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1. ABSTRACT

Exogenous or inhdled NO (iNO) has been
successfully used, as a selective pulmonary vasodilator, in a
wide variety of clinical situations especially in the
management of persistent pulmonary hypertension in the
newborn. A better understanding of the role of endogenous
and exogenous NO in the lungs of surfactant-deficient
animals exposed to hyperoxia could result in novel
strategies for the better management of RDS in premature
babies with the ultimate aim to decrease chronic lung
disease in these infants. This review will focus on the
effects of NO, when used in combination with hyperoxia,
on lung injury; information on the effects on cell culture
systems and animal models will be used to highlight the
unique responses of the developing lung. Most of the data
from cell culture systems and adult animal models of
hyperoxiainduced lung injury suggests that endogenous
NO has a protective role. In the newborn animal,
endogenous NO appeared to be harmful, had no effect or
was protective in hyperoxia-induced lung injury. The data
are conflicting on the issue of whether exogenous NO is
protective or damaging in the presence of hyperoxia on
lung cells and animal models. Despite the variability in the
studies, it would appear that low dose exogenous NO for
short duration is beneficial in hyperoxic lung injury in adult
and newborn animals. In the human newborn, use of iNO in
infants < 34 weeks of gestation should be considered
experimental, pending results of ongoing trials.

2. INTRODUCTION

Nitric oxide (NO), an important inter- and
intracellular messenger in the body, has been identified in a
wide variety of physiologic and pathophysiologic processes
(1). Exogenous or inhaled NO (iNO) has been successfully
used, as a selective pulmonary vasodilator, in a wide
variety of clinical situations especially in the management
of persistent pulmonary hypertension in the newborn (2- 4)
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and in congenital heart disease (5,6). In an anima model
of surfactant deficiency, Kinsella et al (7) found that iNO
improved oxygenation and improved pulmonary blood
flow. Use of a 15-minute administration of iNO in
premature infants with surfactant deficiency after
exogenous surfactant replacement showed that iNO caused
significant improvement in oxygenation with no obvious
side effects (8). Two recent studies, however, did not show
any significant benefit after using iNO in the management
of respiratory distress syndrome (RDS) (9,10). Use of iNO
has been associated with EEG abnormalities (11). Thereis
also concern regarding the outcome of premature neonates
treated with iNO (12).

Except for its use in the management of
pulmonary hypertension, the use of NO remains
investigational as it has not been FDA approved for any of
the other disease processes. It isimperative that more data
be gathered regarding the use of iNO in surfactant-deficient
neonates before it’s widespread use (13 -15). In addition to
the vascular smooth muscle, other pulmonary structures are
exposed to iNO, resulting in suppression of NO synthesisin
a variety of pulmonary cells and this is potentialy toxic
(16). Thereisaneed for understanding the deleterious and
salutary properties of NO (17). Thisisespecially important
in the context of long-term use of NO in the presence of
hyperoxia, which is akin to the clinical situation of
premature infants with RDS being treated with high
concentrations of oxygen. A better understanding of the
role of endogenous and exogenous NO in the lungs of
surfactant-deficient animals exposed to hyperoxia could
result in novel strategies for the better management of RDS
in premature babies with the ultimate aim to decrease
chronic lung disease in these infants.

This review will focus on the effects of NO,
when used in combination with hyperoxia, on lung injury;
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information on the effects on cell culture systems and
animal models will be used to highlight the unique
responses of the developing lung. The effects of NO as a
pulmonary vasodilator is beyond the scope of thisreview.

3. NITRIC OXIDE AND HYPEROXIA IN CELL
CULTURE

3.1. Effect of cytokines on iNOS induction and nitric
oxide production

Lung epithelid cels (murine lung epithdia cell
line LA-4) have been shown to release NO in response to
cytokine stimulation (18). An increased number of cells
stained for inducible nitric oxide synthase (iINOS) and an
increase in INOS mRNA was aso observed (18). Cytokine
stimulation of A549 cells adso produced a Smilar response
(19). Expression of the iNOS gene has been shown to be
under cytokine control and is transcriptionally regulated (20).
Synergistic effect of the cytokines has been proposed to
explain NO production from A549 cdls (21). Reease of NO
and iINOS expresson can be attenuated by dexamethasone
(18,19,22) aswell asinterleukin-4 (IL-4) and IL-13 but not IL-
10 (22). Endogenous NO has also been shown to be protective
againg cytokine induced damage to LA-4 cdlls (23).

