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1. ABSTRACT

  An abnormal vasodilation is a major defect
observed in the arteries of diabetic and hypertensive
individuals. Myosin bound phosphatase (MBP)
dephosphorylates myosin light chains which play a
dominant role in vascular smooth muscle (VSM)
contraction.  Using two distinct approaches, we have
demonstrated that insulin rapidly stimulates MBP and
simultaneously inhibits RhoA/Rho kinase signaling via the
nitric oxide (NO)/cGMP signaling pathway. Insulin
activates MBP by decreasing Thr695 phosphorylation of
myosin-bound subunit (MBS) via two different but cross-
talking signaling pathways. Firstly, insulin inactivates Rho
kinase by blocking RhoA activation and translocation to the
membrane fraction via increased cGMP/cGK-1α mediated
RhoA phosphorylation and decreased geranylgeranylation.
Secondly, insulin induces iNOS expression via PI3-kinase
signaling leading to generation of NO/cGMP which
activates MBP via cGK-1α mediated inhibition of
MBSThr695 phosphorylation via Rho kinase inactivation.
MBP activation prevents agonist induced MLC20
phosphorylation as well as VSMC contraction. VSMCs
isolated from SHR and diabetic rats exhibit elevations in
Rho kinase, which increases MBS Thr695 phosphorylation
and inhibits MBP. The defects appear to be at the level of
PI3-kinase activation due to impaired insulin-induced IRS-
1 tyrosine phosphorylation because of increased association
of active Rho kinase with the IRS-1 leading to increased
IRS-1 serine phosphorylation, which interrupts with
downstream insulin signaling.

2. INTRODUCTION

Vascular smooth muscle cells (VSMCs) are the
major constituents of blood vessel walls responsible for the
maintenance of vascular tone. Increased contractility of
VSMCs, an abnormal vascular tone, and defective
vasorelaxation are the earliest abnormalities observed in
atherosclerosis, diabetes and hypertension (1-4). Insulin
inhibits VSMC contraction, migration and growth in the
normal vasculature (5-9) and insulin’s failure to do so in
insulin resistant states may contribute to enhanced
atherosclerosis/restenosis in these clinical conditions. The
exact mechanism of insulin inhibition of contraction in
normal VSMCs is unknown. Smooth muscle (SM)
contraction and relaxation is largely mediated by
phosphorylation and dephosphorylation of MLC20 at serine-
19 by myosin light chain kinase (MLCK) and myosin
bound phosphatase (MBP, 10-11). Intracellular Ca2+ levels
[Ca2+]i modulate the MLCK to MBP activity ratio and the
degree of contractile force. However, calcium sensitivity of
MLC phosphorylation is also dynamically modulated
through a G-protein-coupled Ca2+ independent process,
which inhibits MBP (12-14). Thus, MBP appears to be the
critical phosphatase regulating smooth muscle contractility
and is widely recognized to be the common target of
signaling pathways that modulate smooth muscle tone. To
date, the precise mechanism of in vivo MBP regulation is
not fully understood.

MBP holoenzyme consists of three subunits (15-
17), the 38 kDa catalytic subunit of protein phosphatase-1
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Figure 1. Physiological concentrations of insulin stimulate
MBP in a dose-dependent manner. Diabetes is
accompanied by impaired MBP activation by insulin.

(PP-1C), a large 110-130 kDa regulatory subunit (MBS),
and a small 20 kDa subunit. The 130 kDa subunit (MBS)
binds to myosin and regulates the catalytic activity of the
phosphatase (18-19). Phosphorylation of MBS by an
associated kinase results in an inhibition of phosphatase
activity (18). Furthermore, the active GTP-bound Rho, the
small guanosine triphosphate, specifically interacts with
MBS (18). The Rho-associated kinase directly
phosphorylates MLC20  (20), CPI-17 (21), and MBS, and
consequently inactivates MBP (18), resulting in an increase
in MLC20 phosphorylation and SM contraction.

