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1. ABSTRACT

A constant supply of cholesterol is needed as a
substrate for steroid hormone synthesis in steroidogenic
tissues. Although there are three potential sources, which
could contribute to the ‘cholesterol pool’, needed for
steroidogenesis (i.e., de novo synthesis, hydrolysis of stored
cholesteryl esters and exogenous lipoproteins), current
evidence suggests that plasma lipoproteins are the major
source of cholesterol for steroid production in adrenal
gland, ovary and, under certain conditions, testicular
Leydig cells. In many species, steroid producing cells and
tissues obtain this lipoprotein-cholesterol by a unique
pathway in which circulating lipoproteins bind to the
surface of the steroidogenic cells and contribute their
cholesteryl esters to the cells by a ‘selective’ process. This
is a process in which cholesterol is selectively absorbed
while the lipoprotein remains at the cell surface. The
discovery of a specific receptor for this process (scavenger
receptor class B, type I, known as SR-BI) has
revolutionized our knowledge about the selective uptake
pathway. The present review summarizes the functional
importance of the selective pathway as a bulk cholesterol
delivery system for steroidogenesis, and attempts to detail
the expression, regulation and characteristics of SR-BI as it
is deployed in steroidogenic systems as a means of
achieving cholesterol balance.

998

2. INTRODUCTION

Cholesterol is an essential structural component
of mammalian cell membranes (1,2) and is the major
regulator of numerous cellular processes including signal
transduction, receptor function, membrane micro-domains
(rafts and caveolae), gene expression, cell growth, and
lipoprotein synthesis (3-11). It is also the sole biosynthetic
precursor for steroid hormones, bile acids and vitamin D
(12-15). To meet the cellular demands for product
formation, cells obtain cholesterol by de novo synthesis
from acetate in the endoplasmic reticulum and by
internalization of cholesterol from plasma lipoproteins.
However, since excess free cholesterol is toxic in most
cells, complex mechanisms exist that tightly regulate
cholesterol homeostasis through a balance of influx,
synthesis, catabolism and efflux to ensure a constant
supply, yet avoid excess. In addition, a second tier of
safeguards is generally achieved via the sequestration of
free cholesterol in cell membranes, primarily the plasma
membrane (which is estimated to contain approximately
65-80% of total free cellular cholesterol), (3) and storage in
lipid droplets in the form of cholesteryl esters (16).

The steroid producing tissues such as gonads,
adrenal gland and placenta display a dual requirement for
cholesterol as an essential architectural component of



SR-BI and selective cholesterol transport in steroidogenic tissues

cellular membranes and as a precursor for steroid hormone
synthesis (13,17-21). These specialized tissues have the
potential to obtain and utilize cholesterol for steroid
biosynthesis from a number of sources including
cholesterol synthesized de novo, cholesterol acquired from
cholesterol-rich  circulating low- and high-density
lipoproteins, and cholesterol concentrated in the plasma
membrane or stored in cytoplasmic lipid inclusions (lipid
droplets) as cholesteryl esters (22-25). However, there is
now overwhelming evidence to suggest that adrenal,
ovarian, placental, and possibly testicular tissues and cells
of many species including human, preferentially utilize
lipoprotein-derived cholesterol for steroid hormone
production (25). During the past two decades considerable
progress has been made regarding the mechanisms and
regulation of wuptake of lipoprotein cholesterol by
steroidogenic organs (22-25). Two major and entirely
separate and physiologically regulated cholesterol transport
pathways for delivering lipoprotein cholesterol have been
identified and well characterized in various steroidogenic
cells. These are broadly classified as low capacity
‘endocytic’ (26,27) and bulk delivery ‘selective’ (25,28,29)
cholesteryl ester uptake pathways. In the former case,
lipoprotein-derived cholesterol can be delivered by
endocytic uptake in which human LDL, or other
apolipoprotein B- or apolipoprotein E- containing
lipoproteins bind to the LDL (B/E) receptor, located
predominantly within the clathrin coated pits on the cell
surface and the entire LDL-receptor complex is rapidly
internalized by endocytosis (26,27). Subsequently,
endocytosed cholesterol moves to the late endocytic
compartment for its release into the cell interior (26,27). In
contrast, the bulk delivery selective pathway differs from
endocytic pathway in that exogenous circulating
lipoproteins (such as HDL) contribute their cholesteryl
esters to cells without internalization of the intact particle
(25,28-30). Thus, in selective cholesterol uptake process,
lipoprotein  lipids enter cells unaccompanied by
apolipoproteins. In this review, we summarize the major
events involved in lipid transport into the gonads and
adrenal gland with particular emphasis on the selective
pathway and its receptor, scavenger receptor class B, type I
(SR-BI).

3. LIPOPROTEIN CHOLESTEROL: TRANSPORT,
INTRACELLULAR PROCESSING AND
UTILIZATION IN STEROIDOGENESIS

3.1. Steroidogenesis: an overview

Although the focus of this review is the
mechanism and regulation of cholesterol transport in
adrenals and gonads, in order to familiarize the readers, a
brief overview regarding the critical events involved in
steroid hormone biosynthesis is warranted. Steroidogenesis
is under the control of many players. Tissue-specific

peptide hormones mainly regulate the rate of
steroidogenesis, but other agents also control
steroidogenesis ~ (31-33).  Thus, adrenocorticotropic
hormone (ACTH) increases glucocorticoid
(cortisol/corticosterone)  synthesis in adrenal cortex
fasiculata-reticularis cells; ACTH or angiotensin II

increases mineralocorticoid aldosterone synthesis in
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adrenal glomerulosa cells; human chorionic gonadotropin
(hCG) or luteinizing hormone (LH) increases progestin
synthesis in luteinized granulosa/luteal cells; follicle
stimulating hormone (FSH) stimulates progestin and
estrogen synthesis; LH regulates androgen synthesis in
theca cells; and LH increases androgen (testosterone)
synthesis in testicular Leydig cells (13,33). Although the
final steroid product differs among these cell types, the first
committed step in the biosynthesis of steroids begins with
the cleavage of a six-carbon unit from the 27carbon
cholesterol molecule to form the common steroid precursor,
21 carbon pregnenolone (13,33,34). This NADPH
dependent reaction is catalyzed by the side chain cleavage
(SCC) cytochrome P450 (P450scc) complex, which is
comprised of a flavoprotein (NADH-adrenodoxin
reductase), a Fe,-S;* type iron—sulfur protein
(adrenodoxin) and a hemoprotein CYP11A1 (cytochrome
P450scc) localized in the inner mitochondrial membranes
(34). As in many metabolic pathways, this initial reaction
is the site of steroid hormone regulation, and its rate
determines the flux through the pathway. The rate limiting
nature of this step is not determined by the activity of
CYP11A1 (i.e.,, enzymatic conversion of cholesterol to
pregnenolone) but rather the delivery of cholesterol to the
substrate site of CYP11A1 (i.e., translocation of cholesterol
from an outer to an inner mitochondrial [steroidogenic]
pool readily accessible to CYP11A1) (34,35). Trophic
hormones rapidly stimulate this process by acting through a
cAMP second messenger system, to facilitate mobilization
of intracellular cholesterol and its transport and
accumulation at the inner mitochondrial sites of the
P450scc (CYP11A1) system (36,37).

The entire process of intracellular cholesterol
transport to mitochondria can be broadly divided into two
separate but equally important steps. In the first step of the
acute steroid response, activation of neutral cholesteryl
esterase by  protein  kinase-A  (PKA)-catalyzed
phosphorylation  hydrolyzes stored (lipid droplet)
cholesteryl esters (CE) to free cholesterol (FC) (38), which,
in turn, is transported to the outer mitochondrial membrane.
In addition, depending on cell type, the cAMP-PKA
signaling cascade may also directly mobilize cholesterol
from plasma membrane or other cellular membranes to the
outer mitochondrial membrane (25). Because cholesterol is
a hydrophobic molecule and diffuses poorly in an aqueous
environment, a number of putative factors including
cholesterol transport proteins such as sterol carrier protein 2
(SCP,) (39-41) and steroidogenesis activator polypeptide
(SAP) (39,40,42), cytoskeletal components/structures (43)
and changes in cellular architecture (33,37,40) have been
suggested to facilitate cholesterol transport to the outer
mitochondrial membrane, however, their mechanisms of
action have not been fully established. The second critical
step is the delivery of the substrate, cholesterol, to the inner
mitochondrial membrane P450scc site.  This step is
considered rate limiting because hydrophobic cholesterol
cannot rapidly diffuse through the aqueous intermembrane
space of the mitochondria to support acute steroid
synthesis, and requires the de novo synthesis and
participation of a labile protein (33,44). The recently
characterized steroidogenic acute regulatory (StAR) protein
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is an indispensable component in this process and is now
considered the best candidate to fulfill the role of a putative
labile protein that is essential for the translocation of
cholesterol to inner mitochondrial sites of P450scc
(33,45,46). Recently, the peripheral-type benzodiazepine
receptor (PBR), which is present in the mitochondrial
membranes of steroid producing cells, and its endogenous
ligand, diazepam binding inhibitor (DBI), have also been
shown to play a role in the transport of cholesterol (47).
There is now evidence that StAR and PBR may
heterodimerize (48) and that their physical interaction is
important for efficient cholesterol transport from the outer
to the inner mitochondrial membranes (49). Thus, there is
likelihood that StAR, PBR/DBI and perhaps SCP,, SAP
and other StAR-related lipid transfer proteins (3,50,51)
may function in concert to support normal transport of
cholesterol from the outer to the inner mitochondrial
membrane.

3.2. Evidence that lipoprotein cholesterol is a primary
precursor for steroid biosynthesis: a historical
perspective

In 1945, the pioneering work of Block (22,53)
provided the first direct evidence that steroid hormones are
derived from cholesterol by feeding radiolabeled
cholesterol to a pregnant woman and subsequently
recovering labeled pregnanediol from her urine. In the
succeeding 15-20 years, extensive studies were conducted
to further establish a precursor role for cholesterol in the
biosynthesis of steroidal products by various steroidogenic
glands (53-55). Srere and collaborators (56,57) were the
first group of investigators to experimentally demonstrate
that slices of bovine adrenocortical and testicular tissues
could incorporate radiolabeled acetate into cholesterol and
transform newly synthesized cholesterol into steroid
products. Hechter et al (58) and Savard et al (59)
confirmed these pioneering studies in vivo with adrenal and
testicular tissues, respectively, while Sweat et al (60) and
Hellig and Savard (61) reported similar findings using the
bovine corpus luteum.

Later, with the advent of improved technologies,
a great majority of studies were devoted to determine the
extent to which exogenous versus endogenous cholesterol
contributes to steroidogenesis. In a classic experiment,
Morris and Chaikoff (62) fed ['*C] cholesterol to male rats
and observed that with time, the specific activity of adrenal
cholesterol became equal to that of plasma. These data
were interpreted to suggest that the majority of adrenal
cholesterol was derived from plasma cholesterol and not
from de novo synthesis. Similarly, Krum et al (63) reported
that the relative specific activities of plasma unesterified
cholesterol, adrenal unesterified cholesterol, and plasma
corticosteroids were identical when dogs were fed ["*C]
cholesterol for long periods. These authors also concluded
that almost all of the cholesterol needed for steroid
synthesis was derived from circulation. Using a similar
experimental strategy, Flint and Armstrong (64) reported
rapid equilibration of in vivo infused ["*C] cholesterol with
the rat ovarian unesterified cholesterol and newly
synthesized progestins, confirming that ovaries, like
adrenals, preferentially  utilize lipoprotein-supplied
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cholesterol for steroidogenesis. Further studies by Dexter
et al (65) showed that ACTH treatment enhanced adrenal
uptake of [*H] cholesterol from plasma, and thus, provided
the first evidence that lipoprotein-derived cholesterol
uptake by adrenals is a hormonally regulated process.
Finally, Borkowski et al (66,67) and Bolte et al (68,69),
using complex in vivo isotopic kinetic studies, provided
evidence that human adrenals, ovaries and placenta also
obtain the bulk of their cholesterol from plasma-associated
cholesterol.