It has been reported that a combination of cytokines
induces production of a high concentration of the NO
oxidation products (nitrite and nitrate) by cultured fetal rat TIIP
cels (24). On the other hand, it has been shown that
exogenous NO was not appreciably cytotoxic to fetd TIIP
(17). Possible mechanisms for this protective effect includes
its action as an iron cheator, activation of guanylate cyclase
with subsequent induction of cGM P-dependent effects, potent
inhibition of oxidant-induced membrane and lipoprotein
oxidation by annihilation of lipid radical species or diverting
superoxide-mediated toxic reactions to other oxidative and less
damaging pathways (17).

The explanation for these different results is
probably that NO is afree radical with both antioxidant and
pro-oxidant properties - a molecular chameleon (16).

3.2 Effect of hyperoxia on iNOS induction and nitric
oxide production

Hyperoxia may cause lung inflammation,
superoxide generation and increased aveolar to capillary
permeability (22,23,25). Exposure of adult rat TIIP to
hyperoxia increased iNOS mRNA production >5 fold (26).
Hyperoxia was shown to increase NO production and iNOS
mMRNA and protein expression in adult rat aveolar
macrophages after stimulation with lipopolysaccharide
(LPS) and/or interferon-gamma (IFN-g) (27). In astudy on
human airway epithelial cells and aveolar macrophages
obtained from healthy volunteers exposed to 100% oxygen
for 12 hours, INOS mRNA was increased 2.5 fold in the
airway epithelial cells (28).

3.3. Interaction between nitric oxide and oxygen (and
reactive oxygen species)

NO is a free radica that together with the
superoxide radical can form peroxynitrite which may be
responsible for damaging proteins, lipids and DNA (16).
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By increasing the formation of peroxynitrite, superoxide
potentiates the toxicity of NO (29,30). By releasing
nonheme iron from ferritin (31), NO has the potential to
enhance the formation of hydroxyl radicals, known to
damage the surfactant system (16). Besides hemoglobin,
the effects of NO on other heme proteins are likely to
modify the oxidant stress. Peroxynitrite additionally
decreases the oxygen uptake and sodium transport in TP
(32). So, while NO may be a critical intermediary in the
production of oxidant tissue damage (33), NO-dependent
protective effects have been observed in processes having
increased rates of superoxide generation and for which
oxidant injury has been proposed to play an etiological role
(34-36).

It islikely that the production and metabolism of
both reactive oxygen and nitrogen species in the
intracellular compartments of each cell type that populates
the lung could influence the progression of lung diseases
influenced by inflammatory-immune activation (37). The
dose and duration of exposure to endo- or exogenous NO,
in the presence of hyperoxia, may determine its beneficia
or detrimental role. The developmental age of the lung
would also have a modifying effect.

3.4. Effect of nitric oxide and hyperoxia on surfactant

It has been shown that exposure of isolated type
Il pneumocytes (TIIP) from adult rats to NO for 2 hours
(using NO donor compounds) results in inhibition of
alveolar TIIP ATP and surfactant synthesis (38). On
addition of exogenous NO (as  S-nitroso-N-
acetylpencillamine or SNAP 1 mM), to isolated aveolar
TIIP from adult rats, there was a 60-70% reduction of the
synthesis of disaturated phosphatidylcholine (DSPC) and
cell ATP levels (39). On the other hand, exposure of TIIP
to lung surfactant or DPPC vesicles lead to increased
production of NO and increased the rate of ATP synthesis
and cell ATP levels (40). Most studies on TIIP using NO-
donor compounds (mainly using  S-Nitroso-N-
acetylpenicillamine or SNAP and 3-
Morpholinosydnonimine or SIN-1) have been of short
duration of 1-4 hours (17,32,38,39,40).

We found that exposure of adult rat TIIP to
exogenous NO for 24 hours resulted in no untoward effect
on surfactant synthesis (41). We have recently reported on
the effects of hyperoxia and NO exposure on rat fetal TIIP
(42). Exposure to 95% O, and increasing doses of NO
(akin to doses used in clinical practice of approximately 5-
20 ppm) resulted in no change in surfactant synthesis;
however, there was decreased surfactant proteins A, B and
C aswell asiNOS mRNA expression (42).

35. Effect of nitric oxide and hyperoxia on
inflammation/mediators

A recent study has reported on the response of
fetal TIIP to hyperoxiaand NO in terms of cytokine release
(43). The release of IL-1b, IL-6, and IL-10 was not
significantly different in room air versus hyperoxia aone or
in combination with NO at 24 hours (43). However, it was
noted that IL-10 release was significantly increased in the
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presence of dexamethasone and hyperoxia compared to
hyperoxia alone (43).

