of
infertility in women.  Vascular growth in the endometrium
during each menstrual cycle is highly unique, because
angiogenesis is typically a rare event in the adult, normally
occurring only during fetal development and wound
healing.

Although the steroid hormones, estrogen and
progesterone, have pivotal roles in establishing the
endometrial vascular bed during each menstrual cycle (4),
the cellular sites and mechanisms of action of these
hormones are incompletely understood.  Vascular
endothelial growth factor (VEGF) and other
angiostimulatory, e.g. angiopoietin-1, and angioinhibitory,
e.g. angiopoietin-2 and thrombospondin-1, factors interact
in a coordinated manner to control development,
maturation, and remodeling of blood vessels (5-7).

In this review, experimental evidence will be
presented that estrogen and progesterone regulate VEGF
expression in the endometrium and the concept developed
that via the regulation of expression of VEGF, and possibly
other angiostimulatory factors, these steroid hormones
promote angiogenesis and consequently growth and
development of the endometrium during the human and
nonhuman primate menstrual cycle.

3.  VASCULARIZATION OF THE PRIMATE
ENDOMETRIUM

Changes in vascularization of the endometrium
during the menstrual cycle were first described by Markee
(8), in autologous transplants of rhesus monkey
endometrium in the anterior chamber of the eye.  During
the menstrual cycle, endometrial angiogenesis occurs at the
time of menstruation for repair of the vascular bed in the
basalis zone, during the proliferative phase when spiral
arteries lengthen and branch and there is rapid growth of
the functionalis zone, and during the secretory phase when
spiral arteries exhibit growth and coiling within the
functionalis layer.  Thus, upon initiation of a new menstrual
cycle, preexisting vessels in the zona basalis give rise via
angiogenesis to capillary sprouts.  These sprouts become
encapsulated with smooth muscle cells and elastic tissues,
converting them into arterioles and arteries, which project
almost to the luminal epithelium where they branch to form
a rich subepithelial capillary plexus.  With advancing
stages of the menstrual cycle, these newly formed spiral
arteries progressively lengthen, branch, and coil as arterial
growth exceeds endometrial thickening (9).  In the absence
of implantation and demise of the corpus luteum, the spiral
arteries close to the myometrial-endometrial junction
exhibit vasoconstriction, resulting in necrosis and
sloughing of most of the zona functionalis at the end of the
cycle.  In contrast, the basal arteries that ramify in the
deepest layer of the endometrium do not undergo
vasoconstriction and consequently remain intact to preserve
the zona basalis as a bed for reconstruction after
menstruation.  The periodic proliferation and shedding of
the endometrium during each menstrual cycle exemplifies a
dynamic process of programmed angiogenesis.

4.  ANGIOGENESIS

Angiogenesis proceeds in at least two phases: (1)
the activation phase, in which endothelial cells degrade
their basement membrane via proteolytic enzymes, e.g.
matrix metalloproteinases (MMPs) and enzymes of the
plasminogen activator system, and undergo proliferation
and migration in the surrounding stroma to form capillary
sprouts; and (2) the resolution phase, in which proliferation
and migration cease, a new basement membrane is
deposited, and cells organize and mature into a new vessel.
Both phases appear to be determined by a balance between
stimulatory and inhibitory regulatory factors.  Considering
the complexity of vascular remodeling of the primate
endometrium during the course of the menstrual cycle, it is
likely that several growth factors are involved in this
process.  Although several pleiotropic growth factors
described below are angiostimulatory, VEGF is the most
prominent and well characterized angiogenic factor.

4.1. VEGF
VEGF is the prototype of a family of potent

endothelial-specific mitogens which stimulates vascular
endothelial cell proliferation, migration, organization into
tubules and permeability (reviewed in 5, 10-12).  Although
other factors, e.g. epidermal growth factor, transforming
growth factor, and platelet-derived growth factor, can also
induce neovascular responses these agents are not specific
for vascular endothelial cells.  Alternative exon splicing of
a single VEGF gene results in the synthesis of at least 5
polypeptide isoforms of 121, 145, 165, 189, and 206 amino
acids (13).  The active forms of these VEGF glycoproteins
are homodimers linked via disulfide bridges (14, 15), and
the various isoforms may be further processed by post-
translational mechanisms, e.g. by plasmin.  The existence
of multiple VEGF species implies that they have different
biological properties, distribution, and synthesis.  The most
widely expressed forms, VEGF 121 and VEGF 165, are
freely soluble, while the 189 and 206 species are
sequestered and thus remain in the extracellular matrix (5,
16).  An important biological property that distinquishes
the different VEGF isoforms, therefore, is their ability to
bind to extracellular matrix components, such as heparin
and heparan-sulfate.  Thus, VEGF 121 lacks the amino
acids encoded by exons 6 and 7 of the gene and binds
weakly, if at all, to heparin (17).  The 121 and 165 amino
acid isoforms promote permeabilization of blood vessels
and proliferation of vascular endothelial cells (18), while
VEGF 189 uniquely induces endothelial cell proliferation
(16).