Once it was established that adrenal and ovarian
tissues preferentially utilize plasma supplied cholesterol for
steroid synthesis, a great majority of follow-up studies
focused attention on the problems of how hepatic and
steroidogenic tissues acquire cholesterol from plasma
lipoproteins and whether significant differences existed in
the mode of cholesterol transport between low-density
(LDL) and high-density (HDL) lipoproteins.  These
investigations were aided by the timely introduction of
hypocholesterolemic animal models in which various
lipoprotein fractions were markedly reduced with the
administration of pharmacological agents such as 4-
aminopyrazolo [3,4-d] pyrimidine (4-APP) (70,71) and 17
alpha-ethinyl estradiol (17 alpha-E;) (72,73). Andersen
and Dietschy were the first to utilize one of these models
(4-APP) to evaluate potential regulatory actions of LDL
and HDL on sterol synthesis as an indirect measure of
cholesterol transport in rat ovary and adrenal gland (74).
They observed that infusion of HDL markedly suppressed
sterol synthesis in these two tissues. In contrast,
physiological doses of LDL had no significant effect on
sterol synthesis in the ovary and caused only a modest
suppression in the adrenal gland (73). On the basis of these
observations and other published reports in laboratory
animals, these investigators raised the possibility of the
existence of two transport systems; one LDL system (i.e.,
LDL receptor/endocytic pathway) that regulates sterol
synthesis in a number of non-hepatic, nonendocrine tissues,
and a second HDL system that principally regulates sterol
synthesis in the ovary and adrenal gland (74). Moreover,
the same investigators in another report were able to further
conclude that three principal steroidogenic tissues, rat
adrenal gland, testis and ovary preferentially take up and
utilize HDL-derived, rather than LDL-derived, cholesterol
for the production of steroid hormones (73). Finally, the
use of two independent techniques designed to quantify in
vivo uptake of lipoprotein cholesterol led to the
unequivocal demonstration that HDL and LDL supply
cholesterol to the adrenal gland and ovary by separate
mechanisms involving two different pathways (75-78), i.e.,
LDL supplies cholesterol via the B/E receptor/endocytic
pathway while HDL donates its cholesterol via a pathway
that does not involve an endocytic process. This putative
HDL pathway has now been well characterized and is
commonly referred to as the ‘selective’ pathway (25,28-
30).

3.3. Uptake of lipoprotein cholesterol via the LDL
(B/E)-receptor mediated ‘endocytic’ pathway

The low-density lipoprotein (LDL) receptor
(LDL-R) is a prototypic member of a rapidly enlarging
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family of single transmembrane glycoproteins, generally
identified as a cell surface associated endocytosis receptors,
which bind and efficiently internalize extracellular ligands
for proteolytic degradation by lysosomes (26,27). At
present, this family consists of nine members in mammals:
the LDL-R itself, a very low-density lipoprotein receptor
(VLDL-R), the LDL-R-related proteins (LRP)/o,-
macroglobulin receptor (a,MR) (here referred to as LRP1),
LRPI1B, epithelial glycoprotein 330/megalin (LRP2),
LRP5, LRP6, the apolipoprotein E receptor 2 (apoER2,
also called LRP8), and SorLA/LR11 (26,27,79-83). While
other members of this gene family bind and internalize a
variety of structurally and functionally diverse ligands and
play significant roles in development, cell signaling and
pathogenesis, the sole function of the LDL-receptor protein
is to mediate the uptake and intracellular degradation of
cholesterol-rich lipoproteins for cholesterol delivery to the
cell interior. The pioneering work of Brown and Goldstein
(26) led to the identification and functional characterization
of the LDL-receptor and its associated endocytic pathway.
The LDL-receptor is a transmembrane glycoprotein of 839
amino acids, is predominantly localized in clathrin-coated
pits and undergoes constitutive endocytosis and recycling
(26,27). 1t specifically binds apoB 100 (LDL) and apoE-
containing lipoproteins (26,27). Following binding, the
LDL (or apoE lipoprotein)-complex is rapidly internalized
by endocytosis. Within the cell, LDL-receptor complexes
rapidly dissociate as the endosomal pH falls, and the
receptor recycles back to the cell surface. The resulting
endosome containing the whole LDL particle is delivered
to, and fuses with, lysosomes, where the lipid and protein
components are degraded by acid proteases and lipases.
The free cholesterol released by the hydrolysis of
cholesterol esters by lysosomal acid lipase enters the
cytoplasm where it can now be utilized for product
formation, membrane biogenesis, or re-esterified and
stored in lipid droplets.

Numerous studies carried out during the late 70s
and mid 80s led to the demonstration that the adrenal,
ovary, and testis from a number of animal species all
express the classical LDL-receptor pathway (23-25).
However, the extent of the functional expression of this
pathway was shown to vary considerably with the tissue
and species being examined as well as the experimental
conditions employed to study its expression. For example,
cultured mouse adrenal (Y-1) and bovine adrenocortical
cells were shown to express significant levels of LDL
receptors and internalize sufficient amounts of LDL-
derived cholesterol for use in steroid hormone biosynthesis
(84-86). Also, both LDL receptor activity and endocytic
degradation of LDL can be upregulated following treatment
of these cell types with ACTH (84-88). Likewise,
angiotensin Il was also shown to stimulate receptor-
mediated uptake of LDL in bovine adrenal cells (89), and
ACTH treatment in vivo or 17alpha-ethinyl estradiol-
induced hypocholesterolemia enhanced the LDL receptor
binding activity in isolated rat adrenal membranes
(88,90,91). Strott reported that while the high affinity LDL
binding capacity was comparable in the outer
(glomerulosa/fasciculata) and inner (reticularis) zones of
control guinea pig adrenal cortex, only the outer zone
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activity responded to ACTH stimulation (92). Human fetal
adrenals also possess an LDL receptor pathway that
supplies cholesterol for steroid synthesis and is subjected to
dual hormonal and cholesterol regulation (93). Besides
these studies, there are many additional reports covering
various aspects of the LDL-receptor pathway and
utilization of LDL-cholesterol for glucocorticoid synthesis
in different adrenal systems including human (94,95), rat
(96-100), hamster (99,100,101), cattle (97,102-104), sheep
(105), squirrel monkey (106), rabbit (97, 107), pig (108),
mouse (76,87,109), guinea pig (110,111) and dog (112).

Data concerning the in vivo utilization of LDL
cholesterol by adrenals are also available. A number of
reports from the laboratories of Dietschy and colleagues
(74,75,77,78,113) and Brown and Goldstein (71,76)
demonstrated that infusion of human LDL into 4-APP-
treated rats restored the circulating lipoprotein levels to
almost normal levels and reversed the effects of the
hypocholesterolemia on adrenal cholesterol homeostasis
i.e., de novo cholesterol biosynthesis was suppressed
toward control levels as measured by reduced incorporation
of radiolabeled precursors into sterol by adrenal slices and
decreased activity of the rate-limiting enzyme, the HMG-
CoA reductase (71,74,75). In a follow-up study, Andersen
and Dietschy (77) determined the kinetic parameters of
lipoprotein-cholesterol transport by adrenals after infusing
human/rat LDL or human/rat HDL into the
hypocholesterolemic rats that were pre-treated with
aminoglutethimide to prevent further conversion of
cholesterol into steroids. The apparent half-maximal rate
of uptake (Km) of human LDL was 61 mg/dl with a Vmax
of 0.48 mg/pair of glands/h. Infusion of physiological
concentrations of rat LDL also resulted in the accumulation
of cholesterol into adrenals, and there was no difference in
the rate of cholesterol uptake from LDL of rat or human
origin, although the limited availability of rat LDL
precluded complete kinetic comparisons between rat LDL
and human LDL (75,77). [Interestingly, adrenal uptake of
both human- and rat HDL-cholesterol was roughly five
times more efficient than with either human or rat LDL
(77,78)]. Finally, Pittman et al (114), using residualizing
[*C] sucrose-human LDL, were able to not only confirm
the above findings that adrenal glands accumulate LDL-
cholesterol in vivo, but further demonstrated that of all the
tissues examined, the adrenal took up the LDL at the
highest rate followed by the ovary (114).

The pathway of LDL-cholesterol transport and
utilization of LDL cholesterol for steroidogenesis was
studied with almost the same intensity in the ovary as in the
adrenal gland and available data are indicative of a
functional but variable role of the LDL receptor pathway in
supplying cholesterol for gonadal hormone synthesis in
various ovarian tissue and cell models. Strauss and
colleagues were the first to extensively characterize LDL
processing via the LDL-receptor endocytic pathway as well
as utilization of LDL-cholesterol for progestin production
in rat and human granulosa-luteal cells. Initially, Schuler et
al (115) demonstrated that progestin secretion by cultured
luteinized human granulosa cells was markedly reduced
when cells were cultured in medium supplemented with
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serum deficient in lipoprotein cholesterol, although the
incorporation of ['*C] acetate into cellular sterols and
secreted progestins was substantially increased. In
contrast, addition of high concentrations of human LDL
effectively suppressed the ["*C] precursor incorporation
into sterols and secreted progestins, but enhanced its
incorporation into fatty acids of stored cellular cholesterol
esters in a dose dependent manner, thus providing the first
direct evidence of a functional role of LDL-derived
cholesterol in the regulation of granulosa cell cholesterol
homeostasis and steroid synthesis. Later Soto et al (116)
and Golos et al (117), carrying out complex kinetic studies,
concluded that LDL-derived cholesterol is required for
maximal steroidogenic response of luteinized human
granulosa cells to tropic hormones such as LH/hCG or its
second messenger, cCAMP and that these agents stimulated
the cellular uptake and metabolism of LDL-cholesterol and
promoted the conversion of LDL-cholesterol into steroid
products. Paavola et al (118,119) wused electron
microscopic, cytochemical and biochemical techniques to
identify the critical events involved in the uptake and
metabolism of LDL in human and rat granulosa cells,
which require lipoprotein-cholesterol for full functional
activity related to steroidogenesis. It was also reported that
in granulosa cells, trophic hormones and their second
messenger, cAMP, positively regulate LDL-receptor
expression (120,121). At the same time, earlier work from
our own laboratory demonstrated that freshly isolated rat
granulosa cells express very little LDL-receptor, but show
posttranslational increases in receptor activity with time in
culture and also respond to hormonal and cAMP
stimulation with transcriptional increases in LDL-receptor
levels (121).