 Recent evidence suggest that cGMP dependent
protein kinase 1a (cGK Ia) is targeted to SMC contractile
apparatus by a leucine zipper interaction with the MBS and
this interaction is essential to the regulation of VSM tone
(22). Thus, MBS assembles a multienzyme complex,
tethering a phosphatase and at least three distinct kinases
(Rho kinase, cGK I and Raf-1 (23) with counter-regulatory
effects on MBP activity. Additionally, insulin-stimulated
NO/cGMP signaling may regulate the activation status of
Rho kinase at the level of Rho and cause reductions in MBS
phosphorylation leading to MBP activation (24).

Increased Ang II action in the vasculature has
been strongly implicated in the pathogenesis of
macrovascular disease (25-26). Therefore, interactions
between Ang II and insulin signaling may have an
important role in the regulation of vascular physiology and
development of atherosclerosis. Ang II type 1 receptor,
AT1 mediates most of the cardiovascular and growth
effects of Ang II via the MAP kinase signaling pathway
(27-28), while the AT2 receptor may attenuate the effects
of AT1 on blood pressure regulation, cardiac and vascular
cell growth (29,30-32). Therefore, the possibility exists
that insulin’s vasodilatory effects may be mediated via AT2
receptor signaling by preventing Rho kinase activation.

In this review, we summarize our current
knowledge of the regulation of insulin signaling pathways
which mediate vasorelaxation under normal as well as
pathophysiologic conditions and their cross-talk with
pathways initiated by the vasoconstrictor agents.

3. MOLECULAR BASIS OF INSULIN-INDUCED
VASORELAXATION

            Insulin causes relaxation of precontracted
aortic segments in both intact and endothelium denuded
aortic preparations as well as mesenteric arteries (33-34).
However, higher concentration of insulin are needed to
elicit relaxation in endothelium denuded aortic rings. The
above effect of insulin was accompanied by
dephosphorylation of 20 kDa myosin light chains
suggesting that insulin may be activating a smooth muscle
phosphatase to mediate its vasodilatory effects.

3.1. Role of myosin bound phosphatase
To examine whether the inhibitory effect of

insulin on phenylephrine -induced contraction of aortic
medial segments was due to an increase in MBP activity.
MBP activity was assayed in myosin-enriched fractions
using [32P]-labeled myosin light chain (MLC) and [32P]-
labeled phosphorylase a as substrates (35-36).  Insulin
rapidly increased MBP activity by 80% in a time and dose-
dependent manner, which correlated with the kinetics of
MLC20 dephosphorylation (37-38).  Conditions associated
with insulin resistance such as diabetes resulted in impaired
MBP activation by insulin (Figure 1). These observations
prompted detailed studies on molecular basis of regulation
of MBP activation by insulin.

3.2. Regulation of myosin phosphatase by its targeting
subunit, MBS
  Recent studies have identified two major
inhibitory phosphorylation sites on MBS, which appear to
profoundly influence MBP enzymatic activity (39-40).  For
example, in Swiss 3T3 cells, LPA treatment was
accompanied by an increase in Thr695 phosphorylation on
MBS, and a Rho kinase inhibitor, Y-27632 (39), blocked
this effect. To examine whether insulin affects MBS
phosphorylation status, metabolic labeling and
immunoprecipitation studies were performed. Insulin
caused a rapid 53-70% decrease in  [32P] incorporation into
MBS, which was sustained for 20 min time period, studied.
In addition, insulin prevented thrombin-induced increase in
MBS phosphorylation and restored MBP activity to levels
observed with insulin alone (37). Further studies with site
and phosphorylation specific anti-MBS antibodies revealed
that insulin specifically decreases basal and thrombin-
induced MBSThr695 phosphorylation (Figure 2).  The effect
of insulin on MBS phosphorylation was prevented by 1 nM
okadaic acid suggesting the possibility that activated MBP
may autodephosphorylate MBS. Thus, it appears that
insulin increases MBP activity in part by reducing
MBSThr695 phosphorylation.

