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1. ABSTRACT

By rapidly generating global views of gene
expression profiles, microarray technology offers a great
advantage over traditional methods of studying gene
expression.  This technology is gaining rapid and
widespread use in many areas of science and medicine
because it can be easily adapted to study many
experimental questions.  This article will review the current
applications of microarray technology in the field of renal
transplantation, and discuss the potential impact of this
technology on transplantation medicine.

2. INTRODUCTION

Since its introduction in the mid 1990s,
microarray technology has gained widespread acceptance
and use in many areas of biomedical research (1), with the
ultimate goal of finding candidate genes for diagnostic,
prognostic and therapeutic purposes (2).  By providing a
global view of the gene expression signatures underlying
disease states, microarrays are a valuable tool in
mechanistic studies, especially when used in conjunction
with other molecular and biochemical techniques.  In
oncology, for example, microarray technology has
generated insightful data regarding the molecular
mechanisms of cancer development, the classification of
molecular sub-classes of malignancies (3), the
identification of prognostic markers (4,5) and the
identification candidate gene targets for the design of novel
therapeutic agents (6,7).  Other disciplines such as
immunology (8), nephrology (9) and cardiovascular disease
(10) research are beginning to exploit this powerful and
flexible technology.  This article will provide an overview
of the basic principles of DNA microarrays, their

limitations and their clinical applications with particular
focus on the field of renal transplantation.

3. MICROARRAY TECHNOLOGY

In general, the term microarray refers to a high-
density array of complementary DNA (cDNA) or
oligonucleotide immobilized onto a structural support; it is
based on the principle that complementary sequences of
DNA can be used to probe and hybridize to the
immobilized DNA molecules.  Thus, unlike traditional
methods of quantifying mRNAs by northern blotting or
quantitative PCR which can only measure a few genes at a
time, DNA microarrays allow the rapid and accurate
analysis of global gene expression in an overnight
hybridization.  Because of the extreme versatility of this
technology, it can be readily adapted for use in many
investigations, ranging from the basic (11) to clinical
sciences (12-14).

DNA microarrays are generally made by spotting solutions
of individual PCR-amplified double-stranded cDNA
fragments (about 500 base pairs) as small spots on
microscopic glass slides; this allows approximately 50,000
genes to be printed on a single glass slide.  In contrast,
oligonucleotide arrays consist of short fragments (20-25
nucleotides) of single-stranded DNA that are either directly
synthesized on a solid surface or pre-synthesized and then
printed onto glass slides.  Very high density arrays of
greater than 250,000 oligonucleotide spots/cm2 can be
made repetitively, but this approach incurs a high cost and
does not readily allow flexibility in design (15).  The more
popular technology in academic institutions is the use of
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Figure 1. Schematic representation of DNA microarray technology.  Typically, total RNA is first isolated from the samples of
interest; this test RNA and a reference RNA are then differentially labeled with fluorescent dyes and then competitively
hybridized onto a printed DNA microarray.  Images that are generated are then scanned and the resulting fluorescent intensities
used to generate a hierarchical cluster and for further data analysis.

DNA microarrays, since each slide may be custom
designed for specific investigations, and the manufacture is
less expensive.

Typically, a two-color hybridization scheme is
used to visualize and measure the gene expression levels
reproducibly when comparing the gene expression profiles
of multiple samples using spotted DNA microarrays (1,2)
(Figure 1).  The first step involves RNA extraction from the
test and reference samples, followed by fluorescent dye
labeling of the RNA during a reverse transcription step.
Common dyes used are Cy3 (for labeling the reference
RNA green) and Cy5 (for labeling the test RNA red);
labeled RNAs are then competitively hybridized to each
DNA microarray and the ratio of red to green fluorescence
(R/G ratio) measured by scanning the microarray slide
using two different wavelengths specific to each dye (532
nm for Cy3 and 635 nm for Cy5).  The color of each spot
reflects the relative abundance of test versus. reference
RNA: green if reference RNA is more abundant than test
RNA, red if the gene is more abundant in the test RNA than
reference RNA, and yellow if they are equally abundant
(Figure 1).  In order to allow comparisons across a large
number of samples, a common reference sample of
constant composition is usually used in all experiments to
provide a consistent comparison standard (16-18).