Utilizing freshly isolated rat luteal cells, several
investigators reported enhanced lipoprotein-supported
progestin synthesis and secretion (122-125). Azhar &
Menon (122,123) further reported that LDL (or HDL)
stimulation was most apparent when luteal cells were
isolated from hypocholesterolemic (4-APP treated) rats or
when cells were co-incubated with lipoprotein + trophic
hormones or cAMP analogs. Subsequent studies confirmed
LDL-supported steroidogenesis in a variety of ovarian cells
including mouse granulosa cells (126), bovine luteal cells
(127), pig granulosa cells (128,129), monkey granulosa
cells (130), bovine theca and granulosa cells (131), hamster
follicles (132), porcine luteal cells (133), ovine luteal cells
(134), rabbit luteal cells (135), rat theca cells (136), rat
granulosa cells (137,138) and organ culture or human
corpus luteum (139).

Much less information is available on the
expression of the LDL-receptor pathway and LDL
metabolism by testicular Leydig cells as compared with our
understanding of adrenal and ovarian systems. Classical
experiments of Morris and Chaikoff (62) provided the first
evidence that rat testis relies primarily on endogenously

synthesized cholesterol for steroidogenesis despite
cholesterol feeding and excess availability of lipoprotein-
derived cholesterol. In 4-APP-treated

hypocholesterolemic rats, Andersen and Dietschy found
little difference in the rate of cholesterol synthesis in the
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testis as compared with controls, whereas rates of sterol
synthesis were markedly increased in adrenal gland (42-
fold) and ovary (2.7-fold) (75). Also, we reported
previously that human LDL did not alter the rates of basal
and hCG-stimulated testosterone production by freshly
isolated rat Leydig cells during short-term incubations
(140). Likewise, murine Leydig cells utilize endogenous
cholesterol to support steroidogenesis and exogenous
mouse LDL does not exert any modulatory actions on
testosterone biosynthesis (141). Thus, there seems to be a
consensus that normal rodent Leydig cells preferentially
utilize endogenously supplied cholesterol for testosterone
production, and that exogenously supplied (LDL or HDL)
cholesterol probably does not have a significant impact on
androgen synthesis in these cells. However, these rodent
Leydig cells can be programmed, following physiological
manipulations, to effectively acquire and utilize LDL (or
HDL) cholesterol for steroid synthesis. For example,
Quinn et al (142) reported that the addition of human LDL
to incubation medium increased testosterone synthesis by
Leydig cells from rats pretreated with a desensitizing dose
of human chrionic gonadotropin, while it had no effect on
testosterone production by cells from control animals.
Charreau et al reported very similar findings (143).
Employing an alternative strategy to deplete intracellular
cholesterol, Freeman and Ascoli (144) and Schreiber et al
(145) reported that the presence of LDL had little or no
effect on the amount of steroid products synthesized during
the acute phase of stimulation of MA-10 and rat Leydig
cells, respectively, but that it greatly enhanced steroid
secretion during prolonged hormonal stimulation by
directly providing cholesterol substrate to cells. In contrast
to rodent Leydig cells, pig Leydig cells acquire >75% of
their cholesterol for steroidogenesis from circulating
lipoproteins (146). Moreover, it was demonstrated that
addition of either human LDL or porcine LDL substantially
enhanced both basal and hCG-stimulated testosterone
production by pig Leydig cells (146). Human fetal Leydig
cells show similar dependence on both low-density
lipoprotein cholesterol and de novo synthesized cholesterol
as a precursor for testosterone synthesis (147).

Although the vast evidence presented above may
be indicative of the LDL-receptor pathway being a major
contributor of cholesterol for steroidogenesis, in reality this
may not be the case. First, the LDL-receptor pathway is a
high affinity and low capacity cholesterol delivery system,
and therefore, it may not be an economical and/or efficient
means of delivering bulk quantity of cholesterol needed for
cellular steroidogenesis. Second, given that the functional
expression of the LDL-receptor is inversely related to
cellular sterols levels (26) and that adrenal, ovarian and
some testicular Leydig cells systems are known to store
large quantities of cholesterol (23-25), which should keep
this pathway dysfunctional under normal physiological
conditions, also argue against a significant role of LDL-
endocytic pathway in supplying cholesterol for
steroidogenesis. Third, exhaustive kinetic, physiological,
pharmacological, and hormonal studies performed in the
past suggested that HDL was the preferred donor in
providing cholesterol for steroid hormone biosynthesis (74-
77,90,91,150-153). Finally, a number of combined
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biochemical and morphological studies reported previously
from our laboratory led to the unequivocal demonstration
that adrenal and ovarian tissues take up and process the
bulk of HDL or other lipoprotein-derived cholesterol by an
alternative pathway, which did not require internalization
and degradation of the intact particle (90,148,150,153-155).
Indeed, with the recent discovery of SR-BI, extensive
characterization of the SR-Bl-linked ‘selective’ pathway
and robust expression of SR-Bl/selective pathway in
steroidogenic tissues and cells all have resulted in the
general acceptance of the selective pathway as a major
route for the delivery of HDL-cholesterol esters in gonadal
and adrenal cells both in vitro and in vivo (25,28-30).
Based on kinetic measurements, it is estimated that this
pathway roughly accounts for >90% of total cholesterol
transported into steroidogenic cells for steroid synthesis or
cholesteryl ester storage in lipid droplets (25,29,90,91). In
the remaining sections of the review, we will focus our
efforts toward describing the characteristics of the selective
pathway; its contribution in the regulation of
steroidogenesis, functional expression of SR-BI and the
potential mechanisms involved in SR-BI mediated selective
CE transport.

3.4. Uptake of lipoprotein cholesterol via the ‘selective’
pathway

The steroidogenic tissues and other high-
cholesterol requiring tissues such as liver obtain much of
the lipoprotein-derived cholesterol by an alternative,
nonendocytic pathway commonly referred to as the
“selective” pathway.  This pathway is defined as a high
capacity, nonendocytic, physiologically regulated bulk
delivery system in which cells internalize large amounts of
cholesteryl esters (and other lipids) (25,28,29) and is
fundamentally distinct from the endocytic pathway used by
LDL receptor wherein LDL binds to its receptor, is
internalized via clathrin coated pits and vesicles and is
transported to lysosomes for whole particle degradation
(26,27). In the selective pathway, HDL-CE is taken up by
a non-endocytic mechanism without significant degradation
of the apolipoprotein component of the particle or whole
particle uptake (148,150,157-162). Thereafter, cholesteryl
ester molecules are irreversibly translocated into the cell
interior and are hydrolyzed by a non-lysosomal route
possibly  involving  neutral  cholesteryl  esterase
(161,162,164,165). In steroidogenic cells, which require
large quantities of internalized cholesterol for hormone
production, the cholesteryl esters may be directly used for
steroid synthesis or stored in lipid droplets with or without
prior hydrolysis (138,161,162,167). The scavenger
receptor class B type I (SR-BI) is now recognized with few
exceptions, as a functional receptor linked to the ‘selective’
pathway to facilitate the selective transport of lipoprotein-
derived CE in steroidogenic, and other high cholesterol
requiring cells, both under in vitro and in vivo conditions
(25,28-30).

The earliest clue about the existence of the
selective pathway was provided by the work of Dietschy
and his collaborating investigators (75,77). Using
techniques that allowed them to compare the binding of
different lipoproteins and to accurately measure the rates of
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uptake of lipoprotein-derived cholesterol in vivo, they were
able to show that HDL, irrespective of its source,
manifested disproportionally greater uptake to the adrenal
gland and ovary (75,77). Furthermore, it was found that at
physiological concentrations, both human and rat LDL
were 10 times less efficient in delivering cholesterol to the
adrenal gland compared with rates observed with human or
rat HDL (77). Moreover, when saturating concentrations of
both HDL and LDL were infused together, the rate of
cholesterol uptake essentially equaled the sum of the
maximal transport rates for the two lipoproteins. These
data were interpreted to suggest that the rat adrenal gland
and ovary take up LDL and HDL by separate mechanisms
and that these two endocrine glands contain an alternative
pathway that specifically transports HDL-cholesterol (75-
77). Subsequently, Gwynne and Hess (157) extended the
in vitro characterization of HDL-cholesterol transport to
show that isolated rat adrenocortical cells possess a
specific, saturable, ACTH-dependent mechanism for the
uptake of HDL-cholesterol (157). Moreover, they found
that uptake of HDL-cholesterol was at least 4-fold greater
than the apoprotein and that internalization of HDL-
cholesterol did not require endocytosis and lysosomal
degradation of the entire HDL particle (157). Steinberg
and colleagues coined the term “selective uptake” for the
preferential delivery of HDL-derived CE to target cells
(158).  These investigators injected rats with HDL
containing '*I-tyramine cellobiose-labeled apo A-1 and
[*H] cholesteryl linoleyl ether (residualizing labels for
apolipoprotein and CE, respectively), and observed that
high-cholesterol requiring tissues such as liver, adrenal and
ovary took up the CE tracer 2 to 7-times more efficiently
than the Apo A-I label (158). A similar selective uptake of
HDL-cholesterol was reported in vitro in cultured
hepatocytes and adrenocortical cells (159). These initial
reports were followed by numerous investigations, which
resulted in extensive characterization of the selective CE
uptake pathway in various animal models, tissues and
cultured cell systems (25). Our laboratory was
instrumental in providing the physiological significance of
lipoprotein-derived selective CE uptake (25). Indeed, our
efforts led to the demonstration that adrenal gland, ovary
and, under certain conditions, testicular Leydig cells,
predominantly utilize this pathway to meet their cellular
cholesterol demands and to support steroidogenesis
(25,91,154,155,166,167).

The expression of the selective pathway is most
abundant in steroidogenic tissues (adrenal gland and
gonads) and liver (for a comprehensive review see # 25).
In the adrenal gland, the selective pathway is functional
primarily in the fasciculata-reticularis and glomerulosa
cells (25). Currently, there are reports of selective
cholesteryl ester uptake by adrenal tissues and cells in a
number of mammalian species including mouse (160,168-
172), rat (91,158-160,170), hamster (173), bovine
(174,175) and humans (94,95,175). Likewise, cells of
ovarian origin including mouse, rat and human granulosa
cells (126,138,161,168, 176,177), rat theca interstitial cells
(178) and rat luteal cells (90,148,150) also exhibit
significant levels of selective uptake of lipoprotein-CE
(25). In testis, normal Leydig cells show low selective
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uptake while the selective pathway is constitutively active in
R2C rat Leydig tumor cells, which take up substantial amounts
of HDL-CE under normal physiological conditions without
prior hormonal stimulation (179). This pathway is also
functional in the liver of several mammalian species (173,180-
183), in hepatocytes (159,160,184-187) fibroblasts (160,170),
adipocytes (188,189), and macrophages (190).

Support for the steroidogenic function of the
selective pathway comes mostly from studies with intact rat
adrenals, adrenocortical cells, luteinized ovaries, and cultured
granulosa cells. It was first reported that ACTH stimulates
selective uptake several fold, in parallel with the stimulation of
corticosteroid synthesis (164,174). Employing ACTH-treated
primary rat adrenocortical cells, Gwynne and Mahaffee (157)
reported that HDL induces substantial stimulation of
steroidogenesis, which in most parts was accounted for by the
quantitative conversion of selectively internalized CE into
secreted steroids. Similarly in Y1-BS1 mouse adrenocortical
tumor cells, selectively internalized HDL-CE is preferentially
utilized for steroid hormone production (191). Additional
studies from our laboratory demonstrated that in situ perfused
rat adrenals, like adrenal gland in vivo (91) and adrenocortical
cells in culture, are capable of internalizing lipoprotein-derived
CE by the selective pathway (192). Interestingly, both rat
HDL (with apoE) and affinity-purified human HDL; (without
apoE) delivered similar amounts of CE to the cell interior as
estimated by doubly labeled residualizing tags on HDL
preparations and greater than 90% of CE from each lipoprotein
was transported via the selective pathway. Furthermore,
selectively internalized cholesterol accounted for much of the
corticosterone produced during in situ perfusion, while the
contribution from the endocytic pathway was minimal at best.