Two structurally related vascular endothelial cell-
specific tyrosine kinase receptors, fms-like tyrosine kinase
(flt-1) and kinase domain region (KDR/flk-1), bind VEGF
with high affinity (19).  KDR/flk-1 appears essential for
endothelial cell differentiation, while flt-1 may be involved
in vascular assembly (20, 21).  The physiological
importance of the VEGF flt-1/KDR/flk-1 receptor system
in blood vessel formation is based on several classical
studies showing that: (1) the spatiotemporal expression of
VEGF and its receptors correlates closely with
angiogenesis in various sytems (5); (2) antibodies to VEGF
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or flk-1 (22-24) or administration of truncated soluble flt-1
receptor to rats (25) or marmoset monkeys (26) block
angiogenesis; (3) targeted inactivation of the VEGF gene in
mice resulted in disruption of vasculogenesis and induced
embryonic lethality (27, 28); and (4) mice lacking flt-1 or
KDR/flk-1 die in early development because of the absence of
vasculogenesis (20, 21).

4.2. Angiopoietin-1 and -2
Two other more recently discovered 75 kDal

secreted proteins, angiopoietin-1 and angiopoietin-2, appear to
work in concert with VEGF in signaling vascular
morphogenesis by binding to the endothelial cell-specific
transmembrane tyrosine kinase receptor Tie-2.  The phase-
specific expression of angiopoietin-1 and -2 and the results of
Tie-2 gene knock-out studies (29, 30) have led to the proposal
(6, 7) that VEGF, angiopoietin-1 and –2 interact to control
angiogenesis, and vessel remodeling, maturation, and
regression.  Thus, it has been proposed that early in the process
of vasculogenesis VEGF binds to the KDR flk-1 receptor to
stimulate endothelial cell migration and proliferation, and
simultaneously binds to the flt-1 receptor to promote
endothelial cell-cell interactions and capillary tube formation.
Angiopoietin-1 then binds to the Tie-2 receptor to recruit and
stimulate the association of peri-endothelial support cells, e.g.
pericytes and smooth muscle cells, with endothelial cells to
mature and stabilize the newly-formed blood vessels and also
promote endothelial cell survival.  Angiopoietin-2, by exerting
an antagonistic action on the angiopoietin-1/Tie-2 receptor
signal, causes  the vessel wall to loosen, reducing endothelial
cell contacts with matrix and disassociating peri-endothelial
support cells, rendering the endothelial cells more accessible
and responsive to VEGF, presumably to further promote
angiogenesis.  However, in the relative absence of VEGF,
angiopoietin-2 by loosening the endothelial cell-matrix
interaction apparently elicits endothelial cell death via
apoptosis.  This sequential cascade of VEGF, angiopoietin-1
and -2 events may be the blueprint for the development,
remodeling and regression of a new vascular system within the
endometrium during each menstrual cycle.

The subcellular signaling mechanisms and pathways
underlying VEGF and angiopoietin action are incompletely
understood.  However, it appears that adapter proteins Grb,
protein tyrosine phosphatase SHP2, and STAT, which have
been implicated in cell survival, migration, proliferation and
differentiation (31), may modulate angiopoietin-Tie receptor
activation.  Moreover, endothelial cell-cell and endothelial cell-
extracellular matrix interactions are intricately involved in cell
proliferation, survival, migration and remodeling processes
essential for vascularization of the endometrium.  VEGF and
angiopoietin-1/-2 seem to modulate the latter processes by
controlling expression of integrins, extracellular matrix
proteins and cell adhesion molecules (reviewed in 32).  For
example, VEGF induces expression of ανβ3, α1β1 and α2β1
integrins which function as vascular cell adhesion molecules
and as receptors for interstitial collagen in microvascular
endothelial cells (33).