4. DATA ANALYSIS

Since an overnight hybridization of a single
microarray generates thousands of data points, the
meaningful analysis of the large data sets involves the use
of sophisticated software tools, which are currently
available from either public sources (e. g. http://genome-
www4.stanford.edu/MicroArray/SMD/restech.html)
or from commercial suppliers (such as GeneSpring from
SiliconGenetics).  Typically, data is first normalized to
allow expression levels across samples to be effectively
compared; it is then filtered to remove genes that are
expressed below a defined threshold value.  Finally,
clustering and visualization programs such as hierarchical
clustering and K-means clustering are used to generate
fundamental gene expression patterns inherent in the
massive data sets, thereby allowing possible biological or
clinical relevance to be inferred.

Among the microarray data analysis tools used in
microarray analysis at Stanford University and supported
through the Stanford Microarray Database (19) are ones for
performing Hierarchical Clustering,  Disease or Class
Prediction using Prediction Analysis of Microarrays
(PAM), Significance Analysis of Microarrays (SAM), and
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Singular Value Decomposition (SVD).  The use of each of
these tools will now be described in further detail.

Class Discovery using Hierarchical Clustering:
A reliable unsupervised method (no prior knowledge of the
true functional classes) for studying gene expression
patterns is hierarchical clustering (20).  This method uses
similarity or distance measures to distinguish between
samples.  Genes with similar expression profiles across a
set of experimental samples are clustered together on the
vertical axis, whereas experimental samples are clustered
together on the horizontal axis based on the overall
similarity in expression behavior across a filtered list of
genes.  The data is displayed in a tabular form with each
row representing the data for a single gene and each
column representing the data for a single experimental
sample (See Figure 1 for example display).

A hierarchical tree or dendrogram is displayed next
to the clustered genes and above the clustered experimental
samples to graphically denote the degrees of relatedness
between adjacent samples and genes. The closer two samples
are together, the greater the similarity between them (Figure 1).
In this colored tabular scheme, the fold-deviation from average
expression of each gene across the set of samples studied is
represented by an intensity scale of colors from red (above
average level of mRNA present for that gene) through black
(average expression of that gene) to green (below average level
of mRNA present for that gene).  The biological or clinical
significance of differential gene expression across
experimental samples may then be inferred and further tested.
Although very useful and popular, hierarchical clustering has a
number of shortcomings which can be overcome by the using
Self-Organizing Maps (SOMs) (21), which allows the
imposition of partial structure on the clusters and facilitate easy
visualization and interpretation.  SOMs have features which
are suited for the clustering and analysis of gene expression
patterns; have good computational properties; are easy to
implement; and are reasonably fast and scalable to large data
sets.

Disease or Class Prediction using Prediction
Analysis of Microarrays (PAM): One exciting application of
microarray technology is the ability to classify and predict the
diagnostic category of a sample based on its gene expression
profile.  This problem of classification is particularly
challenging because of the large number of genes from which
to predict classes and the relatively small number of samples.
Additionally, it is important to identify the genes that are most
characteristic of, and therefore contribute most to, the
classification.  To this end, a class prediction algorithm, PAM,
was developed based on an enhancement of the simple nearest
prototype (centroid) classifier (22).  PAM is useful in
identifying minimal subsets of genes that characterize each
cluster, and has proven to be effective and accurate in
classifying different subsets of small round blue cell tumors.
These small round blue cell tumors of childhood (comprising
neuroblastoma, rhabdomyosarcoma, non-Hodgkin lymphoma
and Ewing family of tumors) are conventionally difficult to
distinguish by light microscopy due to their similar histology.
Accurate diagnosis is critical because the choice and
outcome of therapy vary widely depending on the

diagnosis; however, current clinical diagnostic techniques
are limited (23).  The ability to distinguish these tumors
into their subgroups based on their gene expression
signatures therefore represents an important step towards
improved diagnosis and treatment.  This analytical tool can
be further applied to similar problems which are otherwise
difficult by conventional parameters of clinical pathology.