We performed similar in situ perfusion studies in
a rather specialized steroidogenic organ, the luteinized
ovary of superovulated immature rats, which requires
especially large amounts of exogenous lipoprotein-derived
cholesterol for progestin production (90,148,150). These
studies indicated that not only HDL, but also human LDL,
which is a prototypic ligand for the LDL-receptor, supplies
cholesterol to the luteinized ovary by the nonendocytic
pathway. Indeed, by employing combined biochemical and
morphological approaches, we were able to demonstrate
that both rat and human HDL and LDL bind primarily and
similarly to the surface of ovarian luteal cells and
selectively release cholesterol for steroidogenesis without
internalization and uptake of intact particles
(91,149,151,157,159). In each instance, selective
cholesteryl ester uptake paralleled a dramatic increase in
the steroidogenic output of the perfused ovary. What was
of particular interest in this system was the observation that
despite the presence of LDL-receptor protein in luteinized
ovary (91), intact LDL particles were not internalized and
degraded to any significant extent, instead LDL interacted
with the luteal tissue atypically, and delivered cholesterol
principally through the selective pathway (151). Green and
Pittman subsequently confirmed these observations (196).

The situation is, however, quite different for
cultured cells where functional efficiencies of endocytic
and selective pathways are often dictated by the
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apolipoprotein composition of the lipoprotein preparations
as well as the culture conditions. For example, Y1 mouse
adrenocortical cells, express fully functional LDL (B/E)-
receptor/endocytic (22,84,87) and selective pathways
(138,171,172,191) and depending on the type of lipoprotein
used (human LDL vs human HDL;) and culture conditions
employed (i.e., cells grown in serum or lipoprotein
deficient serum), the cells can utilize one of the two
pathways and provide cholesterol for maximal steroid
production. Similarly, cultured rat ovarian granulosa cells can
internalize lipoprotein-derived cholesteryl esters through the
BJ/E receptor endocytic pathway or through the nonendocytic
selective pathway (121,138). In hormone-stimulated granulosa
cells, like Y1 adrenal cells, use of a specific cholesterol
delivery pathway is dependent upon which lipoproteins are
provided to the cells; our studies have shown that apoE-free
human HDL; particles are exclusively processed by the
selective pathway (121,138), most human LDL are processed
by the endocytic pathway (though they may also be processed
by the selective pathway) and rat HDL (with apoE) are
processed by both pathways. It is of interest that the two
cholesterol uptake pathways are equally efficient in cholesterol
delivery, and in any given experimental period, human HDL;
and human LDL (with equal amounts of CE to contribute) will
deliver an identical mass of CE to granulosa cells and support
steroidogenesis to the same extent.

In steroidogenic tissues, trophic hormones
(LH/hCG, FSH, ACTH) and their common second messenger
cAMP are the principal regulators of the selective uptake
process in vivo and in vitro. For example, ACTH stimulation
of primary rat adrenocortical cells, Y1 BS1 mouse adrenal
tumor cells or bovine adrenal cells is accompanied by
increased selective uptake of HDL cholesterol (164,174). Both
human adrenal glomerulosa and bovine adrenal cells also
respond to angiotensin II treatment with enhanced selective
uptake of HDL-CE (175). Hormonal regulation of selective
CE was also demonstrated in cultured granulosa cells. When
cultured under basal conditions, these cells take up very little
HDL-CE via the selective pathway but selective uptake of CE
is exponentially increased following stimulation and
luteinization of granulosa cells with FSH, stimulators of
adenylate cyclase or cAMP agonists (139). Qualitatively
similar stimulatory actions of cCAMP analogs on the selective
pathway were reported for both mouse and human granulosa
cells (126,176,177). More recently we have shown that
chronic in vivo treatment of adult rats with a desensitizing dose
of hCG results in enhanced selective delivery of HDL-CE in
isolated and purified testicular Leydig cells (170). Likewise,
hCG-induced desensitization of pseudopregnant rats is also
accompanied by a several-fold upregulation of selective CE
transport in the luteinized ovary in vivo (166).

Besides trophic hormones, a number of other agents
either directly or indirectly exert regulatory actions on the
function of the selective pathway. Lipid degrading enzymes
such as phospholipase A, (194), lipoprotein lipase (195,196),
hepatic lipase (197-199) and salt-stimulated cholesteryl
esterase (200) all enhance the sclective uptake process,
possibly by a mechanism which involves remodeling of the
HDL particle into a species with substantially increased
efficiency as a CE donor. There is some evidence that selective
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uptake is downregulated by providing cholesterol to cultured
cells and upregulated in certain rat tissues by lowering plasma
lipoprotein-cholesterol levels (201,202). A variety of other
factors such as apoE, CETP, proteoglycans and LRP/(1,-
macroglobulin receptors, fatty acids are known to modulate
selective lipoprotein-CE uptake in a variety of cell systems
(171, 178,189,198). Also, in order to ensure exceptionally
high and continuous rates of selective CE uptake, the
steroidogenic tissues have developed an exceptionally complex
and flexible network of microvillar channels at their cell
surface whose principal function is to trap large quantities of
lipoprotein particles and to facilitate selective CE uptake
(148,150,154-156).

Although the exact molecular mechanism(s) by
which cells selectively internalize large quantities of
cholesteryl esters has remained elusive, some aspects of the
selective uptake pathway have been well characterized. First
of all, selective uptake represents a saturable process involving
mass transfer of CE from HDL to the cell interior. There is
overwhelming biochemical and morphological evidence to
suggest that endocytosis is not required (148,150,160) and, in
general, there is no specific apolipoprotein requirement for the
process (90,91,161,170). The initial step in selective uptake
involves permissive transfer of cholesteryl esters from donor
lipoprotein (HDL) into specialized microdomains or specific
sites of the plasma membrane from which they are then
translocated to the interior of the cell by a process that appears
essentially irreversible (25,29,161,162,164). This phase of
selective cholesteryl ester transport shows no energy
dependence (163-165) but requires the participation of SR-BI
(25,28-30).  The fact that isolated plasma membrane
preparations exhibit selective CE uptake suggests cell
membranes can accomplish the initial phase of selective
transport without participation of potential cytoplasmic factors
(203-206). In contrast, the second or internalization phase of
the selective process is energy dependent and may require the
assistance of yet unidentified membranous/cytosolic protein
factor(s). A number of different metabolic, energy and
cytoskeletal disrupting agents can interfere with the transfer of
CE to the cell interior (161,162). Among these, the sulthydryl
reactive reagent, N-ethylmaleimide (NEM) completely blocks
the translocation of cholesterol from plasma membrane depots
to the interior of cell (161,162,176). Performing experiments
at cold temperature (4 °C) also interferes with the transfer of
CE (161,162). These studies suggest the involvement of
protein-mediated ~ energy-requiring  events at  the
membrane/cytoplasmic interface during the internalization
phase of selective uptake. The final phase of the selective
pathway is comprised of non-lysosomal processing of
internalized cholesteryl esters for steroid hormone synthesis,
membrane biogenesis, or storage in lipid droplets
(25,161,162).

4. SCAVENGER RECEPTOR CLASS B, TYPE I (SR-
BI)

4.1. Molecular Characteristics

The high-density lipoprotein (HDL) receptor,
scavenger receptor, class B, type I (SR-BI) binds HDL and
other lipoprotein particles and facilitates selective transport
of lipoprotein (HDL)-associated lipids, primarily neutral

1005

lipids such as cholesteryl esters to cells (25,28-30). SR-BI
belongs to a class B scavenger receptor superfamily of
proteins, which also includes cluster determinant 36
(CD36), lysosomal integral membrane protein II (LIMP II),
two  Drosophila  melanogaster  proteins, epithelial
membrane protein (emp) and hemocyte/macrophage
receptor (croquemort), a membrane protein of olfactory
neurons of the silk moth, Antheraea polyphemus (Snmp-1),
and a putative protein from Caenorhabditis elegance
(25,28). It was independently cloned by two different
laboratories; first as a human CLA-I (CD36 and LIMP II
Analogous-I) by virtue of its sequence similarity to CD 36
and LIMP II (207) and later as a rodent CD 36-related class
B scavenger receptor from a Chinese hamster ovary cell
line (208). SR-BI is a 509-amino acid (aa), ~82 kDa
integral membrane cell surface glycoprotein with a
horseshoe-like membrane topology consisting of a short N-

terminal cytoplasmic domain (9 aa residues), a
transmembrane domain (22 aa residues), a large
extracellular domain (408 aa residues), a second

transmembrane domain (23 aa residues) and a C-terminal
cytoplasmic tail (44 aa residues) (28,29). The protein is
highly conserved among various mammalian species; the
predicted protein sequences of the hamster, mouse, rat, cow
and human SR-BI show ~75-80% identity over their 509-
amino-acid lengths (28). An alternatively spliced form of
SR-BI, termed SR-BII or SR-BI.2 in which 42 of the 45 C-
terminal amino acid residues in C-terminal cytoplasmic
domain of SR-BI are replaced by 40 entirely different
amino acid residues (209), is also expressed in some cell
types and is capable of mediating low level selective uptake
of neutral lipids from HDL (210).

SR-BI is a heavily glycosylated protein and this
accounts for the difference between its mass deduced from
the amino acid sequence (~57 kDa) and that observed by
SDS-PAGE/Western  blot  analysis  (~82-86  kDa)
(28,29,211). The extracellular domain of SR-BI is N-
glycosylated at 11 sites of which two sites (positions 108
and 173) are essential for normal cell surface expression
and efficient lipid uptake but not for HDL binding (212).
Metabolic labeling of SR-BI overexpressing cells with
radiolabeled fatty acids demonstrated that SR-BI undergoes
fatty acylation in the form of myristoylation and
palmitoylation (214). However, palmitoylation is not
required for SR-BI expression and/or function, at least in
SR-BI overexpressing cultured cells (28,211).

