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1. ABSTRACT

Inflammatory joint diseases such as rheumatoid
arthritis tend to destroy joint cartilage and bone matrices.
Since bone resorption is a common characteristic of
rheumatoid arthritis, one of the cell types thought to play a
vital role in the destruction of these matrices are the
osteoclasts.  Osteoclasts and osteoclastogenic factors such
as inflammatory cytokines and RANK-L are present within
inflamed joints, and osteoclastic bone resorptive activities
are also displayed, further suggesting the possibility that
osteoclasts are responsible for the joint cartilage and bone
matrix damage observed in this joint disease.

2. INTRODUCTION

Rheumatoid arthritis (RA) is a chronic,
inflammatory joint disease characterized by leukocyte
invasion of the synovial lining and hyperplasia of the
resident synoviocytes with an ensuing overproduction of
cytokines, chemokines, and other inflammatory mediators.
Overproduction of these mediators ultimately results in
anarchic remodeling of joint structures and destruction of
both cartilage and bone.  A major cause attributed to this
destruction has been the disequilibria of bone remodeling,
where the level of bone resorption exceeds the level of
bone formation.  Maintenance of appropriate regulation of
bone mass is controlled by two major cell types:  the

osteoblast (formation) and the osteoclast (resorption).
Osteoclastogensis is a precisely regulated process, and it is
now clear that pro-inflammatory cytokines, especially M-
CSF, RANK-L, and its interaction with its receptor RANK
are necessary and sufficient for promoting differentiation
and activation of osteoclast precursors.  In this review, we
examine the role of the osteoclast in bone remodeling in
RA and the role of pro-inflammatory cytokines and the
RANK-RANK-L interaction in controlling osteoclasts in
RA.

2.1. Osteoclasts:  differentiation and activation
2.2.  Differentiation

The adult human skeleton undergoes a
continuous process of bone remodeling characterized by
constant cycles of bone formation and bone resorption.
Multinucleated giant cells known as osteoclasts perform the
process of bone resorption.  These bone resorbing cells,
originally described by Alber Kolliker in 1873, are derived
from hematopoietic stem cells, specifically, from a fusion
of monocyte-macrophage precursors (1-3) (Figure 1).
Early in osteoclast development, the osteoclast precursor
expresses both monocyte-macrophage markers (non-
specific esterase (NSE), MAC-1, and MAC-2) as well as
osteoclast markers (calcitonin receptor (CT) and tartrate
acid phosphatase (TRP)).  As the precursor further
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Figure 1.  Schematic of differentiation of the osteoclast.
Macrophages (osteoclast precursors) differentiate into
osteoclasts due to a variety of stimuli.

differentiates into a mature osteoclast it down regulates
expression of the monocyte-macrophage markers (4).

2.3.  Soluble osteoclast differentiation factors
2.3.1.  M-CSF

The differentiation of osteoclasts takes place
solely in the close vicinity of mineralized bone, therefore
mature osteoclasts do not appear in the circulation (4).
Several signals are required for activation of osteoclast
differentiation.  These osteoclastogenic stimuli are soluble
signals, such as cytokines and hormones, and cell-cell
mediated interactions, such as RANK/RANK-L.  One of
the critical soluble factors involved in the development of
mature osteoclasts is macrophage-colony stimulating factor
(M-CSF).  Outside of being a member of a family of
growth factors for cells of the mononuclear-phagocyte
system, M-CSF can also be considered a pro-inflammatory
cytokine (5-8).  Evidence suggesting the importance of M-
CSF in controlling osteoclastogenesis comes from both in
vitro and in vivo studies.  M-CSF addition to cultures
containing dentine slices, human PBMC’s, and osteoblasts
stimulates development of lacunar resorption pits over
time.  The increase in the number of resorption sites is not
observed in the absence of M-CSF, suggesting that M-CSF
is necessary for osteoclast differentiation and activation (9).
In vivo evidence suggesting the importance of MCS-F is
demonstrated by the use of MCS-F deficient op/op mice in
that these mice develop severe osteopetrosis due to a
complete lack of osteoclasts (10).