3.3.  Role of Nitric Oxide/cGMP signaling in myosin
phosphatase activation via MBS
             Insulin is known to promote its vasodilatory effects
via NO generation by activating endothelial nitric oxide
synthase (eNOS, 41-44). Since iNOS is the predominant
isoform in VSMCs and insulin rapidly stimulates the
induction of iNOS protein (45-47), we examined the
contribution of iNOS and cGMP signaling pathways in
insulin-mediated MBS dephosphorylation, MBP activation
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Figure 2. Insulin inhibits thrombin-induced MBSThr695
phosphorylation via the activation of NO/cGMP signaling
pathway.

Figure 3. Insulin inhibits Rho kinase activation by
thrombin via the NO/cGMP signaling pathway

and vasorelaxation. Pretreatment with L-NMMA and
RpcGMP prevented insulin-mediated decrease in MBSThr695

phosphorylation and restored thrombin-mediated increase
in MBS phosphorylation and inactivated MBP (Figure 2).
In contrast, pretreatment with 8-bromo cGMP, a cyclic
GMP agonist prevented thrombin-mediated MBSThr695

phosphorylation and activated MBP in a manner
comparable to insulin. These results clearly indicate that
NO/cGMP signaling pathway mediates insulin’s inhibitory
effects on MBS phosphorylation to cause MBP activation.
Earlier studies have shown that cGK Ia, the downstream
effector of NO/cGMP signaling associates with MBS (22-
23).

3.4. Alterations in myosin phosphatase activation in
insulin resistant states
                 To further understand the importance of MBP in
vascular function, we examined the activity of this enzyme
in VSMCs isolated from diabetic GK rats, a model for
Type II diabetes (48). Diabetes and hypertension resulted in
a 43% decrease in basal MBP activity along with a 75%
reduction in insulin-stimulated MBP activation. The above
effect of diabetes on MBP activation status was
accompanied by failure of insulin to cause
dephosphorylation of MBS (35).

4. REGULATION OF VASCULAR SMOOTH
MUSCLE CELL CONTRACTION BY RHO
SIGNALING PATHWAY

             Rho family of small GTPases are the well known
intracellular signaling proteins which act as molecular
switches to control actin cytoskeleton organization in many

cell types including smooth muscle (49-52). Recent
evidence suggest that RhoA dependent signaling pathway
can control many of the functions of vascular smooth
muscle cells (VSMCs) such as contraction, migration and
proliferation (53-54). In VSMCs, the contracting effect of
RhoA result from the activation of one of its downstream
targets, Rho-dependent  kinase (ROK-∀), which
phosphorylates the regulatory subunit of myosin light chain
phosphatase (MBS) leading to the inhibition of its function
by reductions in the phosphatase activity (55-56), thus
allowing an increase in the level of phosphorylated myosin
light chain and contraction at a constant intracellular
calcium level [Ca 2+]i (57), a phenomenon defined as Ca2+

sensitization (58). Numerous reports (59-60) suggest that
Rho signaling is upregulated upon stimulation with
agonists such as thrombin or angiotensin II (Ang II).

4.1. Effect of insulin on agonist-induced RhoA
translocation and Rho kinase activation.
             We tested the possibility that insulin may be
inhibiting Rho kinase activity and, thereby, decreasing
MBS phosphorylation. Rho kinase activity was assayed in
anti-ROK-alpha immunoprecipitates using MBP as a
substrate. Insulin decreased basal Rho kinase activity and
effectively prevented thrombin-mediated increase in Rho
kinase activation (Figure 3). The effect of insulin on Rho
kinase inactivation was accompanied by inhibition of
thrombin-mediated translocation of RhoA from cytosol to
membrane fraction.

4.2.  Role of NO/cGMP signaling in insulin inactivation
of Rho/Rho kinase
             To test the role of NO/cGMP on Rho/Rho kinase
signaling, VSMCS were pretreated with L-NMMA and
RpcGMP followed by insulin and examined for thrombin-
induced RhoA translocation. L-NMMA and RpcGMP
prevented insulin inhibition of RhoA translocation and
restored Rho kinase activation by thrombin (Figure 3).
These observations indicate that NO/cGMP signaling exerts
a profound inhibitory effect on RhoA translocation and Rho
kinase activity to cause reductions in MBS phosphorylation
leading to MBP activation.