4.2. Ligands for SR-BI

Cell surface-associated SR-BI binds rat and
human HDL with high affinity and specificity (25,28,29).
This binding, at least in part, involves apo-Al and
represents a saturable process insensitive to EDTA (28). In
addition, SR-BI can bind human LDL, human HDL,,
acetylated LDL, oxidized LDL and various other native and
modified lipoproteins (Table 1) (213-218). Upon binding
lipoproteins, SR-BI facilitates both the selective delivery of
lipoprotein CE to the cells and the bi-directional flow of
unesterified (free) cholesterol (219-222). Isolated apoAl,
apoAll, apoE2, apoE3, apoE4 and apoCIIl, either as lipid-
free proteins or as phospholipid/cholesterol complexed
discoidal particles (223-226), can also interact with SR-BI,
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Table 1. Ligands for SR-BI
Ligand

Lipoproteins

References
25,162,213-
218,223-227

Comments
Lipoprotein-CE
transport

Human high-density
lipoprotein, (hHDL,)
Human high-density
lipoprotein; (hHDL;)
Human low-density
lipoprotein (hLDL)
Rat high-density
lipoprotein (tHDL)
Acetylated LDL
Oxidized LDL
Tyrosylated HDL
Hypochlorite-
modified HDL
HDL-ApoAl
HDL-apoAl/apoAll
Discoidal
recombinant HDL
BODIPY-CE-HDL
Phospholipase A,
(PLA,) modified
HDL

CETP and hepatic
lipase-modified HDL
CETP and hepatic
lipase-modified HDL
Lipid-free or
lipoprotein-
associated apoAl,
apoAll and apoCII
Discoidal apoE,
apoE2, apoE3 and
apoE4-phospholipid
particles
Phospholipid/free
cholesterol-rich
lipoproteins
Phosphatidylserine Phagocytosis,
apoptosis

Viral transport
Binding and
phagocytosis  of
apoptotic cells
Scavenger
receptor function

227,232

233
229-231

Hepatitis C virus
Apoptotic cells

Miscellaneous
ligands

214,215,228

Fucoidan

Poly (G)/poly (I)
m-BSA
mal-BSA
AGE-BSA

m-BSA = maleylated bovine serum albumin (BSA); mal-
BSA = malondialdehyde BSA; AGE-BSA = advanced
glycation end product-conjugated-BSA

as do the lipid vesicles containing anionic phospholipids
(227). In addition, as a scavenger receptor, SR-BI binds
and shows high specificity towards a diverse group of non-
lipoprotein and non-lipid ligands. These include m-BSA,
mal-BSA, AGE-BSA, fucoidan, and poly (G)/poly (I)
(214,228). Current evidence suggests that SR-BI also
functions as a receptor for apoptotic cells and thus, may
have a role in the phagocytosis of apoptotic cells (229-231).
More recently, SR-BI has been linked to the uptake and
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intracellular transport of the hepatitis C virus (233). It is
interesting to note that when the hepatitis C virus core
protein is expressed in mammalian cells it assumes a
cytoplasmic localization and associates with cellular
storage lipid droplets (233). Considered together, these
reports point to a potential functional role of SR-BI and
cellular lipid metabolism in the viral cycle and
pathogenesis (232). In summary, SR-BI represents a multi-
lipoprotein, multi-apolipoprotein and multi-ligand receptor
that not only facilitates selective transport of lipoprotein-
derived neutral lipids to the cell but also is likely to
participate in the regulation of many additional diverse
metabolic processes.

4.3. SR-Bl-mediated selective cholesteryl ester uptake
and other SR-Bl-associated functions

SR-BI is now recognized as an authentic,
physiologically relevant HDL receptor, whose principal
function is to initiate selective transport of HDL-cholesterol
to the cells for the purpose of product formation or the
regulation of cholesterol homeostasis (25,28-30,234).
Since its original identification as a potential HDL receptor
in 1996, a number of subsequent studies have revealed a
tight functional association between SR-BI expression and
the selective cholesteryl ester uptake pathway (25,28,29).
Acton et al (208) initially showed that SR-Bl-transfected
Chinese hamster ovary cells bind HDL with high affinity
and take up both radiolabeled ([*H] cholesteryl ester or
ether) or fluorescent (Dil) lipid markers, and this idea was
reinforced by subsequent observations showing that SR-BI
itself was specifically associated with steroidogenic tissues,
liver and a variety of cell models known to use large
quantities of HDL cholesterol (25,28,29,234).  Direct
evidence for SR-BI function was provided by studies in
which antibody to the extracellular domain of mouse SR-BI
blocked HDL-CE selective uptake and delivery of HDL
cholesterol to the steroidogenic pathway in cultured murine
adrenocortical and ovarian granulosa cells (177,191).
Additional evidence for SR-Bl-mediated selective uptake
of HDL-associated cholesteryl esters was demonstrated in
genetically modified animals. Inactivation of the functional
SR-BI gene in mice increased plasma HDL cholesterol
levels, reduced neutral lipid stores in the adrenal gland and
ovary and decreased HDL cholesterol transport to the bile,
implicating SR-BI as necessary for HDL-cholesterol uptake
in vivo (235-237). Similarly, mice carrying an induced SR-
BI mutation that reduced hepatic SR-BI expression levels
by ~50% showed a similar reduction in hepatic HDL-CE
selective uptake (238). These studies were complemented
by studies in which hepatic SR-BI was overexpressed by
either an adenovirus vector (239) or via a transgene
(240,241).  SR-BI overexpression reduced circulating
levels of HDL and non-HDL-cholesterol, and increased
selective HDL-CE delivery to hepatocytes and the bile
(240-242). Taken together, these observations indicate that
SR-BI plays a key role in mediating HDL-CE selective
uptake in the liver and in steroidogenic cells, and in
influencing the plasma levels of HDL cholesterol in mice.

Numerous studies now indicate that SR-BI is
capable of mediating selective CE transport from a number
of different HDL preparations including human HDL,,
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human HDL;, rat HDL, and variously reconstituted HDL
particles (25). However, since HDL size, apolipoprotein
confirmation and apolipoprotein and lipid compositions
may influence HDL binding to SR-BI as well as the donor
efficiency of any given HDL, not all these HDL particles
deliver cholesteryl esters to cells with similar efficiencies.
For example, de Beer et al (216,224) have recently shown
that human HDL, binds to SR-BI with far greater affinity
than HDL; and a corresponding greater rate of selective CE
uptake was observed when comparisons were made using
sub-saturating concentrations of HDL, and HDL;.
Similarly, when the apparent K, values of rec-apoAl-rHDL
were compared with those of apoAl/apoAll-rec-HDL, the
apoAl-recHDL was shown to bind with ~3 fold greater
affinity to SR-BI overexpressing CHO cells than HDL
containing apoAl/apoAll (216,224). In contrast, the
selective cholesteryl ester uptake was not compromised,
and, in fact, the efficiency of selective CE uptake of SR-BI
bound apoAl/apoAll-rec-HDL was at least 4-5 fold greater
than apoAl-recHDL (227,246). Two other studies also
involving apoAl-recHDL and apoAl/apoAll-recHDL
particles, however, reached somewhat different conclusions
(243,244). These studies demonstrated that ApoAl and
apoAl/apoAll HDL particles differ in their abilities to
selectively deliver cholesterol ester to the cell interior in
that apoAI-HDL serves as a better cholesteryl ester donor
than an apoAl/apoAll hybrid HDL. Also, it was shown
that apoAll enrichment of HDL particles enhances their
affinity for SR-BI, but inhibits selective cholesteryl ester
uptake.  Although the exact explanation for these
conflicting findings is not known, it may have some thing
to do with the fact three different SR-BI expressing cell
lines were used to asses selective cholesteryl ester uptake in
these studies; de Beer et al used LDL-receptor negative,
SR-BI over-expressing CHO cell line (CHO-1d1A7) (216),
while Rinninger et al (243) and Pilon et al (244) employed
cultured hepatic cells and a human adrenal cell line (NCI-
H295R), respectively, which express high levels of
endogenous SR-BI. Whether these differences are due to
differences in surface characteristics of these cell lines,
differences in cellular cholesterol homeostasis, or
differences between genetic over-expression vs high
endogenous expression remains to be established.

In  other studies, apolipoprotein  (Al)
conformation itself is suggested to markedly influence
interactions between SR-BI and HDL and SR-BI mediated
selective CE transport (216,245). Indeed, it was reported
recently that descoidal rec-apoAl particles of different sizes
(7.8 and 9.6 nm in diameter) and differing apoAl
conformation markedly influenced apoAl recognition by
SR-BI and selective CE uptake (249); the affinity of HDL
binding to SR-BI was roughly 50 fold-greater for the larger
(9.6 nm) than for the smaller (7.8 nm) particles (216).
Based upon these observations, it was proposed that
preferential binding of larger particles (with an expanded
pool of CE) to SR-BI should translate into greater amount
of cholesteryl ester being delivered to the cells as compared
with smaller, relatively CE-poor HDL particles.  Thus, it
can be concluded from the these studies that HDL particle
size, composition and apolipoprotein conformation all exert
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considerable influence on HDL binding to SR-BI and SR-
Bl-facilitated selective cholesterol transport.

Several recent studies have also shown that SR-
BI mediates the efficient transfer of LDL-CE via the
selective uptake mechanism in cells that normally express
SR-BI and in SR-BI overexpressing cells (246,247).
However, there is growing evidence to suggest that SR-BI-
mediated selective CE-uptake from LDL may also involve
the participation of accessory factors such as LRP, apoE,
LPL and proteoglycans (171,172). In addition to
cholesteryl esters, SR-BI can mediate cellular uptake of
unesterified cholesterol (UC) (248), phospholipids (PL)
(248,249) triglycerides (TG) (248,250), and vitamin E
(251) from HDL with the relative selective rate constants of
1.0, 1.6, 0.7 and 0.2, for CE, UC, TG and PL, respectively.

In addition to its indispensable role in mediating
the selective transport of lipids, it is now increasingly
recognized that SR-BI has additional functions (Table 2).
For example SR-BI is implicated in the regulation of
hepatic  cholesterol and bile acid homeostasis
(236,239,242), in normal absorption of intestinal
cholesterol (252-255) and cellular cholesterol metabolism
(256-260). SR-BI has also been shown to facilitate bi-
directional transfer of free cholesterol between HDL and
cells, and, under certain conditions, SR-BI promotes efflux
of cellular cholesterol (219-222). SR-BI may participate in
remodeling of plasma membrane lipids (257-260),
regulating the pool-size of plasma membrane associated
cholesterol (257-260), altering the function of some
membrane associated signaling proteins (261,262) and
stabilizing caveolin-1 protein posttranslationally (263).
Normal expression of SR-BI in mice is required for the
development of red blood cells (268), female fertility
(237,265), protection against atherosclerosis (266-270), and
in the removal of apoptotic cells (229-232). SR-BI can
activate nitric oxide synthase (271-273), accelerate
apolipoprotein clearance from the circulation (239-241),
promote cell adhesion (274), induce microvillar channel
formation (275-277), and inhibit cholesterol efflux
mediated by ABC1 transporters (278).