3.6. Effect of nitric oxide and hyperoxia on cell viability

NO has been shown to enhance cell death by
apoptosis in pulmonary neutrophils (44,45) and vascular
smooth muscle cells (46). In contrast, depletion of
endogenous NO has been shown to induce apoptosis in rat
lung epithelial and mesothelia cells (47). We found that
exposure of adult rat TIIP to exogenous NO for 24 hours
resulted in increased cell death and a trend towards
decreased catalase activity (41).

One study by Narula et al (48) has looked at the
synergistic cytotoxicity of NO and hyperoxia over 6 days.
Their results suggest that combined NO and hyperoxia
exposure result in cell death after day 2 and rapidly
thereafter and this cell death did not occur by apoptosis
(48). However, they used a cultured cell line (A549 cells)
and used a much higher dose (2 mM) of SNAP than other
investigators (50 —100 mM). They conceded the fact that
the levels of NO exposure in their experiments are high
relative to those experienced by cellsin the intact lung (48).
The precise relationship between cell culture experiments
and the experimental use of NO is not yet clear, and the full
range of NO doses and oxygen levels is yet unexplored
(48).

Exposure of HelLa80 cells to NO (using the
chemical donor, 0.5-7.5 mM DETA NONOate) and
hyperoxia (80% O,) for up to 6 days suggested that NO and
hyperoxia-induced apoptotic cell death was by suppression
of NF-kappaB activity (49).

There was a tendency towards increased
apoptotic cell death of rat fetal TIIP upon exposure to
hyperoxia (95% O,) and NO (using the chemica donor,
Glyco-SNAP 2) (42).

4. NITRIC OXIDE AND HYPEROXIA IN ANIMAL
MODELS

The cellular distribution of al 3 isoforms of NOS
was similar in fetal, newborn and adult lamb lungs (50).
Thus, al may be important sources of endogenous NO
(50). Useof L-NAME (N"-nitro-L-arginine methyl ester;
a non-specific blocker of NOS) in rats exposed to
hyperoxia resulted in their earlier death (51). In adult mice
exposed to hyperoxia, there was a decrease in constitutive
endothelial cell NOS (ecNOS); L-NAME treatment
worsened the lung injury, as measured by lung compliance
and survival (52). This suggests that endogenous NO has a
protective effect in hyperoxia-induced lung injury (52).
Alveolar macrophages and TIIP release both NO and
superoxide which react to form peroxynitrite which can
damage the alveolar epitheium and inactivate surfactant;
peroxynitrite nitrates tyrosine to form nitrotyrosine. Lungs
of adult rats exposed to hyperoxia (for 60 hours) exhibited
a 2-fold increase in nitrotyrosine staining compared to
controls (53). This nitrotyrosine formation could be
replicated in vitro by incubation of the rat lungs with
peroxynitrite, but not NO or reactive oxygen species (53).
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In isolated perfused adult rabbit lungs ventilated with 100%
O,, L-arginine (which is the substrate for formation NO via
NOS) caused significant edema (54). These effects could
be attenuated with L-NAME treatment (54). The authors
speculated that the mechanism of lung injury by L-arginine
in the presence of hyperoxia probably involves
peroxynitrite formation (54).

Hyperoxia induced iNOS expression in adult rat
lungs; however, there was no increase in NO concentration
in the exhaled air, suggesting that NO is not synthesized in
rats exposed to hyperoxia (55). However, another study
found no increase in iNOS in adult rats exposed to
hyperoxia; both isoforms of arginase (L-arginine can be
metabolized by NOS to produce NO or by arginase to
produce urea and L-ornithine) were, however, upregulated
and had increased activity (56). Hyperoxia induced lung
injury in both adult wild-type and iNOS deficient mice
(57). It was greater in the iINOS-deficient mice and
associated with increased polymorphonuclear leukocytes in
the bronchoalveolar lavage fluid (BAL) (55). It appeared
that iINOS induction served as a protective mechanism to
minimize the effects of acute exposure to hyperoxia (55).
On the other hand, a recent study reported no difference in
the amount of surfactant or surfactant components obtained
via BAL when comparing iNOS deficient with wild type
mice, after exposure to hyperoxia for 48 hours (58).

Adult rats were exposed to hyperoxia for 40
hours and had evidence of lung injury; inhalation of 10 and
100 ppm of NO abrogated the effects to some extent (59).
Inhalation of NO, however, did not improve the survival of
the rats exposed to hyperoxia (59). Treatment with L-
NAME or aminoguanidine (a specific blocker of iNOS)
reduced survival (59). The authors concluded that
endogenous NO was protective in the presence of
hyperoxia; furthermore, depending on its concentration,
iNO can either reduce or increase hyperoxic lung injury
(59).