2.3.2.  IL-1, -6, -17, and TNF
Although M-CSF is a necessity for

osteoclastogenesis, pro-inflammatory cytokines such as
interleukin-1, -6, -17, and tumor necrosis factor (TNF) are
also involved in regulating this process.  IL-1 is a
monocyte-macrophage produced pleiotropic cytokine
capable of mediating inflammatory, metabolic, physiologic,
hematopoietic, and immunological processes (11-14).  IL-1
addition to long-term human marrow culture systems
increases numbers of osteoclast-like cells (15).  When IL-1

is added to osteoclasts that are disaggregated from the long
bones of rats, slices of human femur cortical bone, and
calvarial cells or osteoblasts, bone erosion and actin ring
formation is observed (16, 17).  These studies suggest that
IL-1 stimulates both the formation of mature osteoclasts, as
well as activation of osteoclastic bone resorptive activities.
TNF is another monocyte-macrophage produced
multifunctional cytokine capable of regulating various
cellular reactions (18, 19).   As with IL-1, TNF-alpha and
TNF-beta also stimulate the formation of osteoclast-like
multinucleated cells in vitro and co-culturing these cells
with osteoblastic cells stimulates bone resorption (15, 17,
20, 21).  One mechanism that might explain how IL-1 and
TNF regulate osteoclastogenesis is the induction of M-CSF.
Several in vitro studies have shown that IL-1, TNF-alpha,
and TNF-beta are capable of inducing M-CSF and GM-
CSF production (22-25).  Furthermore, addition of IL-1,
TNF-alpha, and TNF-beta to human, non-rheumatoid,
synovial cell explant cultures or human articular cartilage
chondrocyte monolayers in organ and cell cultures
increases M-CSF production (22, 23).  Together, these
studies suggest that IL-1, TNF-alpha, and TNF-beta
stimulate osteoclastogensis in an indirect manner, by first
upregulating M-CSF production.

Unlike IL-1 and TNF, IL-17 is a product of T
lymphocytes, specifically activated memory CD4+ T cells
(26).  Interestingly, IL-17 is capable of inducing IL-1beta,
-6, -8, and TNF-alpha expression, thus IL-17 may play a
role in T cell triggered inflammation by stimulating stromal
cells to secrete cytokines and growth factors (27-29).  IL-17
stimulation of cultures containing nucleated mouse bone
marrow cells and primary osteoblasts isolated from mouse
calvaria stimulates osteoclast maturation and activation
(30), thereby suggesting IL-17 also functions as an
osteoclastogenic stimulus.  The effect of yet another
macrophage product, IL-6, on osteoclastogensis is not as
well defined.  This may be due to the fact that this
pleiotropic cytokine exhibits both pro- and anti-
inflammatory properties in vitro and in vivo (31-33).
Although IL-6 stimulates the formation of osteoclast-like
cells from osteoclast precursors in vitro (34, 35), other
studies show that IL-6 addition to cultures containing
monocytes, an osteoblast-like cell line, and 1,25-(OH)2D3
has no effect on osteoclast formation or lacunar resorption
of dentine slices (9).  Taken together, this suggests that
further work is necessary to determine the exact role of IL-
6 in osteoclastogensis.

2.3.3. Hormones
Hormones, such as parathyroid hormone (PTH)

and 1,25-(OH)2D3 are also involved in regulating
osteoclastogenesis.  PTH is a vital mediator in the
maintenance of normal calcium homeostasis due to its
stimulatory effects on renal absorption of calcium and
osteoclastic bone resorptive activity (21, 36).  When
Chinese hamster ovarian cells expressing PTH peptides are
injected into nude mice, the mice experience hypercalcemia
and an increase in osteoclast differentiation.  Both
increased numbers of committed osteoclast progenitor cells
and mature osteoclasts are observed in the calvaria of the
nude mice as well (37).  1,25-(OH)2D3, an active metabolite
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Figure 2.  Osteoclast differentiation and activation.  An osteoclast precursor can interact with RANK-L on either osteoblasts or T
cells and mature into an osteoclast.

of vitamin D3, is another hormone that acts as a potent
stimulator of osteoclast maturation and osteoclastic bone
resorption.  Addition of 1,25-(OH)2D3  to cultures
containing recombinant human GM-CSF and non-adherent
marrow mononuclear cells, enriched for hematopoietic
progenitor cells, stimulates osteoclast formation.  These
studies also demonstrate that 1,25-(OH)2D3 activates
osteoclasts as well, as seen by formation of resorption
lacunae on calcified matrices (38).