4.4. Potential mechanisms involved in SR-BI mediated
selective CE uptake

Although the precise cellular mechanism by
which SR-BI facilitates the selective transport of
lipoprotein-derived CE to the cells has not yet been
delineated, some key steps of the process have been
unraveled recently. The entire process of SR-BI-mediated
selective CE uptake can be broadly divided into 3 steps: the
first step involves binding of donor lipoprotein particles to
SR-BI, the second step proceeds via efficient transfer of CE
from SR-BI bound HDL to the plasma membrane and the
final step initiates internalization of plasma membrane
associated CE pool into the cell interior. A number of
studies now indicate that the first step in the initiation of
selective uptake is the binding of donor HDL to the ~ 40
kDa extracellular glycoprotein portion of the SR-BI
(25,28,29).  Structure/function studies in transfected cell
systems using point mutations or domain swaps with CD36
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Table 2. Various Functions Attributed to SR-BI

Function Comments References
Selective uptake of SR-BI mediates selective uptake of CE from hHDL,, hHDL;, rat HDL, hLDL, 25,208,216,22
lipoprotein-derived apoAI-HDL, apoAl/apoAll-HDL and other donor lipoproteins 4,243-247
cholesteryl esters
Selective uptake of In addition to CE, SR-BI also facilitates selective transport of lipids such as 248-251
lipoprotein-derived other free cholesterol, TG, phospholipids and Vitamin E
neutral lipids
Cholesterol efflux SR-BI regulates bi-directional cholesterol flow and cholesterol efflux from cell 219-222
surface to HDL and other acceptors
Modulation of cholesterol ~ SR-BI is shown to influence both the rate of free cholesterol flux and steady 257-260
homeostasis state level of cellular cholesterol and phospholipid. Also,
SR-BI may modulate cellular cholesterol content and cause redistribution of
cholesterol to membrane domains that function to mediate the flux between
cells and lipoproteins
Bile acid metabolism Hepatic SR-BI selectively controls the utilization of HDL cholesterol for 236,239,242
biliary secretion
Female fertility SR-BI is required for oocyte development and female fertility 237,265
Inhibition of cholesterol SR-BI may function as antagonist and inhibit ABCIl-mediated cholesterol 278
efflux efflux
Anti-atherogenic actions Hepatic over-expression of SR-BI reduces atherosclerosis in the cholesterol- 266,268
fed and LDL-deficient (LDL-R-/-) mice
SR-BI can protect against early onset of atherosclerosis 265,268
Attenuated expression of SR-BI leads to increased LDL-cholesterol levels and 267
atherosclerosis in LDL-receptor deficient mice
Low level over-expression of SR-BI in apoB transgenics attenuates 269
development of diet-induced fatty streak lesions in apoB transgenic mice
SR-BI deficiency leads to accelerated deficiency, cardiac dysfunction and 270
premature death in apoE-deficient mice
Clearance of Overexpression of SR-BI promotes clearance (removal) of both HDL and non- 240,241,269
apolipoproteins HDL apoproteins
Other studies suggest that SR-BI promotes clearance of apoAl, but not apoB 349
Promotion of microvillar SR-BI is essential for formation and maintenance of microvillar channels 275-277
channel formation
Apoptosis SR-BI facilitates the recognition and ingestion of apoptotic thymocytes by 231
nursing thymic epithelial cells
SR-BI also mediates the recognition of apoptotic granulosa cells by theca cells 230
of ovarian follicles, and may have a role in the remodeling of follicles to
secondary interstitial cells
SR-BI may function as a phosphatidylserine receptor to promote phagocytosis 229,232
of apoptotic rat spermatogenic cells by Sertoli cells
Hematologic function Red blood cells fail to mature in SR-BI-deficient mice 264
Stimulation of nitric oxide =~ HDL activates endothelial nitric oxide synthase through a process that requires 271-273
synthase HDL interaction with SR-BI
Cell adhesion SR-BI participates in adhesion of neonatal murine microglia to fibrillar beta 274
amyloid
Mediator of dietary SR-BI is shown to promote absorption of dietary cholesterol in intestine 252-255
cholesterol absorption
Stabilization of caveolin-1 ~ SR-BI is shown to specifically stabilize the caveolin-1 protein levels without 263

affecting its transcriptional regulation

(a closely related receptor that also binds HDL with high
affinity), have shown that the extracellular domain of SR-
Bl is essential for efficient selective uptake (279,280). This
step in steroidogenic tissues is further aided by the presence
of microvillar channels (275-277) that not only provide a
platform for the anchoring of SR-BI but also trap large
amounts of lipoprotein particles. It is presumed that such
tethering of SR-BI leads to significant increases in local
concentrations of donor particles, and subsequently, an
accelerated rate of CE transfer to acceptor plasma
membranes.
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The second step in the selective uptake process
involves efficient SR-Bl-mediated movement of CE from
SR-BI- bound donor particles to the exterior surface of the
cell plasma membrane. A number of different working
models have been proposed to explain the CE transfer
process. Rodrigueza et al (245) proposed the first and
currently most viable model; this model is based on
thermodynamic and kinetic data and proposes that SR-BI
contains a non-aqueous channel, which excludes water, and
serves as a conduit for hydrophobic CE molecules to
diffuse from SR-BI bound HDL down a concentration
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gradient to the cell plasma membrane (245). Note: the
Rodriqueza non-aqueous channel described here is not to
be confused with the structural microvillar channel (known
to trap intact lipoproteins) described above (275-277). A
similar model has emerged from studies designed to
evaluate the influence of HDL core lipids on the efficiency
of selective CE transfer to cultured cells. According to this
model, HDL docks with SR-BI, forming a hydrophobic
channel in which neutral core lipids, CE and TG are
translocated to the plasma membrane (250). Gu et al (280)
proposed an alternative mechanism in which SR-BI-
mediated docking or anchoring of lipoprotein particles to
the cell surface creates an environment in which SR-BI
promotes the collision-dependent transfer of CE from
donor particles to the plasma membrane (280). At present,
however, it is unclear if SR-BI is directly responsible for
lipid-lipid CE transfers or requires the participation of other
accessory factors. Since this model calls for lipid-lipid
interactions between the donor lipoproteins and acceptor
plasma membrane, it is likely that specific lipid types and
the lipid content of lipoproteins may influence overall CE
transfer efficiency. In support of this, it has been reported
that the functional efficiency of HDL particles in donating
CE for selective transport is dependent upon lipid
composition, particle size and apoAl presence on the HDL
particle (216,243-245).

The final step in selective transport is the transfer
of plasma membrane-associated CE to the cell interior.
Relatively much less is known about the events that may be
involved in this final step. Deletion and exchange studies
have demonstrated that the 45-amino acid C-terminal
cytoplasmic tail of SR-BI is essential for its maximal
function (279). The carboxy terminus of SR-BI may serve
as a docking platform for other membrane and/or
cytoplasmic protein factor(s) that are necessary for
internalization of CE. Recently we reported the
development of a cell-free reconstituted proteoliposome
system that uses either partially purified preparations of
SR-BI from rat luteal cells or purified, recombinant SR-BI
preparations from baculovirus-expressed rat SR-BI (25).
Using this reconstitution system, we observed that SR-BI-
liposomes incubated with cytosolic extracts from luteinized
ovaries (a rich source of SR-BI with high selective uptake
activity) were several fold more efficient in selectively
taking up cholesteryl ester from donor '*I/"H-HDL, than
were control SR-Bl-liposomes incubated without the
cytosolic extract. Currently, the identity of any specific
required factor is not known, although we believe that such
a factor must be heat labile, sensitive to protease treatment,
nondialyzable and hydrophobic in nature. This suggests
that a cytosolic protein or multiprotein complex is required
for efficient internalization of SR-B-delivered selective CE
from the cell surface to the cell interior.

In this regard, the role of caveolin in SR-BI
dependent selective cholesteryl ester uptake has been
intensively studied in the last few years. In large part,
interest was sparked by the demonstration of co-
localization of caveolin and SR-BI in caveolae like
structures (210,211,284). To date, however, neither the
co-localization of these proteins in steroidogenic cells or
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tissues, or the functional relationship of the two proteins in
selective CE uptake systems has been satisfactorily
resolved. Using electron microscopic immunochemical
techniques, early studies had clearly localized caveolin to
plasma membrane caveolar structures (11,285) found in
adipocytes, fibroblasts and endothelial cells. =~ However,
steroidogenic cells from the adrenal, ovary, and testis, or
liver parenchymal cells that prominently express SR-BI and
actively carry out HDL selective cholesteryl ester uptake,
do not have caveolar structures (25). In fact, many isolated
cell systems, which are used in these cholesterol uptake
studies, also do not express caveolae. More worrisome is
the fact that many of the studies demonstrating caveolin
plus SR-BI localized to the same membrane sites have used
light microscopic immunofluorescent, not electron
microscopic immunocytochemical techniques, and one has
to assume, rather than actually visualize, that the 2 proteins
are co-localized in caveolae. Our own experience in using
the electron microscope for these types of studies, has been
that in many cell types overexpressing SR-BI and caveolin,
no caveolae are present, SR-BI is clearly expressed on the
plasma membrane and in double membraned channel
membranes opening to the cell surface, and that caveolin,
instead, is localized nearby, but apparently associated with
actin-like filaments (Reaven & Azhar, unpublished
observations). The problems are similar when considering
the functional relationship between caveolin and SR-BI in
achieving cholesterol uptake. No direct experimental
evidence of an interaction between the two molecules
exists; the data are mostly correlative with a variety of
results regarding either a positive (286), negative (287,288)
or no (289-291) relationship between the proteins during
selective cholesteryl ester uptake. These issues are
complicated by several problems; first, very different types
of cell systems have been studied using a variety of
conditions, second, there exist three, if not more, caveolins
to consider (and their localization in cells, function and
relationship to each other are still not entirely clear), and,
third, presumptive SR-BI related cholesterol transport in
cells may proceed in different directions (i.e., as cholesteryl
ester influx into cells vs. free cholesterol efflux out of
cells), and the influence of caveolin on these different cell
processes may differ (25,28-30). Finally, evidence from
caveolin knockout mice has not been particularly helpful.
The caveolin-1 knockout mouse is viable and phenotypic
changes have been relatively minor (despite a dramatic
reduction in caveolae expression), with no particular
suggestions that SR-BI function is compromised (292).
Thus the true relationship between caveolin, caveolae, SR-
BI and selective cholesteryl ester uptake remains to be
clarified.

Recently, another protein, a PDZ domain-
containing protein called CLAMP (PDZKI1/Diphor-
1/CAP70/NaPi-Capl) has been identified with SR-BI
mediated selected CE uptake. CLAMP was purified from
rat liver extracts by affinity chromatography using the
carboxy terminus of SR-BI (293). CLAMP was shown to
interact with the last 15 amino acids of SR-BI. Co-
expression of CLAMP and SR-BI in Chinese hamster ovary
cells led to an almost 2-fold increase in HDL-CE selective
uptake that was proportional to increased SR-BI protein
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levels without increased SR-BI mRNA, strongly suggesting
that CLAMP functions as a scaffolding protein to protect
SR-BI from proteolytic degradation (297). More recently
Silver (294) provided evidence that the CLAMP-interacting
domain of SR-BI is essential for surface expression of
hepatic SR-BI and suggested that CLAMP or related PDZ
domain proteins may play an indispensable role in the
surface expression of SR-BI and SR-Bl-mediated selective
CE uptake (294).

Overall, it is logical to assume that there are a
variety of yet unidentified SR-BI interacting proteins that
participate in, and facilitate the action of selective delivery
of lipoprotein-CE to the cells. With the current intense
interest in this pathway, we expect to hear much on this
topic in the near future.

Finally, although SR-BI is currently considered a
major mediator of selective CE transport, there is growing
evidence to suggest that other factors, independent of SR-
BI, facilitate selective CE uptake. Thus, it has been
reported recently that LRP, which transport lipids by an
endocytic process, can mediate HDL-CE selective uptake
in some specialized cells (281). Likewise, Swarnakar et al
(171,172) reported that two different pathways mediate the
selective uptake of LDL-CE (but not HDL-CE) in cultured
cells; one pathway was shown to be strictly via SR-BI,
while the other pathway was SR-Bl-independent and
required the participation of LRP and proteoglycans. Also,
lipid-free Apo-E can directly bind to SR-BI and enhance
selective cholesteryl ester transport from lipoprotein
particles (226). Finally, lipoprotein lipase and unsaturated
fatty acids have been reported to promote selective
cholesteryl ester transport from LDL by a mechanism that
is independent of SR-BI (282,283).