Significance Analysis of Microarrays (SAM):
Hierarchical clustering of microarray data produces
coherent patterns of gene expression but provides little
information about statistical significance.  Conventional
statistical T-tests are limited in that they provide the
probability that a difference in gene expression occurred by
chance in only a small numbers of genes.  SAM
(http://www-stat-class.stanford.edu/SAM/SAMServlet) was
therefore specifically developed for analyzing microarray
data (24);  it allows identification of genes with statistically
significant changes in expression by assimilating a set of
gene-specific T-tests.  Each gene is assigned a score on the
basis of its change in gene expression relative to the
standard deviation of repeated measurements for that gene
and genes with scores greater than a user-defined threshold
are considered potentially significant.  SAM uses random
permutations of the sample labels to estimate the false
discovery rate (FDR) of the significant gene list. The FDR
is the expected proportion of false positive calls among the
genes called significant. With large numbers of tests
inherent in microarray experiments (genes), this approach
is more powerful than the usual Bonferroni method for p-
value adjustment (Robert Tibshirani, personal
communication). This analytical method is robust,
straightforward and can be adapted to a broad range of
experimental situations and has been applied with good
success to identification of markers for specific
classifications of cancer (25, 26).

Singular Value Decomposition (SVD):  The use
of SVD additionally provides a useful mathematical
framework for processing and modeling genome-wide
expression data (27).  SVD linearly transforms the
expression data in the form of genes x arrays space to
‘eigengenes’ x ‘eigenarrays’ space, where the eigengenes
or eigenarrays are unique orthonormal superpositions of the
genes or arrays. Normalizing the data using identified
eigengene vectors enables meaningful comparison of the
expression of different genes across different arrays in
different experiments. The interpreted sets of eigengenes
(and the eigenarrays) help with the discovery of groups of
genes that appear to be classified into groups of similar
regulation and function (27).  Further, the method identifies
systematic biases in the data that are inferred to represent
noise or experimental artifacts when apparent
measurements form replicate samples differ from one
another.  These differences are minimized after the data is
normalized by the SVD algorithm.

5. LIMITATIONS

Despite the advantages associated with the use of
microarrays, many limitations currently exist, most of
which relate to the technology itself.  Some of the common
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Figure 2. Common limitations and solutions to DNA microarray methodology.

Figure 3. Correlation of gene expression patterns between replicate microarray experiments of amplified RNA prepared from the
same sample. Replicate microarray experiments of two samples processed from the same patient yield a high correlation in
measurements (R2=0.7483), suggesting good reproducibility of the microarray hybridization protocol and little biological
variability.

limitations and their solutions are listed in Figure 2.  Here
we will discuss in greater depth some of the more
predominant problems.

Controlling variability: The variability of
microarray results can be significant, especially for genes
with low expression levels.  Replication is recommended to
establish a high degree of confidence, and to reduce the
number of potential false positive results.   However, this
may be difficult due to high cost or insufficient sample
amount.  Factors specific to microarray experiments that
add to data variability include: 1. insufficient total RNA
from samples therefore requiring amplification steps that
may introduce bias (see further discussion later in this
review); 2.  unequal efficiency of fluorescent dye labeling
during reverse transcription; 3.  reduced ability or failure of
certain DNA elements on the array to detect the right
transcripts as a result of cross-hybridization or adverse
secondary structure.  Alternative and more conventional
techniques such as northern blotting, RNase protection or
real-time PCR, may be used to verify a subset of results
thereby helping to establish an estimate of the variability of
a given experimental system.

As with other types of scientific experiments,
microarray experiments are subject to random fluctuations
resulting from either experimental procedures or inherent
biological variations (28-30).  Fluctuations due to
variations in microarray production and their hybridization
can be mitigated by re-sampling a single cell type or tissue;
whereas fluctuations due to variability across different
biological samples can be mitigated by sampling from
similar cell types or tissues.  In our hands, repeated samples
from the same patient gave highly reproducible gene
expression patterns (Figure 3), as shown by these two
replicate samples being clustered next to each other in our
hierarchical cluster (31).  Occasionally, the use of different
batch prints of microarrays can give rise to “false
clustering” of samples; such batch effect can be filtered out
using SVD (27), which normalizes the data by filtering out
experimental artifacts to allow more meaningful
comparison of the expression data.