4.3. Basic Fibroblast Growth Factor (bFGF)
Other than VEGF, bFGF is the most widely

recognized growth factor thought to be important to

angiogenesis.  bFGF, a member of the FGF superfamily, is
comprised of nine distinct gene products (reviewed in 34, 35),
is a cationic 18 kDal polypeptide which lacks a signal peptide
and therefore fails to enter the classical secretory pathway,
and induces angiogenesis in vivo and in three-dimensional
invasion models in vitro (36-38).  However, unlike VEGF, the
stimulatory effects of bFGF are not restricted to endothelial
cells, but also involve proliferation, migration, and
differentiation of smooth muscle cells and fibroblasts, all of
which express FGF receptors (39).  For example, suppression
of bFGF expression by adenovirus transfer of an antisense
bFGF to cultured vascular smooth muscle cells decreased
proliferation of and induced apoptosis in these cells (40).
Although the level of angiogenesis in microvascular
endothelial cell monolayers was five-fold greater in the
presence of bFGF and VEGF than with either one alone,
suggesting that these factors act synergistically (38, 41),
VEGF was much more effective than bFGF in stimulating
endometrial microvascular endothelial cell proliferation (42).
Recently, KDR/flk-1 tyrosine kinase anilinophthalazine
antagonists were shown to inhibit bFGF as well as VEGF-
induced angiogenesis in vitro.  However, because endogenous
VEGF was required for this effect, it appears that these
antagonists act on bFGF by interrupting an autocrine bFGF-
VEGF loop (43).

The bFGF-induced endothelial responses are
mediated via a high affinity type 1-C receptor (44),
however, three other transmembrane tyrosine kinase
receptors and a large number of FGF receptor variants
generated by alternative mRNA splicing and differential
polyadenylation also exist.  This diversity in receptor
expression results in a complex and incompletely
understood pattern of overlapping binding specificities and
actions for the various FGF’s.

4.4.  Other Angiostimulatory and Angioinhibitory
Factors

Four closely related genes which show homology
with VEGF, i.e. VEGF-B, VEGF-C, VEGF-D, and
placenta growth factor, also may be involved in blood
vessel development, although the roles for these factors are
poorly understood.  VEGF-C and –D bind to KDR/flk-1
and flt-4 receptors, while the receptor for VEGF-B is
unknown.  VEGF-C induces angiogenesis in vivo (45).
Placenta growth factor forms heterodimers with VEGF and
binds to flt-1, however, it is very weakly mitogenic when
compared to VEGF (46).  Angiogenin, a heparin-binding
14.1-kDal single-chain polypeptide and member of the
pancreatic ribonuclease superfamily, also is a potent
inducer of angiogenesis (47).  Other factors, e.g. epidermal
growth factor (48), platelet-derived growth factor (49) and
transforming growth factor α and β (50), also promote
certain aspects of angiogenesis.

Angiogenesis and vascular remodeling (i.e.
investment of microvessels with periendothelial support
cells such as vascular smooth muscle cells and pericytes)
are orchestrated by coordinated interactions of stimulatory
and inhibitory factors.  One of the most widely studied
angioinhibitory molecules is thrombospondin-1, a 450-kDal
glycoprotein released from platelet granules by thrombin,



Angiogenesis in the Primate Endometrium

419

which is deposited in and interacts with extracellular matrix
and cell surface integrins (51, 52).  Thrombospondin-1
exerts antagonistic effects on vascular endothelial cell
proliferation, migration, and assembly into microvessels
and induces vascular endothelial cell apoptosis (53).
Thrombospondin-1 is expressed in human endometrial
stromal cells and is increased by progesterone (52).

5.  EXPRESSION OF ANGIOGENIC FACTORS IN
THE ENDOMETRIUM DURING THE MENSTRUAL
CYCLE

In the human, VEGF and angiopoietin-1 and -2
mRNA and protein have been localized by in situ
hybridization and immunocytochemistry in glandular
epithelium and stroma (54-57).  Each of the VEGF isoforms
is expressed in the human endometrium, although the 121 and
165 species seem to be the most important physiologically
(54).  Endometrial microvascular endothelial cells also
express the flt-1 and KDR/flk-1 receptors (58-60) and
pericytes/smooth muscle precursor cells express the Tie-2
receptor (7).  Levels of VEGF mRNA and protein in whole
endometrium (55, 56) and glandular epithelium (61, 62), and
VEGF formation by endometrial cells in culture (62),
appeared somewhat greater in the secretory than early
proliferative stages of the human menstrual cycle, although
VEGF mRNA expression appeared to decrease in the stroma
during the secretory phase (54).  Others have reported that
VEGF immunostaining of endometrial glandular and stromal
cells (60, 63, 64), VEGF protein formation by explants of
glandular epithelial and stromal cells (65) and endometrial flt-
1 and KDR/flk-1 receptor expression (58) did not change
during the course of the human menstrual cycle, despite the
surges in estrogen and progesterone levels.