4.5. Are there other receptor mechanisms for HDL-CE
internalization?

So far the discussion on HDL-CE uptake is based
on the premise that SR-BI is a non-endocytic receptor that
possibly creates a hydrophobic channel (via receptor
dimerization?) to promote the transport of CE and other
neutral lipids transport to the cell membrane. However,
two recent reports by Silver et al (30,295) have challenged
this prevailing view and instead suggest that SR-BI is an
endocytic receptor, which mediates HDL uptake and
recycling but not degradation. Using several molecular,
cell Dbiological and biochemical approaches, these
investigators have concluded that HDL particles are, in
fact, internalized (analogous to the process of iron delivery
via the transferrin/transferrin receptor system), and enter
into the endocytic recycling compartment followed by re-
secretion of the majority of HDL particles in an intact form,
by a process termed ‘retroendocytosis’ (30). Presumably,
selective delivery of HDL-CE occurs during this re-cycling
(30,295). While the retroendocytosis pathway may take
place in certain cell types, the validity of this pathway has
not been tested in more traditional, high cholesterol
requiring systems such as steroidogenic tissues and isolated
steroidogenic cells. At present, there is an overwhelming
biochemical and morphological evidence that favors non-
endocytic, SR-BI-mediated bulk selective delivery of HDL-
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CE in steroid synthesizing systems (25,28,29). Obviously
more rigorous experimental scrutiny is required before the
retroendocytic pathway gains general acceptance.

In addition, it may turn out that different tissues
use different mechanisms for HDL-CE uptake. A paper
currently in press (296) describes a novel GPI-anchored
HDL binding protein (called GPI-HBP1), which like SR-BI
mediates selective lipid uptake in CHO cells, but lacks
HDL dependent cholesterol efflux. Transcripts for this
protein were detected with highest levels in heart, and to a
lesser extent in lung and liver, and the protein appears
specific to cardiac muscle cells, hepatic Kupffer cells,
bronchial epithelium and alveolar macrophages. Also, it
turns out that an ectopic f—chain of ATP synthase may play
a role in apolipoprotein Al binding and intact HDL
internalization in human hepatocytes (IHHcells) and rat
liver by a process, which does not involve SR-BI (297). In
this instance, it is postulated that the high affinity binding
of HDL to the B chains stimulates ADP formation, which
promotes HDL endocytosis. Over the years, however,
many HDL receptors have been identified (296-302) (see
Table 3), and, to date, only one, SR-BI has stood the test of
time. Clearly, the new receptor candidates will require
further investigation.

4.6. Tissue distribution of SR-BI expression

Mouse and rat SR-BI are strongly expressed in
those tissues that exhibit the highest rates of selective
cholesteryl ester uptake, namely adrenal gland, ovary, testis
and liver (166,167,177,277,289,303,304). A similar
distribution of SR-BI occurs in human tissues (213,305-
307).

In addition, low to moderate levels of SR-BI
expression have been reported in non-steroidogenic
tissues/cells such as gallbladder (308), intestine
(252,254,309), stomach (253,309), kidney (310), brain
(311,312), eye (313), skin (314), lung (208,313), thymus
(231), endometrium (316), macrophages (317-319),
monocytes (317), aorta (320), adipose tissue and 3T3 cells
(28,211), human choriocarcinoma cells (25), human breast
carcinoma cell line (321), and mammary glands of the
pregnant rats (28) (Table 4).

Immunohistochemical and immunofluorescence
studies have demonstrated that SR-BI is present on the
surfaces of hepatocytes and steroidogenic cells including:
zona fasciculata and zona reticularis cells of the adrenal
cortex, bovine adrenal glomerulosa cells, human adrenal
NCI-H295 R cell line, the theca-interstitial cells of non-
hormone primed ovaries, ovarian corpora luteal cells,
luteinized granulosa cells, testicular Sertoli cells, and
hormone-desensitized testicular Leydig cells (25,28,29).
Immunolocalization at the electron microscope level in rat
adrenal fasciculata, ovarian luteal and testicular Leydig
cells show that SR-BI is present on microvillar membrane
domains that form channels in which HDL and other
lipoprotein particles are sequestered (166,167,277). These
microvillar channels are believed to be the site at which
selective uptake of lipoprotein-CE takes place (for review
see 25,28 and 29). The expression of SR-BI is also reported
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Table 3. List of Additional Candidate HDL-Receptors

HDL-Receptor/HDL binding protein References

110 kDa HDL-binding protein (HBP/Viglin) 298

110 kDa GPI-anchored HDL binding protein (HB2/ALCAM/BEN) 300

80- and 130-kDa GPI-anchored HDL binding protein 299,301

95 kDa HDL binding protein 302

Ectopic beta-chain of ATP synthase 297

22.6 kDa GPI-anchored HDL binding protein (GPI-HBP) 296

Table 4. Cell and Tissue Type Expression of SR-BI
Cell/Tissues SR-BI Expressing cells and tissues References
Adrenal gland Intact mouse, rat and human adrenal glands 208,213,277,303-
307,325

Adrenal cells Mouse Y1-BS1 adrenocortical cells 191,304
Bovine adrenal glomerulosa cells 175
Human adrenocortical cell line (NCI-H295 R) 175

Ovary
Ovarian Cells
Testis

Testicular cells

Liver

Hepatic cells

Stomach/intestine

Intestinal cells

Nervous system/
Neuronal cells

Aorta

Macrophages

Eye

Gallbladder

Human choriocarcinoma
cells

Kidney

Skin

Lung

Human breast carcinoma
cell line

Thymus

Monocytes

Endometrium

Normal mouse and rat ovary

Luteinized rat ovary

Mouse, rat and bovine ovarian granulosa cells

Rat theca interstitial cells

Intact mouse and rat testis express SR-BI and SR-BII
Rat Leydig cells

Isolated Sertoli and Leydig cells

MA-10 mouse Leydig tumor cells

MLTC mouse Leydig cells (unpublished observations)
R2C rat Leydig tumor cells

Intact mouse, rat, hamster and human liver

Isolated hepatocytes

Isolated Kupffer Cells

Hep3B hepatoma cells

HepG2 hepatoma cells

CLA/SR-BI is expressed in the brush-border membrane of human enterocytes from all parts
of the elementary canal. SR-BI expression is detected in apical membrane of brush border
in the rat duodenum. SR-BI is also present on both apical and basolateral surfaces of the
jejunum villus. Low levels of SR-BI expression is detected in ileum

Rat and mouse in enterocytes

Human colorectal carcinoma-derived cell line—CaCO-2 cells

The presence of SR-BI is demonstrated in the parietal cortex and cerebellum

Neonatal macroglia

SR-BI expression is absent in microglia from normal mouse and adult human brains but
astrocytes and smooth muscle cells of mouse and human brains express significant amounts
of SR-BI

Porcine brain capillary endothelial cells also express SR-BI

Human SR-BI is detected in foam cells of aortic atherosclerotic lesions

CLA-1/SR-BI is expressed in macrophages of atherosclerotic lesion

Endothelial cells

Smooth muscle cells

Macrophage cell line J774 cells

Macrophage-like RAW 264.7 cell line

Human retinal pigment epithelial cells express both SR-BI and SR-BII isoforms

SR-BI and SR-BII mRNAs are present in columnar epithelium

Abundant expression of SR-BI is observed in trophoblast-like human choriocarcinoma
cells, JAr and Jeg 3 cells

SR-BI is expressed in rat renal cortex and proximal tubule

SR-BI is present in isolated keratinocytes. Its mRNA is also expressed in murine epidermis
Significant amount of SR-BI expression is detected in alveolar type II cells

Human breast carcinoma cell line, HBL-100 expresses significant amount of CLA-1/SR-BI

Strong expression of SR-BI is detected in nursing thymic epithelial cells
Human THP-1 monocytes

Human monocytes

SR-BI expression is localized in the glandular epithelium of endometrium

25,328,331-333
166
177,289,330
178
167,209,303
167

229,232

179

179
240,241,303,305,
339

334,335

334,335

337

342

252-254,309

348,350
309
312

312
311

251

318,319

320

320

317-319
317-319,345
313

308

351

310
314
208,313
321

231
286
317
316
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in turtle tissues and other nonmammalian vertebrates (322)
and in Dictostelium discoideum (323).

4.7. Cellular regulation of SR-BI

SR-BI is highly expressed in steroid producing
tissues--and trophic hormones are the principal regulators
of expression in these tissues. The expression of SR-BI is
also abundant in liver and in macrophages of the vascular
system, where dietary constituents and pharmacological
agents are the principal regulators of expression (Table 5).

4.7.1. Adrenal gland

In the rodent adrenal gland, SR-BI is localized on
cell surfaces of fasiculata-reticularis cells (277,303,304).
Immunoelectron microscopic studies show that SR-BI is
specifically localized to the microvillar compartment
including the microvillar channels (277), the latter, which
are known to trap large quantities of lipoproteins to ensure
efficient selective uptake of lipoprotein-derived CE (25).
In rats and mice, adrenal expression of SR-BI is up-
regulated in response to ACTH treatment (277,304,324).
The hypocholesterolemic agent, 17 alpha-ethinyl estradiol
(17a-E2) also results in increased expression of SR-BI
(277,303). Interestingly, both ACTH and 17 alpha-E-2
treatments lead to a significant increase in the number of
microvilli, the formation of microvillar channels, and the
general complexity of the microvillar compartment (277).
Conversely, use of dexamethasone (which inhibits
endogenous ACTH secretion) drastically reduces SR-BI
protein expression, microvillar area and microvillar channel
formation (277). Likewise, genetic ablation of SR-BI is
accompanied by disorganization and loss of adrenal
microvillar channels (276). These studies indicate that
hormonal regulation of SR-BI expression and the structural
configuration of the surface of adrenocortical cells are
closely linked.

Besides ACTH, adrenal glomerulosa cell lines
respond to angiotensin II stimulation with increased
expression of mRNA and SR-BI protein levels (175). In
addition, a number of genetic manipulations have been
shown to alter SR-BI expression. For example, disruption
of the hepatic lipase gene was shown to up-regulate SR-BI
expression 3-4 fold in female, but not male mice, in which
adrenal free and esterified cholesterol levels were
significantly reduced (325). Likewise, SR-BI protein and
mRNA are expressed at high levels in the adrenals of mice
lacking functional StAR or lecithin: cholesterol
acyltransferase (LCAT) genes (327). Wang et al (325)
observed a substantial increase in the expression of adrenal
SR-BI protein and mRNA levels in apoAl null mice, but
not in apoAll, apoE or LDL-receptor knockout mice.
However, a more recent study reported normal expression
of SR-BI protein and mRNA levels in apoAl knockout
mice (169). Other studies have shown that adrenal SR-BI
expression is also developmentally regulated; both human
and rodent fetal adrenals express >50-fold more SR-BI as
compared to their adult counterparts (25,28,326).