2.4. Cell-cell contact
2.4.1.  Osteoblasts

Although soluble factors are critical for
osteoclastogensis, they are insufficient to stimulate
osteoclast maturation without additional factors, in the form
of direct cell-cell contacts (39-41).  One such interaction
occurs between osteoclasts and osteoblasts.  Osteoblasts,
like osteoclasts, play a central role in bone remodeling by
controlling bone formation.  They are very similar to
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fibroblasts, in fact, in culture osteoblasts and fibroblasts are
nearly indistinguishable.  All genes that are expressed in
fibroblasts are also expressed in osteoblasts, however
osteoblasts differ in their morphology in that they are
surrounded by a mineralized extracellular matrix (42).
Although the osteoblast controls bone formation, a separate
but equally important function is its involvement in the
control of osteoclastogensis.  Interestingly, most of the
hormones and cytokines that stimulate osteoclast
maturation act indirectly through osteoblasts (43).   IL-6
receptors are present on the osteoclast, however it is the IL-
6 receptor expressing osteoblast that is required for IL-6
induced stimulation of osteoclast activity (44, 45).
Similarly, receptors for both PTH and 1,25-(OH)2D3 are
also present on osteoblasts, but absent on osteoclasts (4).
Coculture of osteoblasts, mouse splenocytes, and 1,25-
(OH)2D3 stimulates the differentiation of a splenocyte
population, possibly splenic macrophages, into osteoclasts
(39).  Therefore, PTH, 1,25-(OH)2D3, IL-1, TNF, and TGF-
beta may initiate osteoclastogensis by first activating
osteoblasts?(17, 20, 46, 47).

2.4.2.  RANK-L
Osteoblasts are capable of regulating osteoclast

activation by secreting the necessary soluble mediators and
through surface expression of regulatory molecules,
thereby initiating differentiation and activation through
direct cell-cell interactions (3, 43, 48).  The surface
molecule involved in cell-cell contact-induced
osteoclastogensis was originally known as the osteoclast
differentiation factor (ODF) (Figure 2).  In recent years,
ODF has been known by several other names:
Osteoprotegerin ligand (OPGL), tumor necrosis factor-
related activation-induced cytokine (TRANCE), and
receptor activation of nuclear factor-kappaB Ligand
(RANKL).  RANK and RANK-L belong to the tumor
necrosis factor receptor (TNFR) and tumor necrosis factor
(TNF) superfamily respectively, and TNFR and TNF
superfamily members are involved in cellular responses
such as proliferation, differentiation, inflammation, and cell
survival and death (49, 50).   RANK-L was first discovered
on activated T cells and RANK on dendritic cells, and
therefore first described to play a role in T cell and
dendritic cell interactions.  The RANK/RANK-L
interaction inhibits apoptosis of mouse bone marrow
derived and human monocyte derived dendritic cells
through upregulation of anti-apoptotic genes such as BcL-
xL.  RANK-L also augments the ability of dendritic cells to
stimulate naïve T cell proliferation, probably due to the
increased number of dendritic cells available for T cell
stimulation (51, 52).  It was not until later that RANK-L
was determined to be the ODF, and play a vital role in
osteoclastogensis (53).  RANK-L is expressed by
osteoblasts and RANK expressed by osteoclasts.
Intriguingly, several of the cytokines and hormones that are
involved in osteoclast development also regulate RANK-L
expression.  In bone resorption cultures stimulated with
1,25-(OH)2D3, the addition of an antibody against ODF
(RANK-L) suppresses bone resorption, suggesting the
mechanism by which 1,25-(OH)2D3 stimulates osteoclast
function is through a RANK-L dependant manner (54).
Furthermore, calvarial osteoblasts cultured with 1,25-

(OH)2D3 exhibit an elevation in RANK-L mRNA
expression (55).  PTH, IL-1, IL-11, IL-17, and TNF-α are
capable of stimulating RANK-L expression as well when
cultured with human osteoblasts (30, 55, 56).