4.3. Mechanism of Rho inactivation by insulin
              Recent studies indicate that phosphorylation of
RhoA by cAMP dependent protein kinase A as well as
cGMP dependent protein kinases impairs its biological
activity (61-62) while geranylgeranylation of RhoA by
GGTases is required for its activation by agonists (63-64).
To explore the possibility that insulin may be affecting
these two major processes of post-translational
modification to cause Rho inactivation, we examined RhoA
phosphorylation status and geranylgeranyl transferase-I
(GGTase I)  activity and examined the effect of NO/cGMP
signaling pathway on these two processes.  Insulin
increased RhoA phosphorylation by 2-fold which was
prevented by the inhibitors of PI3-kinase, NOS and cGMP
signaling pathway while cGMP agonist mimicked insulin
effect by increasing RhoA phosphorylation (65). Further
studies using rhotekin binding assays revealed that RhoA is
inactive after insulin treatment as it did not bind to GST-
rhotekin beads (65). In addition, we observed that insulin
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Figure 4. Rho kinase associates with IRS-1 and modulates
insulin signaling. Expression of activated RhoA increases
Rho kinase/IRS-1 association and prevents insulin-
stimulated IRS-1 tyrosine phosphorylation and p85PI3-
kinase/IRS-1 asociation.

also inhibits geranylgeranylation of RhoA by inhibiting
GGTase I in VSMCs and this effect of insulin could be
prevented by L-NMMA and RpcGMP (65). These results
suggest that insulin inhibits posttranslational modification
of RhoA via NO/cGMP signaling pathway presumably by
activating cGK 1 a, the downstream effector of NO/cGMP
signaling which in turn phosphorylates RhoA and
inactivates Rho signaling via Rho kinase.

5. CROSS-TALK BETWEEN INSULIN SIGNALING
AND RHO SIGNALING PATHWAYS

    ROK-a and another isoform Rho-kinase, ROCK1,
are serine/threonine protein kinases that contain an amino-
terminal catalytic kinase domain, a central coiled-coil
domain in which Rho/GTP binds, and a carboxy-terminal
pleckstrin homology (PH) domain which is split by a
cysteine-rich region (66-67). Insulin receptor substrate
proteins (IRS) also contain an amino terminal PH domain
and phosphotyrosine binding (PTB) domain. The PH
domain is required for efficient phosphorylation of IRS-1
by the insulin receptor (68-69). A previous study by Farah
et al (70) have shown that in Xenopus oocytes the carboxyl
terminus of xROK-a (xROK-a-C) associated with PTB
xIRS-1 domain and this association was further increased
by  RhoAV14.  Microinjection of xROK-C mRNA into
Xenopus oocytes selectively inhibited insulin-induced
mitogen-activated protein kinase activation (MAPK) with a
concomitant inhibition of oocyte maturation (71). We
examined interaction between ROK-?a and IRS-1 and its
impact on downstream insulin signaling in VSMCs infected
with dominant negative and constitutively active RhoA
after exposure to insulin and thrombin.

5.1. Interaction between IRS-1 and Rho kinase and its
impact on downstream insulin signaling
           Potential interaction between ROK-a and IRS-1
investigated in VSMCs by co-immunoprecipitation studies
revealed a significant amount of ROK-a in association with
the IRS-1 protein (Figure 4A). Thrombin increased ROK-
alpha?/IRS-1 association which was prevented by insulin.
Basal ROK -a/IRS-1 association was increased in VSMCs
transfected with  constitutively RhoAV14. Thrombin
stimulation further increased ROK-a/IRS-1 association in
RhoAV14 expressing cells which was not prevented by

insulin. In contrast, VSMCs expressing dominant negative
RhoAN19 exhibited lack of thrombin-induced increase in
ROK-alpha/ IRS-1 association. An examination of the
activation status of Rho kinase bound to IRS-1 revealed
that insulin decreased IRS-1 associated Rho kinase activity
and prevented thrombin-induced elevations in Rho kinase.
Expression of RhoAV14 increased IRS-1 associated Rho
kinase activity while dominant negative RhoAN19