NO has been implicated in the pathogenesis of
hyperoxia-induced lung damage in adult rabbits (60) as
well as improved the survival of adult rats in hyperoxia
when used in the dose of 100 ppm (61). In a dose of 20
ppm, iNO was found to protect the lung endothelium and
alveolar epithelium in adult rats exposed to hyperoxia (62).
Adult rats exposed to hyperoxia developed severe lung
injury as evident by pronounced vascular leak and alveolar
cell apoptosis; the addition of NO (20 ppm) significantly
attenuated the lung injury (63). In adult Wistar rats, 6
hours of exposure to hyperoxia and NO (40 ppm)
significantly decreased free-radical mediated effects in the
lung (64).

In the presence of carbon dioxide, the major
product of the reaction of peroxynitrite with proteins leads
to the formation of 3-nitrotyrosine; another important
reaction is the S-nitrosylation of cysteine residues (65).
Both of above products have been implicated in the
regulation of cellular function and injury (65). In a murine
model, 3-nitrotyrosine production was enhanced in airway
epithelium and aveolar interstium when exposed to
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hyperoxia;, administration of INO lead to increased
production of S-nitrosocysteine with no apparent change in
3-nitrotyrosine formation (65). The authors speculated that
this might account for the protective effect of NO in the
presence of hyperoxia (65).

In a recent study on 2-week old rat pups, it was
reported that exposure to hyperoxia appears to impair the
ability of endogenous NO to modulate constriction of
central (but not distal) airways (66). Hyperoxic exposure to
rat pups results in upregulation of NOS in the lungs (67,
68). In newborn (3 days old) rats, exposure to hyperoxia
for 7 and 14 days resulted in significant lung injury; L-
NAME treatment of the hyperoxic animals reduced lung
edema and epithelial proliferation (67). It was, therefore,
concluded that increased generation of (endogenous) NO
contributes to the pathogenesis of hyperoxia-induced lung
damage in newborn rats (67). Interestingly, in rat pups (21
days old) exposed to hyperoxia, NO blockade [using
aminoguanidine or N¥-nitro-L-arginine i.e.L.-NNA] did not
abrogate the pathologic consequences of hyperoxic
exposure (68).

In premature rats exposed to hyperoxia or room
air, with or without L-NAME treatment for 3 and 7 days,
L-NAME treatment worsened hyperoxic lung injury and
also had a deleterious effect in the room air exposed rats
(69). This suggests that endogenous NO has a protective
effect not only during exposure to hyperoxia but also under
physiological conditions. On the other hand, hyperoxia
upregulated iINOS and eNOS and this may have contributed
to the lung damage (69).

In a premature lamb model, exposure to NO (20
ppm) aone for 5 hours did not reveal any impairment of
gas exchange or pulmonary mechanics; however, there was
some increase in lung vascular protein lesk (70).
Compared to hyperoxia exposure aone, the combination of
NO/hyperoxia did not exacerbate nor attenuate lung injury
in newborn guinea pigs (71). A low dosage of iNO (14
ppm) decreased or prevented hyperoxia induced
detrimental effects on alveolar surfactant and aleviated the
oxidant stress in preterm rabbits (72). In contrast, in
newborn (8-15 days old) piglets, the combination of NO
(50 ppm) and hyperoxia increased alveolar permeability
(73), apoptosis (74) and collagen content in the lung (75).
In another study of newborn piglets (1-2 days old) exposed
to hyperoxia, the iINO (at 20 ppm) group had higher
extravascular albumin space and dry weight of the lung;
however, there were no alterations in the extravascular lung
water content or respiratory mechanical variables (76). The
results do not show any benefit of iNO in the presence of
hyperoxia.  Another cautionary note was reported in
newborn piglets exposed to iNO (40 or 80 ppm) and
acetaminophen, phytomenadione or EMLA cream (al
commonly used in human newborn infants); use of either of
the drugs in combination with iNO lead to a significant
increase in methemoglobinemia (77).

The role of monocyte chemoattractant protein-1
(MCP-1) and it's receptor, C-C chemokine receptor 2
(CCR-2) has been described in young piglet lungs exposed
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to hyperoxia and NO (78). Hyperoxia adone had a
depressant effect on CCR-2 abundance. This may have
potential implications for lung repair after injury, because
MCP-1 acting through CCR-2 participates in angiogenesis
and in wound repair (78). They also showed that combined
exposure to hyperoxia and NO did not exacerbate the
depressant effect of hyperoxia on CCR-2 but may actually
be protective (78). This suggests a potential beneficial role
for NO in minimizing the injurious effect of hyperoxia on
angiogenesis and repair.