The idea that the RANK/RANK-L interaction is
the critical cell-contact mediated event for induction of
osteoclast development is supported by development of
osteopetrosis in RANK-L deficient mice.  RANK-L
deficient mice lack osteoclasts, which was determined to be
due to an inability of osteoblasts to support
osteoclastogensis (57).  OPG, a soluble RANK-L decoy
receptor, addition to ostoclastogenic cultures containing
osteoblasts inhibits bone resorption as well (58).
Furthermore, soluble RANK-L stimulates osteoclast
activation in the presence of other soluble stimuli such as
PTH.  Intriguingly, the level of bone resorption is
equivalent to levels obtained if osteoblasts are used to
activate the osteoclasts instead of soluble RANK-L,
suggesting that RANK-L expressed by osteoblasts initiates
osteoclastic bone resorptive activities (59).   Therefore,
osteoclast differentiation seems to be dependant on both
secreted factors and cell-cell contact.  It is also possible that
soluble ostoclastogenic factors control cell-cell interactions
by regulating the expression of RANK-L.

3. OSTEOCLASTS:  MIGRATION, ATTACHEMENT,
AND EFFECTOR FUNCTION

3.1.  Migration
As noted earlier, circulating monocytes do not

differentiate into mature osteoclasts until after they leave
the circulation (4).  Osteoclast precursors must be found in
close proximity to the bone for osteoclast development to
occur, therefore the osteoclast precursor must first migrate
to the bone.  There are a variety of factors that may play a
role in this process.  When an artificial gradient is created
in vitro, osteoclasts migrate towards higher concentrations
of both M-CSF and MIP-1alpha (60, 61).  Interestingly, M-
CSF and MIP-1alpha also inhibit the bone resorptive
activity of osteoclasts, as seen by a decrease in the number
of excavations of bone slices (60, 61).  This suggests that
M-CSF and MIP-1alpha signals osteoclast precursor
migration, but at the same time may also prevent any
activation of effector functions that might be deleterious as
osteoclast precursors travel through circulation on their
way to sites of bone resorption.   One receptor that may
contribute to osteoclast precursor migration is the adhesion
receptor alphavbeta3 (vitronectin receptor).   Alphavbeta3 is
an integrin that recognizes a variety of extracellular matrix
components including vitronectin, denatured type I
collagen (> 90% of bone composition), and laminins.  The
osteoclast precursors must undergo transendothelial
migration on their way to the bone (62, 63), and since
alphavbeta3 recognizes laminins present in the vascular
endothelial basement membrane, it is therefore possible
that this receptor is involved in the homing of osteoclast
precursors to the bone.  Further evidence in support of this
hypothesis is the observation that blocking the alphavbeta3
receptor inhibits M-CSF induced migration.  In these
studies, echistatin, a alphavbeta3 ligand, suppresses
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Figure 3.  Steps in bone resorption.  A mature osteoclast
binds to the bone matrix, forming a sealing zone and
basolateral membrane.  The ruffled border is formed and
bone degradation products are exocytosed through the
osteoclast, through the secretory domain.

migration of osteoclast like cells in the presence of a M-
CSF gradient (64, 65).

3.2.  Attachment
Bone resorbing osteoclasts are highly polarized

cells that contain a number of specialized membrane
domains: a sealing zone, a ruffled border, a secretory
domain, and a basolateral membrane (66-68) (Figure 3).
For the osteoclast to perform its bone resorptive function, it
needs to attach to the bone matrix.  Therefore, the first
cytoskeletal alteration that osteoclast must undergo is
sealing zone formation.  The sealing zone allows for the
osteoclast to remain in tight association with the bone
matrix during bone resorption.  The sealing zone also
encompasses the resorption lacuna, which is where the
osteoclast degradetive functions take place.  The resorption
lacuna is organized as a secretory ruffled border, which is
one of the most essential cytoskeletal changes that occurs
within the osteoclast.  It is formed by fusion of the
intracellular acidic vesicles with the part of the plasma
membrane facing the bone (67-69) and the finger-like
projections created during ruffled border formation share