Steady-state VEGF mRNA levels in glandular
epithelial and stromal cells, isolated from the baboon
endometrium by laser capture microdissection, also were
relatively similar in the proliferative, midcycle estradiol
surge and secretory phases of the menstrual cycle (66),
although the levels of VEGF mRNA and protein within the
stromal compartment appeared to decline somewhat in the
secretory phase.  Thus, VEGF expression by glandular
epithelial and stromal cells, and flt-1 and KDR/flk-1
receptor expression within the respective vascular
endothelium are available throughout the menstrual cycle
as components of the angiogenic system to promote
vascular reconstruction of and angiogenesis within the
endometrium.  Indeed vessel density and percent
vascularized area of the baboon (66) and human (60, 67,
68) endometrium, and endothelial cell mitosis in the human
endometrium (65, 69), remain relatively constant
throughout the menstrual cycle.  Therefore, VEGF
synthesis within and neovascularization of the
endometrium seem to be sustained and ongoing processes
designed to progressively promote growth and development
of the endometrium with advancing stages of the menstrual
cycle.

Because 80% of glandular epithelial VEGF is
thought to be secreted from the luminal surface (70), it has
been suggested (65) that most of the VEGF produced in the

glands does not have a role in endometrial angiogenesis.  It is
possible, therefore, that VEGF synthesized locally within the
stroma and/or vascular endothelial cells (63), pericytes (71,
72), and/or vascular smooth muscle cells (73) has the more
important role in regulating, in a paracrine/autocrine manner,
vasculogenesis within the endometrium.  Moreover, since
neutrophils constitutively express VEGF focally in
association with microvessel endothelial cells (74), it has been
proposed that cells within the vasculature are the principal
source of angiogenic factors for non-sprouting angiogenesis,
i.e. intussusception and elongation, within the endometrium.

bFGF and EGF, and their respective receptors, are
also expressed in glandular and luminal epithelial cells, basal
lamina of blood vessels, stroma, and extracellular matrix of
the human endometrium (60, 75-77).  Although endometrial
stromal cell bFGF and FGF receptor expression was higher
during the proliferative phase of the menstrual cycle (77),
others reported that bFGF expression did not change during
the menstrual cycle (60, 75).  Because FGF receptor was
markedly reduced in women with menorrhagia, Sangha et al
(77) have suggested that FGF is critical for endometrial
regeneration.  In contrast, because bFGF was increased in
atrophic endometrium of postmenopausal women (75), and
FGF type-1 and -2 receptors were only sparsely expressed in
human endometrial blood vessels, it has been suggested that
bFGF may be of lesser importance in regulating angiogenesis
in the uterus (60).

Finally, angiogenin mRNA and protein are
expressed by endometrial glandular epithelial and stromal
cells and increase during the mid to late secretory phase of the
human menstrual cycle (78).  Since vascular smooth muscle
cells around uterine spiral arteries show increased
proliferative activity during this interval (79), and angiogenin
stimulates proliferation of vascular smooth muscle cells and
endothelial cells (80), Koga et al., (78) have suggested that
angiogenin may participate in the process of thickening and
convolution of the arterioles during the secretory phase of the
menstrual cycle.

6.  STEROID HORMONE REGULATION OF VEGF
EXPRESSION AND VASCULARIZATION IN THE
ENDOMETRIUM

6.1.  Estrogen and Progesterone Receptors
The receptors for both estrogen α and β and

progesterone are present within the nuclei of glandular
epithelial and stromal cells of the human (81-84) and
nonhuman primate (84, 85) endometrium during the
menstrual cycle.  In elegant studies, estradiol was shown to
increase estrogen and progesterone receptor mRNA and
protein expression in glandular epithelial, stromal and
vascular smooth muscle cells in ovariectomized rhesus
monkeys (4, 85-87).  As estrogen was withdrawn and
progesterone elevated to mimic the peripheral serum levels
characteristic of midsecretory phase, estrogen (4, 85, 87, 88)
and progesterone (4, 82, 85, 88) receptors were markedly
suppressed in glandular epithelial and stromal cells of the
functionalis zones I-III, but not basalis zone IV, or in vascular
smooth muscle or perivascular stromal cells of the spiral
arteries.  These results are consistent with observations in the
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human, where immunocytochemical staining for progesterone
receptor protein was significantly reduced during the mid and
late secretory phase compared to the proliferative phase of the
menstrual cycle (61, 84, 89).  It is apparent, therefore, that
estrogen generates the receptors for estrogen and progesterone
during the proliferative phase, and that the surge in
progesterone during the secretory phase is responsible for the
decline in receptor expression.  Thus, the receptors for both
estrogen and progesterone are expressed in a cell and zone-
specific manner to mediate the action of these hormones on
cell proliferation, differentiation (90) and angiogenesis within
the human and nonhuman primate endometrium.