expressing cells revealed lack of thrombin-induced increase
in Rho kinase activity in the IRS-1 immunoprecipitates.
Insulin decreased Rho kinase activity in thrombin-treated
cells below basal values. Thus, it appears that insulin is
more effective in inhibiting ROK-a when cells were
exposed to thrombin in VSMCs expressing RhoAN19.
Potential impact of ROK-a/IRS-1 association on insulin-
induced IRS-1 tyrosine phosphorylation was examined n
VSMCs expressing the active and inactive forms of RhoA.
In control VSMCs, thrombin  did not interfere with insulin-
stimulated IRS-1 tyrosine phosphorylation. In contrast,
expression of activated RhoAV14 markedly reduced insulin
stimulated IRS-1 tyrosine phosphorylation (Figure 4B). In
contrast, VSMCs expressing dominant negative RhoAN19

exhibited a 5-fold increase in IRS-1 tyrosine
phosphorylation in the basal state, which was not affected
by thrombin treatment. Insulin-stimulated IRS-1 tyrosine
phosphorylation was accompanied by a 11-fold increase in
p85 PI3-kinase association with IRS-1 (Figure 4C).
VSMCs expressing activated RhoAV14 exhibited 80%
reduction in insulin-induced p85 PI3-kinase  association with
the IRS-1 in comparison  with control VSMCs expressing
vector alone. In contrast, VSMCs expressing dominant
negative RhoAN19 exhibited a 3-fold increase in basal
p85/IRS-1 association and an approximately 10-fold
increase in insulin-mediated p85 PI3-kinase/IRS-1 association.
Basal and insulin-stimulated P85 association with IRS-1
correlated very well with IRS-1 tyrosine phosphorylation in
controls and to a lesser in RhoAN19 expressing cells.

           The observed reductions in insulin-induced IRS-1
tyrosine phosphorylation and p85 PI3-kinase/IRS-1
association in cells expressing RhoAV14 were accompanied
by a marked decrease in PI3-kinase enzymatic activity in
the IRS-1 immunoprecipitates (72). In contrast, VSMCs
expressing dominant negative RhoAN19 exhibited insulin-
induced increase in PI3-kinase activation, which was
greater than that of control  VSMCs.

               Several studies have indicated that serine
phosphorylation of IRS-1 inhibits its tyrosine
phosphorylation and ability to associate with p85 subunit of
PI3-kinase, thereby rendering cells resistant to insulin (73-
74). To understand the mechanism whereby activated
RhoA inhibits tyrosine phosphorylation of IRS-1 and its
association with PI3-kinase, serine phosphorylation status
of IRS-1 was examined. As seen in Figure 5, VSMCs
expressing activated RhoAV14 exhibit a 3-fold increase in
basal IRS-1 serine phosphorylation in the IRS-1
immunoprecipitates which remained elevated upon
treatment with insulin when compared to control VSMCs.
In control VSMCs, insulin treatment decreased
phosphoserine content of IRS-1 and prevented thrombin-
induced increase in IRS-1 serine phosphorylation.
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Figure 5. Rho kinase phosphorylates IRS-1 at serine
residues.

Figure 6. Expression of cGK-1a  prevents Rho kinase/IRS-
1 association and potentiates insulin-stimulated IRS-
1tyrosine phosphorylation and its association with p85PI3-
kinase.