Sample Amplification for Array Analysis: As the
amount of total RNA extracted from either blood or biopsy
samples is generally insufficient for DNA microarray
hybridization, the extracted RNA is amplified to produce
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Figure 4. Structural and functional analysis of the human genome.  High-density cDNA microarrays have revolutionized the
understanding of biology and opened the field of genomics, a study of the transcriptosome at the genome-scale.  The 30-50,000
genes stored in genomic DNA are selectively transcribed to over 100,000 different mRNA molecules which result from
alternatively spliced variants in different tissues.  The relative abundance of all mRNA species can be measured simultaneously
using microarrays.  Similarly, post-translational modification of translated proteins results in an even higher abundance of
different proteins in the living organism.  High-resolution two-dimensional gels (2D-gel) and tandem mass-spectroscopy can be
used to structurally identify gene products at the protein level.  Functional analysis of cellular metabolism requires the analysis of
low-molecular weight metabolites and recent advances in magnetic resonance spectroscopy have been applied to these analyses
on a high-throughput, automated basis.

enhanced quantities of antisense RNA (aRNA) for
subsequent hybridization.  Amplification may be done in
one or two successive rounds depending on the amount of
starting material available.  Biopsy samples often need two
rounds of amplification in order to produce enough aRNA
for labeling.  Typically, the amplification protocol produces
sufficient aRNA for up to 3 hybridizations, each using 5
microgram of RNA (32).  The systematic bias that may be
introduced by RNA amplification has been assessed by
comparing the expression profiles generated by aRNA vs.
that generated by total RNA, and very strong correlation
between the two were obtained (31, 33).  We have also
proven the robustness of this amplification strategy (R2 =
0.87 between first versus second round amplification
aRNA, Sarwal et al., unpublished data) and have been
routinely using double amplified aRNA, for both biopsy
and blood samples, due to the paucity of starting material
(1/2 -1 core of an 18 gauge biopsy needle from allograft
biopsy specimens and 2.5 ml of peripheral blood). When
samples have been double amplified, the common reference
used as a denominator in these experiments is also double
amplified (31).

Sampling Source: Renal biopsy samples used for
microarray analysis contain a mixture of different cell
types. Thus, with the exception of cell type-specific genes
(e. g. E-selectin), the source of mRNA is unknown and
limits our ability to interpret the cellular signatures relating
to the gene expression patterns of our data.  To address this
concern, laser-capture microdissection of cellular subtypes
of interest and microarray analysis after RNA amplification
has been attempted with success (34, 35).  Alternatively,
the gene expression profiles from specific cell types can be
compared with that of the whole tissue; data has been

generated from resting and activated T and B cells (data
extracted from ref. 26), the major group of cells infiltrating
the graft during the alloimmune response.  An additional
method is to study the gene at the protein levels by
immunohistochemistry for genes of interest in specific
samples of interest (36) or by the use of tissue microarrays
(37).  The latter allows for the simultaneous examination of
hundreds of tissues of interest with numerous different
antibodies per sample.  Comprehensive systems for high-
throughput analysis and storage of tissue microarray data
are available at http://genome-
www.stanford.edu/TMA/index.shtml.

Further Functional Analyses:  DNA microarrays
provide results on mRNA expression levels which do not
necessarily correlate with protein expression levels or
function (38).  Thus, these results provide only an
incomplete view of the functional significance of
differentially expressed genes in the experiments.
Techniques for protein analysis such as western blotting,
two-dimensional polyacrylamide gel electrophoresis,
radioligand receptor binding, chromatographic separation
and detection, as well as mass spectrometry (Figure 4)
remain indispensable for elucidating protein levels or
function (39).  With the rapid advance of enabling
technologies (i.e. consistent antibody library production
and cost-effective slide production methods), the
development and use of protein microarrays to address
these questions may soon be possible.

6. THE IMMUNE SYSTEM IN TRANSPLANTATION

Renal transplantation is the standard procedure,
which also provides the optimum therapy, for patients with
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end-stage kidney disease.  Several risk periods follow a
typical organ transplant procedure.  The early period is
associated with non-specific injury, inflammation, host
immune recognition, and frequent rejection.  In recent
clinical trials, acute rejection has been almost exclusively
confined to the first 6 months, provided patients are
compliant with their maintenance immunosuppression
therapy.  A poorly understood adaptation period then
occurs, which renders acute rejection episodes infrequent in
compliant patients, although inflammation may persist.
The significance of inflammation observed on protocol
biopsies remains controversial.