6.2.  Estrogen and Progesterone Action
6.2.1.  Estrogen

It has been generally concluded that estrogen has a
pivotal role in establishing the new vascular bed and
promoting growth and cellular differentiation within the
endometrium during each menstrual cycle (1, 2, 4, 91).  The
uterotropic effects of estrogen are both early and long-term.
The early events, e.g. increased vascular permeability (92,
93), create an environment optimal for cellular hypertrophy
and hyperplasia and consequently angiogenesis.  Thus, in the
rat a single injection of estradiol enhanced vascular
permeability and water inhibition within 3-6 h (94-96) and
endothelial cell mitosis indicative of basal sprouting of
capillaries within 24 hours (97).

There is compelling evidence in various species to
support the concept that the tropic effects of estrogen on
vascularization of the uterus are mediated by VEGF.  Thus,
estradiol rapidly elevated VEGF mRNA levels and vascular
endothelial cell proliferation in vivo in the mouse and rat (97-
101) and sheep (102-103) uterus.  The estrogen induction of
VEGF in the rat uterus occurred primarily in the stroma (104),
involved upregulation of the 120 and 164 VEGF rodent
species (100), and was blocked by estrogen receptor
antagonist ICI 182,780 (105) suggesting regulation via the
classical estrogen receptor pathway.  Consistent with this
concept, estrogen had no effect on angiogenesis in transgenic
mice with targeted disruption of the estrogen receptor gene
(106).

Although it is difficult to study the potential effect
of ovarian steroid hormones on endometrial angiogenesis in
vivo in the human, in cultures of isolated human endometrial
epithelial and stromal cells, estrogen rapidly upregulated
VEGF mRNA levels and protein (54, 56, 107, 108), an effect
blocked by ICI 182,780 (109).  Estradiol also stimulated DNA
synthesis within and proliferation of human endometrial
vascular endothelial cells in vitro (110).

In the baboon, used as a nonhuman primate model
to study human reproductive endocrinology (111), VEGF
mRNA levels in glandular epithelial and stromal cells isolated
by laser capture microdissection and VEGF immunoreactivity
in the endometrium were decreased to very low values by
ovariectomy which suppressed serum estrogen and
progesterone to nondetectable levels (66).  Chronic
administration of estradiol to ovariectomized baboons via
silastic implants in levels which replicated the hormonal
pattern of the proliferative phase of the menstrual cycle,

returned endometrial glandular epithelial and stromal cell
VEGF mRNA and protein expression to normal (112).  The
estrogen-dependent stimulation of endometrial VEGF
expression observed in ovariectomized baboons is similar to
that shown in the rhesus monkey by Nayak and Brenner
(113).   Acute administration of estradiol to ovariectomized
baboons significantly increased glandular epithelial and
stromal VEGF mRNA levels within 2 hours and the width of
paracellular clefts between adjacent endometrial
microvascular endothelial cells, indicative of increased
microvascular permeability, within 6 hours (114).  Therefore,
it appears that ovarian estrogen has a major role in regulating
and maintaining VEGF synthesis within the glandular
epithelial and stromal cells during the primate menstrual
cycle.  Moreover, the rapid estrogen-induced up regulation of
endometrial VEGF expression precedes, and therefore may
mediate, the early action of estrogen on microvascular
permeability, an early event in angiogenesis (92, 93).

In addition to effects on VEGF, estrogen also
stimulated bFGF synthesis in human endometrial
adenocarcinoma HEC-1 cells (115), however, there are
conflicting reports on the effects of and mechanisms
underlying the steroid hormone regulation of this growth
factor (116).