may features common to the late endosome membranes
(70).  Alphavbeta3 is expressed at the ruffled border of the
mature osteoclast and may come in contact with type I
collagen expressed at the site of bone resorption.  Therefore
alphavbeta3 may be involved in attachment to bone matrices
as well as migration.  Blocking alphavbeta3 with RGD
containing peptides such as echistatin and kirstrin further
supports this idea in that bone resorption is inhibited both
in vitro and in vivo (68, 71-73).  Since alphavbeta3 is
possibly involved in migration as well as attachment in
vivo, it remains to be determined whether blocking
alphavbeta3 inhibits osteoclast activity by blocking
osteoclast precursor migration, or osteoclast attachment, or
both.  One critical intracellular signaling component
normally present within the ruffled border is p60c-src kinase.
Evidence for this comes from the observation that Src-
deficient mice develop osteopetrosis due to a lack of
functional osteoclasts, and not to a reduction in osteoclast
numbers.  In the absence of p60c-src, the ruffled border does
not form and osteoclast resorption activity is lost (4, 74-
76).

3.3.  Effector function
Once the ruffled border is formed, the osteoclast

dissolves the crystalline hydroxapatite that covers the
organic bone matrix by secreting HCl into the resorption
lacunae (67-69).  A vacuolar type proton pump ATPase
present within the ruffled borders along with chloride
channels creates the low pH atmosphere within the
resorption lacuna.  This pump is also present within the
lysosomes and endosomes of several mammalian cells (77-
79).   As the osteoclast solubilizes the mineral layer, the
osteoclast releases several proteolytic enzymes to degrade
the organic bone matrix.  Two classes of proteolytic
enzymes important for this process are lyzozomal cysteine
proteinases and matrix metalloproteinases (MMP’s).
Cathespin K and MMP-9 are two of the proteinases that are
released into the resorption lacuna (68, 80-82).  The
enzymes attack the organic bone matrix and digested
products are endocytosed by the osteoclast and transported
through the cell via the transcytolytic vesicular pathway.
Transport of organic material present within the
transcytotic vesicles is further degraded by tartrate-specific
acid phosphatase (TRAP) before it is released through the
secretory domain (83, 84).

4.  OSTEOCLASTS AND RA

4.1  Presence of osteoclasts and RA
In any inflammatory, destructive joint disease,

osteoclasts are likely to play a significant role in
destruction of the joints.  In rheumatoid arthritis (RA),
focal bone loss in subchondral bone and joint margins
indicates an imbalance in the process of bone remodeling.
If osteoclasts are the cell type responsible for joint and
bone matrix destruction, then osteoclasts should be present
within the diseased tissue.  In an animal model of arthritis,
collagen type II arthritis, development of inflammation and
joint destruction directly correlate with increased numbers
of osteoclasts (85).  Within the areas of focal bone erosions
in RA joints, histologic studies identify cells that represent
the osteoclast phenotype.  These cells are multinucleated
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and express TRAP, cathepsin K, and calcitonin receptor
mRNA.  Although cathepsin K expression is restricted to
the mineralized tissue surfaces, TRAP expression is diffuse
within the pannus, remote from bone surfaces (86-90).
This suggests that not only are the bone resorbing
osteoclasts present on the bone matrix, but osteoclast
precursors are also present within RA synovium.   Since
osteoclasts are derived from monocyte-macrophage
precursors, it is possible that the macrophages and
macrophage-like synovial cells present within the inflamed
joint are TRAP positive osteoclast precursors.  In support
of this idea, when macrophages isolated from the synovium
of RA patients are cultured under the appropriate
ostoclastogenic conditions, namely osteoblasts, 1,25-
(OH)2D3, and M-CSF, macrophages differentiate into
osteoclasts.