4.7.2. Ovary
In rat preovulatory follicles, SR-BI mRNA and
protein are expressed in theca-interna and interstitial cells
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but not in granulosa cells (328). Steady state mRNA levels
of SR-BI in theca cells are rapidly induced following in
vivo treatment of immature rats with hCG or insulin; and a
synergistic stimulation of mRNA is observed when animals
are treated simultaneously with hCG plus insulin (329).
Isolated mouse, rat and bovine granulosa cells cultured
under basal conditions show little or no expression of SR-
BI protein and mRNA, but their expression is increased
many fold during gonadotropin or cAMP-induced
luteinization of the cells (177,289,330). Moderate levels
of SR-BI are also detected in normal cycling mouse and rat
ovary (25) and mRNA transcripts in rat ovary are further
up-regulated in response to treatment with gonadotropins
such as pregnant mare serum gonadotropin (PMSQG),
human chronic gonadotropin (hCG) and PMSG followed
by hCG (328,331-333).  SR-BI is highly expressed in rat
corpus luteum where it is localized on microvillar domains
that form channels (166) and its expression is further
enhanced by treatment of the animals with a desensitizing
dose of hCG (166). Likewise, treatment of normal cycling
rats with 17 alpha-E2 also induces SR-BI protein
expression in corpora luteal cells of the ovary (303). In
contrast, prostaglandin F2alpha-induced luteolysis is
accompanied by reduced expression of SR-BI in corpora
lutea (331).

4.7.3. Testis

In untreated rat testis, a low level of SR-BI
expression is detected in Leydig and Sertoli cells (179,229).
However, the protein and mRNA levels of SR-BI are
dramatically induced in androgen producing Leydig cells
following chronic treatment of mature rats with hCG (167).
Mouse testicular Leydig MA-10 (179) and MLTC mouse
Leydig tumor cells, also express significant levels of SR-BI
(Azhar & Reaven, unpublished observations) and hormonal
treatment further stimulates its expression in both cell
types. On the other hand, cell line, R2C Leydig tumor
cells, which constitutively secrete large amounts of steroids
also show very high levels of SR-BI mRNA and protein
under basal conditions and cAMP treatment only modestly
stimulates SR-BI expression (179). Of particular interest is
the demonstration that this cell line, unlike many other
steroid producing cell lines, possesses surface structures
resembling the microvillar components previously
described in intact rat adrenal and luteal tissues, and
morphological analysis of these cells suggests that SR-BI is
almost exclusively localized to the microvillar channels
(Reaven and Azhar unpublished observations).

4.7.4. Liver

In the liver, SR-BI is expressed principally in
parenchymal cells under normal physiological conditions
(303). However, 17 alpha-E2-induced hypocholesterolemia,
or chronic feeding of a diet rich in cholesterol, has been
reported to decrease SR-BI expression in hepatocytes but
increases its expression in the Kupffer cells (334,335).
Feeding cholesterol does not affect SR-BI levels in hamster
liver; however, hepatic SR-BI expression can be induced by
feeding a diet enriched in polyunsaturated fatty acids (336).
Bacterial lipopolysaccharides (LPS), TNF and IL-1 down-
regulate liver SR-BI mRNA levels when animals are
maintained on a high-cholesterol diet (337). A number of
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Table S. Regulation of SR-BI Expression

Tissue/Cells Hormones, cytokines, genetic, Effect/action References
physiological or dietary
manipulations
Adrenal gland ACTH ACTH treatment in rats results in increased SR-BI mRNA and protein 277,303,304,
levels and promotes microvillar channel formation 324
17 Alpha-ethinyl estradiol (17 17 Alpha-E2-induced hypocholesterolemia in rats is accompanied by 277,303
alpha-E2) enhanced expression of SR-BI and microvillar components
SR-BI-/- mice Genetic ablation of SR-BI leads to loss and disorganization of microvillar 276
channels
Apo Al-/- mice Functional disruption of Apo Al gene is accompanied by increased 325
expression of SR-BI mRNA and protein levels
However, a more recent study reported comparable expression of adrenal 169
SR-BI between control (Apo Al+/+) and Apo Al-/- mice
HL-/-, LCAT-/- and StAR-/- mice ~ High levels of adrenal SR-BI mRNA and/or protein levels are detected in 327
these genetic models
Development The levels of fetal human adrenal SR-BI are at least 50-fold higher than in 25,28,326
adult adrenal gland
Adrenal cells
Mouse Y1-BS1 ACTH and lipoproteins Addition of ACTH stimulates and lipoproteins inhibit SR-BI expression 25,324
adrenocortical cells
Rat adrenocortical cells ACTH Primary cultures of rat adrenal cells respond to hormone with time- 277
dependent increases in SR-BI expression
Bovine adrenal zona Angiotensin IT SR-BI levels are increased ~ 2-fold when cells are exposed to angiotensin II 175
glomerulosa cells
Human adreno-cortical Angiotensin IT and cAMP analogs ~ Both agents stimulate SR-BI expression 175
carcinoma cells (NCI
H295R)
Ovary PMSG, hCG and FSH PMSG, hCG or PMSG + hCG treatment results in rapid stimulation of SR- 328,331-333
BI mRNA transcripts in normal rat ovaries. FSH has no detectable effect
hCG Treatment of PMSG-hCG primed (luteinized ovaries) with a desensitizing 166
of hCG further induces SR-BI expression
17 Alpha-E2 Estrogen-induced hypocholesterolemia up-regulates SR-BI protein levels in 303
the corpora luteal cells of the rat ovary
Ovarian cells
Mouse, rat and bovine FSH, LH or cAMP analogs Robust expression of SR-BI is observed when cells are treated with 177,289,330
granulosa cells hormones or cAMP analogs
Rat theca interstitial cells Insulin and hCG Insulin and hCG both independently and synergistically up-regulate SR-BI 329
mRNA and protein levels
Testis hCG Chronic hCG treatment of intact rats results in a dramatic increase in SR-BI 167
in Leydig cells
Testicular cells
MA-10, MLT mouse cAMP analogs Both cell types respond to cAMP analogs with a significant stimulation of 179
Leydig tumor cells mRNA and protein levels of SR-BI
Liver 17 Alpha-E2 and cholesterol-rich 17 alpha-E2 treatment or feeding a cholesterol rich diet decreases SR-BI 303,334,332
diet expression in rat hepatocytes but increases its expression in Kupffer cells
Cholesterol and polyunsaturated Hamster liver is insensitive to cholesterol feeding but SR-BI expression in 336-339
fatty acids hamster liver can be induced be feeding animals a diet rich in
polyunsaturated fatty acids
LPS, TNF and IL-1 LPS and cytokines can reduce SR-BI mRNA levels when animals are fed a 337
cholesterol-rich diet
Fibrates, ACTH and dietary All these agents inhibit rodent hepatic SR-BI levels 336-339
myristic acid
Vitamin E Cellular levels of vitamin E inversely regulate rat hepatic SR-BI levels 338
Hepatic cells
Hep3B hepatoma cells TNF and IL-1 Cytokines repress SR-BI expression in this cell line 337
HepG2 hepatoma cells Testosterone, estradiol and Androgens up-regulate SR-BI mRNA and protein levels while estrogens 337,338,342
vitamin E specifically induce SR-Bllexpression. Vitamin E lowers SR-BI levels in a
concentration dependent manner
Intestine Bile duct ligation Complete loss of SR-BI protein and roughly 50% reduction in SR-BI 348
mRNA levels
Decreased expression of SR-BI protein but not its mRNA is detected in 348
bile-diverted rats and Mdr2-/- and CYP 7 alpha-/- mice
Macrophages Oxidized LDL and TGF-beta Decreased expression of SR-BI 315,344-346
Human monocyte-derived Testosterone and activators of Testosterone promotes SR-BI expression. 347
macrophages PPAR-alpha and PPAR-gamma
Ligand specific activation of PPAR-alpha and PPAR-gamma induce CLA- 319
1/SR-BI protein expression in monocytes and differentiated macrophages
RAW 264.7 macrophage LPS LPS is a potent negative regulator of SR-BI mRNA expression 317
cell line
Skin keratinocytes Simvastatin and 25- Exposure of keratinocytes to a cholesterol synthesis inhibitor stimulates 314
hydroxycholesterol while oxysterols inhibit SR-BI expression
Kidney Glomerulopathy Experimental nephropathy can alter renal cortical SR-BI expression 310

1013



SR-BI and selective cholesterol transport in steroidogenic tissues

other agents including fibrates, increased amounts of dietary
myristic acid, vitamin E and ACTH suppress SR-BI expression
in rodent liver (336-339), while 17beta-E2 induces SR-BII
protein (342). Also, a marked down-regulation of hepatic
SR-BI is observed in rats with nephritic syndrome (343).

4.7.5. Macrophages and other tissues and cells

Expression of CLA-1, the human homolog of SR-
BI, is not detected in human monocytes, but is induced with
monocyte  differentiation into macrophages (316).
Additional regulation studies have shown that SR-BI
expression in macrophages can be regulated through
peroxisome proliferator-activated receptors alpha and
gamma (317), and that estrogen and dietary cholesterol
induce the activation of SR-BI expression in hepatic
macrophages (334,335). LPS, oxidized LDL and TGF-beta
inhibit CLA-1/SR-BI expression (315, 344-346) while
androgens have been shown to increase SR-BI expression
in human monocyte-derived macrophages (347).

Treatment of keratinocytes with an inhibitor of
cholesterol synthesis (simvastatin) results in a several fold
increase in SR-BI mRNA and protein levels (312), while
exposure to 25-hydroxycholesterol suppresses SR-BI levels
indicating that SR-BI expression in skin keratinocytes is
under negative feedback control by cholesterol. Also,
calcium-induced differentiation of keratinocytes is
accompanied by markedly decreased expression of SR-BI
(312). In rats, bile-duct ligation leads to complete loss of
intestinal SR-BI protein and ~ 50% reduction in SR-BI
mRNA levels (348). Likewise, bile diverted rats and Mdr2
and Cyp7—-alpha knockout mice show significantly reduced
levels of SR-BI protein, while SR-BI mRNA content is not
affected in these models (348).

5. CONCLUDING REMARKS

Many  steroidogenic  tissues and  cells
preferentially utilize a non-endocytic pathway, termed the
‘selective’ pathway for supplying the bulk of the
cholesterol needed for steroid hormone biosynthesis.
Identification of SR-BI as a functional receptor for the
selective pathway has not only opened new horizons in the
investigation of cholesterol and steroid metabolism, but has
shown how architectural changes in the development and
maintenance of certain cellular plasma membrane domains
(microvillar ~ channels) may influence lipoprotein
cholesterol delivery to steroidogenic cells.  This latter
function of SR-BI represents a unique example of a
receptor, which not only initiates a metabolic process, but
is involved in the expression and maintenance of structural
components for optimal functioning of the process.

In addition to the seminal role of SR-BI in
facilitating selective CE uptake, it is becoming increasingly
clear that this receptor protein performs many other
functions; e.g., SR-BI appears to regulate processes
involved in cellular cholesterol homeostasis, bi-directional
cholesterol flow, membrane lipid expression, female
fertility (oocyte maturation), apoptosis, and, in addition,
SR-BI may act as an athero-protective agent.
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Despite the abundant work cited in this review,
many questions still remain regarding the mechanism of
action of SR-BI in these various biological processes. A
crucial area not yet explored is whether SR-BI acts alone,
or requires participation of other modulating factors (both
positive and negative) to facilitate selective CE transport.
Future  integrated  biochemical, = molecular, and
morphological studies of SR-BI, and its family members,
will be required to solve such important questions.
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