Although sequences corresponding to classical
estrogen response elements have not been identified in the 5′-
flanking region of the VEGF gene, consensus half-
palindromic sequences which bound estrogen receptor alpha
in band shift assays and which confer estrogen inducibility to
reporter constructs have been identified in two regions of the
gene, one in the 5′-untranslated region (117).  In primary
human endometrial epithelial and stromal cells, as well as
Ishikawa endometrial adenocarcinoma cells, estradiol
stimulated VEGF gene transcription through a functional
single variant estrogen response element located 1.5-kb
upstream from the transcriptional start site (107).  Considering
these observations, plus findings that VEGF induction in the
uterus by estrogen is rapid, blocked by antiestrogens and
inhibited by actinomycin D but not puromycin or
cycloheximide (100, 101), it is likely that the regulatory
effects of estrogen on VEGF expression in the uterus are
mediated by the estrogen receptor.

6.2.2.  Progesterone
Progesterone also regulates endometrial

angiogenesis and VEGF expression, however, there is
considerable inconsistency in the literature on its specific role.
For example, in nonhuman primates, the progesterone
antagonist ZK137316 inhibited spiral artery development and
endometrial proliferation (118), suggesting a stimulatory role
for progesterone in these events.  Moreover, Norplant which
contains the synthetic progestin levonorgestrel increased
endometrial microvascular endothelial cell density in women
(67, 119).  Therefore, it has been suggested that the significant
growth of the coiled arteriolar system in the endometrium
during the secretory phase of the menstrual cycle may reflect
the influence of luteal progesterone (120).  These effects of
progesterone on endometrial vascular development may be
mediated by VEGF, because chronic administration of
progesterone to cynomolgus monkeys in which ovarian
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function was suppressed by GnRH administration, increased
VEGF immunoexpression in the endometrial stroma (121).
Progesterone also induced endometrial VEGF expression in
vivo in the rat (98, 101), and in vitro in the human (56),
however, the magnitude of increase was less and the onset of
induction slower than observed by estrogen.

In contrast to the stimulatory effects shown for
progesterone on endometrial angiogenesis, a negative
correlation has been reported between progesterone receptor
and VEGF expression in endometrial glandular epithelium
during the normal human menstrual cycle, results consistent
with the notion that progesterone suppresses VEGF
expression (61).  Indeed, administration of oral
contraceptives, containing a progestin in combination with
ethinyl estradiol, to normal women decreased glandular
epithelial VEGF immunostaining (61).  Moreover,
progesterone inhibited VEGF secretion by human
decidualized stromal cells (122) and endometrial angiogenesis
(10) when examined by in vitro assay systems.  Consistent
with the latter findings, acute simultaneous administration of
estradiol and progesterone to ovariectomized baboons
diminished the stimulatory effect of estrogen alone on
endometrial glandular epithelial and stromal cell VEGF
mRNA and protein expression (114).  Several studies have
shown that endometrial arteriole development is decreased by
long-term progestin administration (123, 124).  Moreover,
there is substantial evidence that chronic use of progestin-
containing oral contraceptive pills leads to abnormalities in
endometrial microvessel structure (125), via a reduction in
basal lamina collagen, laminin, and heparan sulfate
proteoglycan.  The latter changes may contribute to vascular
fragility, dilation of superficial vessels (126), a reduction in
vascular perfusion, and a decrease in endometrial vascular
density (124), and consequently breakthrough bleeding.
Brenner and colleagues (127) have shown both in the human
and macaque that the KDR/flk-1 receptor, normally only
expressed in the vascular endothelium, was markedly
upregulated in stromal cells of the superficial endometrial
zones upon progesterone withdrawal during the premenstrual
phase.  The increase in receptor expression was cell and zone
specific and because promatrix metalloproteinase (MMP-1)
was coordinately upregulated in the same stromal cells, it was
suggested that VEGF-KDR/flk-1 interaction may influence
MMP expression and thus play a role in the induction of
menstruation (127).

Therefore, apparently conflicting studies exist on
whether progesterone stimulates, inhibits or has no effect on
VEGF expression and angiogenesis in the endometrium.
Although the VEGF gene does not contain a classical
progesterone response element, the 5′-flanking region
contains sequences that confer progestin inducibility to
reporter constructs in transfection studies (101).  Some of the
apparently disparate results reported for progesterone may
reflect the need to consider particular VEGF isoforms.  For
example, considerable expression of VEGF 189 occurs in the
human endometrium during the mid-late secretory phase, and
estradiol plus progesterone stimulated VEGF 189 expression
upon the differentiation of isolated human endometrial
stromal into decidual cells (128).  Moreover, the effect of
progesterone may be cell-specific, because progesterone

increased VEGF secretion by human endometrial epithelial
cells but decreased expression by endometrial stromal
fibroblasts (122).
Thus, regulation of uterine VEGF and angiogenesis very
likely results from an interplay of estrogen and progesterone,
however, the specific role(s) and site(s) of action of
progesterone remain unclear.