4.2.  Soluble osteoclastogenic factor expression and RA
What may be required for osteoclast precursors

within the inflamed synovium to develop into mature
osteoclasts are the right conditions.  As with the presence
of osteoclast precursors and osteoclasts, secreted cytokines
necessary for maturation and activation of osteoclasts are
present in the RA synovium as well.  Elevated levels of IL-
1alpah and beta, IL-6, TNF-alpha, and M-CSF are all
expressed in RA patient synovium (91-100).  In addition to
the role these cytokines play in inflammation, an additional
role may be to stimulate the differentiation and activation
of osteoclasts within the inflamed joint (101-107).
Evidence for this is supported by the ability to block
arthritis development in animal models, or diminish the
symptoms of disease in RA patients by blocking TNF-alpha
and IL-1beta (105-107).   Although blocking IL-beta
minimally suppresses inflammation, treatment significantly
suppresses joint and cartilage destruction (108).  Joosten
and colleagues also demonstrate that administration of
antibodies to IL-1alpha or IL-1beta prevents bone and
cartilage destruction while antibodies to TNF-alpha reduce
joint inflammation and edema, but have little effect on
prevention of joint destruction (107).  If osteoclasts are
involved in RA, then blocking M-CSF should be a potent
suppressor of arthritis development as well.  Unlike IL-1
and TNF, the role of M-CSF in RA is not as clear-cut.
Blocking endogenous M-CSF by administering specific
antibodies is effective in collagen-induced arthritis but not
methylated BSA induced arthritis.  Nevertheless, M-CSF
deficient op/op mice, which lack osteoclasts, are resistant to
developing either form of arthritis.  Thus, these studies
suggest the inability to effectively differentiate osteoclasts
may play a critical role in the development of arthritis.
However, since inflammation is also effectively blocked,
M-CSF may play a dual role in arthritis both contributing to
the inflammatory process and induction of osteoclast
differentiation.

4..3.  Osteoclastic effector function and RA
As with increases in osteoclast precursors and

osteoclast numbers, and osteoclastogenic factor expression,
osteoclastic bone resorptive activity directly correlates with
RA development as well (Table 1).  As noted earlier, op/op
mice lack not only M-CSF but osteoclasts as well.  When
op/op mice are immunized according to the methylated-

BSA induced arthritis model, disease is suppressed (109)
suggesting not only a role of M-CSF in the induction of
arthritis, but also the involvement of osteoclasts and
osteoclast function in the development of RA.  Further
supporting the involvement of osteoclasts, in collagen type
II-induced arthritis, development of arthritis correlates with
temporal decreases in bone formation and increases in bone
loss (85).  As mentioned earlier, Src activity is a necessity
for osteoclast function in terms of ruffled border formation.
When human synoviocytes from RA patients are cultured
along with Csk, a Src-kinase inhibitor, the bone resorbing
activity of the osteoclasts within the RA synovium is
significantly reduced (110).  This result can also obtained
in vivo by injection of an adenovirus containing the Csk
gene into rats with adjuvant-induced arthritis.  Injection of
the Csk gene not only decreases the inflammatory reaction,
but also inhibits bone erosion (110).  Given that Src is a
necessary component of the ruffled border formation,
ruffled border and osteoclast function might be
compromised in Csk treated cells and Csk treated mice,
further suggesting the importance of osteoclast function in
the development of RA.

4.4.  RANK-L expression and RA
The RANK/RANK-L interaction is vital for the

activation of osteoclastic bone resorptive function,
therefore a correlation or dependence on RANK/RANK-L
expression should be observed in the development of
arthritis (Table I).  In animal models of arthritis, such as the
adjuvant-induced arthritis model and the collagen-induced
arthritis model, synovial fibroblasts and inflammatory cells
express RANK-L mRNA.  Interestingly, in the joints of
arthritic mice, osteoclasts are detected at the sites of bone
resorption adjacent to RANK-L expressing synovium
infiltrating mononuclear cells and chondrocytes (111, 112).
Moreover, RANK-L mRNA is highly expressed in synovial
tissues of RA patients, but not in normal synovial tissues (113),
and immunohistochemical analysis demonstrates the presence
of osteoclasts in areas of pannus invasion into the bone,
adjacent to sites where RANK-L expression is highest (111,
114).  In a serum transfer model of arthritis, the level of
inflammation, as measured by clinical signs of arthritis and
histopathological scoring, is comparable between wild type
and RANK-L deficient mice.   However, the degree of bone
erosion in the RANK-L deficient mice is significantly reduced
compared to wild type mice (115), suggesting differentiation
or activation of osteoclast function in arthritis is RANK-L
dependant.  Additional evidence supporting this concept shows
macrophages isolated from the synovium of RA patients have
the capacity to differentiate into osteoclasts in the presence of
RANK-L and M-CSF (116), suggesting since osteoclast
precursors, synovial macrophages, and differentiating factors,
cytokines and RANK-L, are present in the RA synovium,
osteoclasts will be formed and their bone resorping activities
activated.