5.2.  Regulation of IRS-1 and Rho kinase interaction by
cGK1a

 Recent studies have shown that cGMP
inactivates Rho signaling by promoting phosphorylation of
RhoA via cGK Ia at serine 188, which interferes with the
translocation and anchoring of RhoA at the plasma
membrane surface (61). These observations together with
our recent results demonstrating that Rho kinase
inactivation by insulin could be reversed by inhibitors of
NOS and cGMP signaling pathway suggested that Rho
kinase activation status may be regulated by cGMP
signaling (38). Therefore, we examined the activation
status of ROK-a in VSMCs infected with adenoviral cGK
Ia, the downstream effector of cGMP, and tested whether
inactivation of Rho kinase by cGK Ia affects ROK-a
association with IRS-1 and insulin signaling. Infection of
VSMCs with Ad5.cGK Ia increased cGK Ia protein
expression by > 10 fold over that of non-infected VSMCs,
and increased basal cGK Ia enzymatic activity in the
absence of cGMP by 3-fold. cGMP treatment of Ad5.cGK
Ia cells produced a 4-fold increase in cGK I activity.
Insulin treatment resulted in a 2-fold increase in cGMP-
independent cGK 1 activity over basal presumably due to
endogenous production of cGMP by insulin (72). Thrombin
treatment did not alter cGK-I activity when present alone
nor did it interfere with insulin’s effect when added after
insulin treatment. This may be explained by the observation
that cGK Ia expression markedly inhibited basal as well as
thrombin-induced increase in Rho kinase activity in ROK-a
immunoprecipitates. ROK-a inactivation by cGK Ia was
accompanied by a marked decrease in ROK-a association
with IRS-1 in comparison to uninfected VSMCs (Figure
6A). In addition, cGK Ia infection increased insulin-

stimulated IRS-1 tyrosine phosphorylation (Figure 6B) by
10-fold in comparison to non-infected VSMCs.  This was
accompanied by increased insulin-mediated p85/IRS-1
association (Figure 6C) resulting in a 2 -fold increase in
PI3-kinase activity in the IRS-1 immunoprecipitates of
insulin-stimulated Ad5.cGK Ia cells.

5.3. Impact of hypertension and diabetes on regulation
of IRS-1 and Rho kinase interaction
               Our earlier studies have shown that VSMCs
isolated from spontaneously hypertensive rats (SHR)
exhibit insulin resistance in terms of PI3-kinase activation,
iNOS induction, as well as MBP activation when compared
to WKY (46). In contrast, the growth mediating effects of
insulin were enhanced in these cells due to sustained
MAPK activation (47).  To further investigate the
pathophysiological relevance of the interactions we
observed between ROK-a? and IRS-1, we examined VSMCs
isolated from SHR for potential changes in IRS-1/ROK-
alpha association in response to AII as these animals
exhibit hypersensitivity to AII. ROK-alpha? association with
IRS-1 was 2-fold higher in the basal state of  SHR
compared to that of WKY. Whereas  insulin pretreatment
decreased AII-induced ROK/ IRS-1 association in WKY, it
failed to reduce the basal as well as AII-mediated
ROK?/IRS-1 association in SHR. Increased ROK/IRS-1
association in SHR was also accompanied by marked
reductions in insulin-induced association of p85PI3-kinase

with IRS-1 as well as IRS-1 tyrosine phosphorylation.

6. SUMMARY AND PERSPECTIVE
 

An abnormal vasodilation is a major defect
observed in the arteries of diabetic and hypertensive
individuals. While almost all previous studies have focused
on the role of endothelial dysfunction in the development
of cardiovascular complications in diabetes, our studies
address an important, yet understudied, aspect of insulin
signaling-the molecular basis of regulation of myosin
associated phosphatase by insulin.  Myosin phosphatase is
responsible for dephosphorylation of myosin light chains,
which play a dominant role in vascular smooth muscle
contraction. Using two distinct approaches to elucidate the
exact role of Rho signaling in insulin activation of myosin
phosphatase, we have provided evidence that insulin
inhibits Rho kinase and site-specific phosphorylation of a
myosin-bound subunit, MBS in rat vascular smooth muscle
cell cultures to cause the activation of myosin-associated
phosphatase. Furthermore, insulin inhibits Rho
translocation and Rho kinase activation via NO/cGMP
signaling pathway. Thus, we have established the
interphase of these two signaling pathways in regulation of
VSMC contraction via MBS. Thus, in a therapeutic
context, the activation of myosin phosphatase could be of
value in preventing excessive contractility of VSMCs. A
putative model of insulin induced VSM relaxation is
presented in Figure 7.
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Figure 7.  A putative model of insulin-induced
vasorelaxation.
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