6.2.3.  Correlation of Steroid Hormones, VEGF
Expression and Angiogenesis During the Menstrual Cycle

Despite the cyclical surges in estrogen and
progesterone, human endometrial microvascular density (60,
67) and vascular endothelial cell proliferation (65, 129) and
density (61), as well as VEGF expression, remain relatively
constant throughout the menstrual cycle.  Consequently, some
investigators (61, 65, 130) have concluded that there is no
relationship between, and/or steroid hormones are not the
main regulators of, these processes in the human
endometrium.

The limitation of studying endometrial
angiogenesis during the normal human menstrual cycle, and
difficulty in conducting invasive in vivo studies in humans,
have led to apparently conflicting information on the effect of
estrogen and progesterone on endometrial VEGF expression
and vascularization.  However, although endometrial VEGF
mRNA levels and vessel density also remain relatively
constant during the baboon (66) and rhesus monkey (113)
menstrual cycle, there was a striking decline in endometrial
VEGF expression and size after ovariectomy, effects which
were completely reversed by estradiol or estradiol and
progesterone (66, 113).  It appears, therefore, that endometrial
VEGF synthesis is dependent upon estrogen and that the
levels of estrogen preceding and following the midcycle
surge, albeit low, are nevertheless sufficient to bind to
estrogen receptor to maintain VEGF synthesis and thus
promote endometrial angiogenesis throughout the course of
the advancing menstrual cycle.

6.3.  Direct Actions of Estrogen on Vascular Cells
Although estrogen and progesterone may promote

endometrial angiogenesis by upregulating the expression of
angiogenic factors such as VEGF by glandular epithelial and
stromal cells during the menstrual cycle, these steroid
hormones may also exert direct actions upon vascular
endothelial and smooth muscle cells.  Thus, estrogen and
progesterone receptors have been detected in vascular smooth
muscle cells (84, 131) and vascular endothelial cells (132,
133) within the endometrium, although others have not found
estrogen receptors in endothelial cells (134, 135).  In cell
culture, estrogen promoted vascular endothelial cell
proliferation (136), migration (137), and survival (138).   The
stimulatory effect of estradiol on myometrial microvascular
endothelial cell proliferation may reflect an estrogen-
dependent increase in expression of the KDR/flk-1 receptor
on these cells (139).  In ovariectomized mice, estrogen
stimulated endometrial vascular endothelial cell proliferation
within 24 hours and glandular epithelial cell proliferation after
48 hours (140), raising the possibility that endometrial tissue
growth and mass are regulated by growth of endothelial cells
(141).  Although the effects of estrogen on microvessel cell
function may be direct, it is also possible they are modulated
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Figure 1.  Proposed role of ovarian estrogen on
endometrial glandular epithelial (GE) and stromal (S)
VEGF expression, angiogenesis, and growth in the primate.

in an autocrine and/or paracrine manner via VEGF.  Thus,
estrogen stimulated VEGF expression by vascular smooth
muscle cells (5, 131, 142), and anti-VEGF antibody blocked
the increase in vascular endothelial cell proliferation elicited
by estradiol (143).

6.4.  Other Regulatory Elements
Factors in addition to estrogen and progesterone,

notably hypoxia, cytokines, and thrombin are extremely
potent in their capacity to upregulate VEGF expression in
various tissues including the human endometrium (5, 62,
144, 145).  Hypoxia also upregulates (146) and TGFβ
down regulates (147) expression of the VEGF flk-1
receptor in vascular endothelial cells.  However, the
physiological role of hypoxia upon endometrial VEGF
expression may be most important at the time of
menstruation when both oxygen tension and steroid
hormone levels become very low (130).  Indeed, shortly
preceding menstruation there is a striking increase in
expression of VEGF mRNA in the baboon (Albrecht ED,
Pepe GJ, unpublished observations) and VEGF and
KDR/flk-1 receptor in the human and rhesus monkey
endometrium (113, 127).  Under these circumstances,
hypoxia and/or other factors such as cytokines important to
wound healing may overcome the absence of other
regulatory factors, e.g. estrogen, resulting in the induction
of VEGF synthesis, which may be important for vessel
repair and reconstruction.