RANK-L is expressed by both osteoblasts and T
cells (51, 52, 57), therefore each of these cell populations
may contribute to osteoclast differentiation.  As with
osteoblasts, RANK-L expressing T cells can support
osteoclastogensis in vitro (117).  Interestingly, in instances
of hyperactive T cells, such as is the case in CTLA-4



Osteoclasts, Osteoclastogenic Factors, and RA

1024

Table 1. Correlation between expression and disease onset
Normal
synovium

RA Synovium

Osteoclast precursors present increased presence
Mature osteoclasts present increased presence
Enhanced
osteoclastogenic
stimuli expression
soluble (IL-1, -6, -17,
TNF, M-CSF)

No Yes

membrane bound No Yes
 (RANK-L)
Enhanced osteoclast
bone
resorbing activity No Yes

deficient mice, bone loss supported by severe osteoporosis
is observed (117).  Furthermore, increases in osteoclasts
followed by osteoporosis is observed if bone marrow from
CTLA-4 deficient mice is transferred into RANK-L
deficient mice (117), suggesting that the RANK-L
expressing T cell supports osteoclast activation in vivo.  In
antigen-induced arthritis, the osteolysis that develops is T
cell dependent.  Furthermore, ostelolysis is suppressed by
treatment with OPG, suggesting that T cells and RANK-L
are playing a critical role in the development of arthritis.
Further supporting this idea, in disease states such as RA, T
cells not only gain access to the joint, but these CD4+ T
cells also dominate the cellular infiltrate within the
synovium, providing a source of RANK-L expression that
can interact with osteoclast precursors (118).   In fact,
immunohistochemmical analysis and in-situ hybridization
studies of synovial tissues from RA patients demonstrate
localized RANK-L expression to T cells within lymphoid
aggregates, suggesting not only a role of T cells in
initiating inflammation in arthritis, but also control of focal
bone erosion.

5. PERSPECTIVE

Enhanced osteoclastogenesis is associated with a
variety of bone eroding diseases.  In this review, we have
discussed the involvement of both osteoclastogenic factors and
osteoclasts in the development of rheumatoid arthritis.  Based
on extensive studies, it has become apparent that both soluble
and membrane bound factors are critical for the development
and activation of osteoclasts and osteoclast bone resorptive
activity.  Many of the cytokines involved in the inflammatory
events underlying the pathogenesis of arthritis are also
involved in osteoclastogenesis.  IL-1, -6, -17, TNF, and
especially M-CSF all play significant roles in both the
development of osteoclast and osteoclast function as well as
development of arthritis, suggesting that these events are not
mutually exclusive.   Based on this evidence, and on the recent
findings that RANK-L is not only associated with the
development of osteoclasts, but is also linked with the
development of arthritis, it is suggestive that understanding the
role of the osteoclast in arthritis has clinical implications.  For
example, cytokine and RANK-L expression may serve as
useful makers of osteoclast function.   Furthermore, cytokine
and RANK-L detected in RA patients may be therapeutically
targeted with anti-inflammatory agents, or specific inhibitors.
Anti-cytokine therapies have already been initiated with some

success, and it is possible that anti-RANK-L or soluble OPG
therapies might not be far behind.  Hopefully, the study of
osteoclastogenic factors and osteoclasts in terms of their
relationship to the development of RA will lead to the
development of specific immunomodulatory therapies that will
suppress joint and cartilage erosion, and therefore, benefit RA
patients.
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