Late rejection episodes are sometimes associated
with a worse prognosis, perhaps because they represent a
failure of adaptation or compliance (40).  Overall outcomes
have improved significantly for recipients of renal
allografts with better immunotyping and histocompatibility
matches; shorter ischemia times;  increasing use of living-
related donors; and improvements in recent
immunosuppressive drug profiles.  Nevertheless, certain
questions remain elusive and pose a challenge to the
physician with regards to diagnosis, treatment and outcome
prediction.  Single molecule analyses have defined crucial
pathways controlling the alloimmune response, and the
advent of microarray technology now challenges us to
piece together the entire puzzle, urging us to further
understand the mysteries shrouding the immunobiology of
differential responses in acute rejection, the pathogenesis of
chronic rejection, and the development of sustained
tolerance. The current tools available to us now allow for
structural and functional analysis of the human genome,
relating to specific diseases of interest. These range from
genomic and complementary DNA sequencing for
structural analysis; DNA microarrays for expression
analysis; tissue, antibody and protein arrays; and mass
spectrometry for more detailed functional analysis (Figure
4).

7. APPLICATION OF MICROARRAY
TECHNOLOGY TO RENAL TRANSPLANTATION

7.1. Acute renal allograft rejection
Acute renal allograft rejection is clinically

heterogeneous yet histopathologically indistinct.  Despite
efforts at systemization using the Banff method, it is still
difficult to individualize therapy and predict graft outcome
based on current criteria.  Presumably, the
pathophysiological diversity of acute rejection stems from
heterogeneity at the molecular level.  Recently, Akalin et
al. have tested this hypothesis by using oligonucleotide
arrays to screen for candidate genes that may be involved in
the underlying mechanisms of acute rejection and which
may be useful for the diagnosis of these episodes (41).  We
further strengthened this hypothesis by using DNA
microarrays to generate gene expression profiles of 21
allograft biopsies from pediatric patients experiencing acute
rejection post-transplantation.  Indeed, 3 sub-groups of
acute rejection were identified: AR-I, AR-II and AR-III
(31).  Whereas AR-I consists only of acute rejection
samples, AR-II and AR-III co-clustered with samples from
patients with features of drug toxicity and chronic allograft

nephropathy respectively.  This molecular sub-
classification of acute rejection has potential clinical
significance: survival analysis indicates that patients
belonging to AR-I had significantly poorer graft function
recovery than patients in other sub-groups of acute
rejection.  This suggests that patients in AR-I require more
aggressive therapy and surveillance than patients in other
sub-groups.  When analyzing a larger data set of post-
transplant renal allograft biopsy samples from patients with
chronic allograft nephropathy, normal function or acute
rejection, acute rejection samples show a cluster of genes
that are significantly up-regulated compared to chronic
allograft nephropathy and normal samples (Figure 5); the
significance of these differences will be further analyzed,
and expected to shed light on the molecular mechanisms
leading to acute rejection.

7.2. Chronic allograft nephropathy
Apart from acute rejection, another poorly

understand and equally important process is chronic
allograft nephropathy (CAN), which is a complex process
resulting from as yet undefined etiology with both an
immune and non-immune components.  Being able to
define the cause of a CAN episode can be greatly
beneficial.  To this end, we and others have generated
animal models of vascular injury, and have been studying
gene expression patterns of a non-immune, primate
(baboon) vascular model of chronic injury (42,43).  The
baboon was chosen as the model system in our studies for
several reasons: 1.  human samples are difficult to obtain
and sample volume is often inadequate for study; 2.  the
baboon carotid (unlike the rodent vessel) has a defined
intima area similar to that in humans; 3.  the baboon is
genetically homologous to humans and thus cross
hybridization of baboon samples to human arrays would be
likely.

To date, we have identified multiple factors
involved in the early, intermediate and late phases of
chronic vascular injury and eventually hope to correlate
these results to human chronic vascular injury in CAN
biopsy samples.  Interestingly, many of the pathways
involved in chronic injury and fibrosis are regulated very
early in the course of the injury (manuscript in preparation),
when the downstream effects of these alterations are still
not evident by pathology.  Results from these studies could
help to suggest molecular targets for intervention to
abrogate vessel injury as well as the appropriate timing for
these interventions.