7. PERSPECTIVE

A complex interplay of different cell types which
express angiostimulatory agents such as VEGF,
angiopoietin-1, and bFGF, and angioinhibitory factors such
as thrombospondin-1, and which respond in a coordinated
manner to regulatory factors such as estrogen and
progesterone, exist to promote and maintain a balance in

the level of vessel growth within the human endometrium
during each menstrual cycle.  The physiological roles and
sites of action of VEGF and angiopoietin -1 and -2 in vascular
development have primarily been elucidated by transgenic
approaches in mice, while the majority of the studies of the
regulatory effects of estrogen and progesterone on the
expression of angiogenic factors in the endometrium have
been conducted in vivo in laboratory rodents and in vitro with
human cells.  However, because of the difficulty for ethical
reasons in conducting invasive in vivo experimental studies in
the human, investigation of the regulatory actions of steroid
hormones on endometrial expression of VEG/PF,
angiopoietin-1, and angiopoietin-2 and consequently vessel
development and remodeling in the human endometrium has
been limited.  Thus, many of the in vivo studies on
angiogenesis in the human have been conducted during the
normal menstrual cycle where relatively little change in
endometrial VEGF expression and microvessel density were
observed despite the cyclical surges in estrogen and
progesterone.  Consequently, these observations have led to
the conclusion that steroid hormones do not have a role in
regulating VEGF or angiogenesis in the endometrium.
However, studies conducted in vivo in nonhuman primates, in
which the hormonal milieu can be experimentally
manipulated, show that endometrial glandular epithelial and
stromal VEGF expression was decreased to baseline levels by
ovariectomy and restored to normal by chronic administration
of estrogen in levels which replicated those observed during
the normal menstrual cycle (Figure 1).  Therefore, the
relatively low levels of estrogen to which the uterus is
exposed preceding and following the midcycle surge in
estrogen apparently are sufficient to sustain VEGF expression
throughout the menstrual cycle and only when estrogen is
decreased to nondetectable values, e.g. after ovariectomy,
does VEGF formation substantially decline.  Thus, VEGF and
its receptors are expressed and available as components of the
angiogenic system throughout the menstrual cycle to promote
vascular reconstruction of the endometrium.  Collectively, the
studies conducted in vivo in the laboratory rodent, in vitro
with isolated human endometrial cells, and in vivo in
nonhuman primates are consistent with the proposal that
ovarian estrogen, potentially acting in conjunction with
autocrine/paracrine factors such as hypoxia, has an essential
physiologic role in stimulating VEGF expression by
endometrial glandular epithelial and stromal cells (Fig. 1),
thereby promoting angiogenesis and the progressive
development of a new vascular system necessary to support
growth and differentiation of the endometrium during the
menstrual cycle.

It is also apparent that studies to this point have
focused primarily on VEGF expression in the uterus.  Thus,
very little is known about the regulation of other
angiostimulatory components, e.g. angiopoietin-1 and -2,
required for vessel maturation and development.  Moreover,
although cell culture studies show that angiogenesis involves
a balance between stimulatory and inhibitory factors, very
little is known about the timing of expression and regulation
of angioinhibitory factors such as thrombospondin, and how
they interact with angiostimulators, such as VEG/PF and
angiopoietin-1 and –2, in promoting vessel development in
the human and nonhuman primate endometrium.
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Experimental evidence also shows that
development and remodeling of the vascular bed in the
endometrium involves complex cell-cell and cell-extracellular
matrix interactions, including the mural investment of
vascular endothelial cells with pericytes and vascular smooth
muscle cells.  However, very little is known about the
particular roles which estrogen and progesterone, acting
directly or indirectly via VEGF, angiopoietins-1/-2, and other
stimulatory and inhibitory growth factors, play in the latter
architectural processes.  Moreover, the actions which estrogen
and progesterone have in regulating cell adhesion molecules,
integrins, and proteinases integral to these cellular remodeling
processes for endometrial angiogenesis during the menstrual
cycle are largely unknown.

Finally, the uterine endometrium is a heterogenous
organ comprised of vascular components, secretory glandular
and luminal epithelial cells, and stromal elements including
immunomodulatory macrophages and fibroblasts, each of
which may display a very different repertoire of steroid
hormone responsivity, expression of cell-cell matrix
molecules, and autocrine/paracrine molecular interaction.
Relatively little attention has been directed, however, to cell-
specific responsivity and function in the human endometrium
with respect to the steroid hormone regulation of
angiogenesis.
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