It is possible that the protective effect of NO
could be due to transcriptional inhibition  of
proinflammatory mediators with the net result being
enhanced survival in a model of acute lung injury as
observed fromin vivo studies (17). Peroxynitrite has been
shown to have direct stimulatory effects on Mn superoxide
dismutase (SOD) transcript expression (79). On the other
hand, iINO may inhibit catalase activity or decrease the
activity of iNOS (80). Recombinant SOD has been shown
to decrease lung injury caused by iNO and hyperoxia in
newborn piglets (81). NO has been shown to decrease IL-
1b and tumor necrosis factor-alpha (TNF-a) production by
lung macrophages (82). NO inhalation has been shown to
transiently elevate pulmonary levels of cGMP, iINOS RNA
and TNF-a (83). Long term exposure of adult rodents to a
low dose of NO decreases lung interstitial cells, connective
tissue, and alveolar septae (84). Pretreament with NO
potentiated acute lung injury in an isolated rabbit lung
model (85). Animals exposed to iNO for 24 hours showed
evidence of surfactant dysfunction (86). In contrast,
exposure of isolated surfactant complex to NO during
surface cycling strikingly decreases the inactivation of
surfactant (86). Hence, NO may either activate or inhibit
the pulmonary surfactant system. Under conditions
favoring generation of peroxynitrite, surfactant is degraded
(84). Thiols and nitrosothiols in the epithelia lining fluid
are likely to control NO homeostasis. By becoming
nitrosylated, the thiols neutralize the toxic effects of
peroxynitrite (84). The interaction of NO with reduced
thiol groups of proteins is critica in maintaining the
balance between protein tyrosine nitration and protein
cysteine nitrosylation and possibly preventing cellular and
tissue injury (65). This may explain some of the beneficia
effects of iINO and the lack of toxicity when administered
in the presence of hyperoxia (65).

5. NITRIC OXIDE AND HYPEROXIA IN THE
HUMAN PREMATURE NEWBORN

Plasma 3-nitrotyrosine levels were found to be
elevated in premature infants who developed
bronchopulmonary dysplasia (BPD), suggesting that
peroxynitrite-mediated oxidant stress may contribute to
the devliopment of BPD (87). In contrast, 20 ppm iNO
had a favorable response in 11 out of 16 infants with
BPD (88). In arecent study, use of iNO (20 ppm) in
premature infants with developing chronic lung disease,
improved oxygenation without any changes in
intraventricular hemorrhage, oxidative injury or markers
of inflammation (89).
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For preterm infants, iNO is not routinely
recommended (90), although clinical trials are underway.
An earlier report on the use of iNO in premature infants
had a disconcerting high incidence of intracrania
hemorrhage (91). In 2 recent studies (9,10), low-dose (5
and 10 ppm respectively) iNO was used. Both these
randomized multicenter studies showed an improvement in
oxygenation in the iNO treated infants, but with no
decrease in mortality (9,10). In both studies, there was
tendency to decrease chronic lung disease (9,10). In a
meta-analysis (n=210), the OR (95% CIl) for mortality was
0.97 (0.54-1.75) and for death or chronic lung disease was
0.77 (0.41-1.45) when comparing NO-treated with non-
treated infants (92). There was also no significant
difference in the rates of intracranial hemorrhage between
the 2 groups (92).

6. SUMMARY AND CONCLUSIONS

Hyperoxia appears to upregulate iNOS in the
lungs. Research is needed to clarify whether this induction
of iNOS is dependent on or independent of cytokine
release. Most of the data from cell culture systems and
adult animal models of hyperoxia-induced lung injury
suggests that endogenous NO has a protective role. In the
newborn animal, endogenous NO appeared to be harmful
(67), had no effect on hyperoxia-induced lung injury (68)
or was protective (69).

The data is conflicting on the issue of whether
exogenous NO is protective or damaging in the presence of
hyperoxia on lung cells and anima models. The effects of
exogenous NO (dose, duration, developmenta stage of the
lung) on endogenous NO release has important
implications and needs study. The variability in the reports
probably reflect the fact that the dose, duration of
exogenous NO (as well as hyperoxia) and the
developmental age of the lung, al have important
influences. It would appear that low dose exogenous NO
for short duration appeared to be beneficial in hyperoxic
lung injury in adult and newborn animals.

As for the human newborn, use of iNO in infants
< 34 weeks of gestation should be considered experimental,
pending results of ongoing trials (90, 93).
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