7.3. Peripheral blood markers for rejection
Traditionally, graft outcome has been monitored

by follow-up biopsies.  To obviate the need for this
invasive monitoring technique, research efforts have been
aimed at identifying peripheral blood markers of graft
dysfunctions such as acute rejection.  Considerable
progress has been made in this aspect, using the technique
of RT-PCR to identify non-invasive markers of acute
rejection in the peripheral blood and urine (44-46).  Using
DNA microarrays, we have validated the expression of
some of these marker genes, such as granulysin, RANTES
and perforin, to be preferentially expressed in biopsy
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Figure 5. A hierarchical cluster of gene expression patterns across a set of biopsy samples obtained from patients with acute
rejection, stable graft function, or chronic allograft nephropathy.  Genes (in rows) and patients (in columns) are grouped together
based on the similarities identified in their gene expression patterns.  In this color scheme, genes that are up-regulated or down-
regulated relative to the average expression of that gene across all the samples are represented in red or green respectively.  Black
represents expression level equal to the average expression of that gene, whereas grey represents missing data. Among the genes
most highly-differentially expressed in this study are clustered with immunoglobulins, interferon responsive genes, the IL2-
receptor or T-cell receptor, cytokines, and heat shock proteins.

samples from patients with acute rejection.  Additionally,
gene expression profiles of peripheral blood lymphocytes
isolated from patients with acute rejection have been
generated; correlation between these two data sets is
currently underway and will be valuable in highlighting
genes that may serve as markers of acute rejection from
peripheral blood samples.

7.4 Analysis of ancillary pathways affected during acute
rejection

Compromised renal function following renal
allograft transplantation often results in anemia in the
recipient.  Although inadequate erythropoietin production
and iron deficiency have been reported to be the main
underlying causes of anemia, the complete picture has yet
to be fully understood.  By studying the gene expression
level at a genome-wide scale using DNA microarrays,
insightful and valuable information was obtained to
supplement our understanding of the molecular events
underlying the etiology of anemia in acute renal allograft
rejection (47).  Specifically, a cluster of genes was
identified to be related to hemoglobin synthesis and/or
erythropoiesis that was altered in kidneys with renal
allograft rejection compared to normal kidneys.  The
possible relationship between alterations in the expression
of this cluster, reduced renal function, the alloimmune
process itself, and other influences on the renal transplant
awaits further analysis.  These analyses can help to suggest
alternative therapeutic and potentially cost-saving
approaches (such as aggressive iron and folate replacement
and reduced exposure to calcineurin inhibitor drugs) for the

correction of anemia in acute rejection, apart from the
traditional use of erythropoietin.

A similar genome-wide approach can be adopted
to study other processes post-transplantation, such as
hyperlipidemia, hypertension and immunosuppression
usage, and thus help to provide a complete understanding
of the systemic effects of renal transplantation in concert
with perturbations in the innate and alloimmune response.

7.5. Profiling immunosuppressive therapies
Corticosteroids have been extensively used as

immunosuppressive agents in transplantation, despite their
multi-systemic side effects.  Their use is particularly
limited in pediatric patients who have to take these
medications long-term.  In an effort to improve patient
compliance and possibly post-transplant morbidity, an
alternative, steroid-free immunosuppressive regime was
recently implemented using extended dosing of daclizumab
(a humanized anti-IL-2 receptor antibody), mycophenolate
mofetil (an inhibitor of T- and B-lymphocyte proliferation
in response to allospecific stimulation) and tacrolimus (an
inhibitor of calcineurin and therefore cytokine production)
(48).  Patients on these alternative immunosuppressive
drugs have improved renal function and decreased
incidence of clinical and sub-clinical rejection.  These
differences in graft outcome between a steroid-based and
steroid-free patient cohort could possibly be related to
differences at the gene expression level, as understandably,
different immunosuppressive agents will induce different
gene expression profiles.  By using DNA microarrays,
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Figure 6. Quantitative RT-PCR verifies enhanced expression of cytotoxic T-lymphocyte (CTL) effector molecules.   Peripheral
blood samples were obtained from renal allograft recipients on either steroid-free (n=16) or steroid-based (n=24)
immunosuppression protocols in the early post-transplantation period.  Total RNA was extracted from the blood samples and the
levels of gene expression measured using gene-specific primers. Among the differentially expressed genes identified by
microarray screening and verified with quantitative reverse-transcriptase PCR are granulysin (GL), perforin (P), and granzyme B
(GB).

these differences are being dissected to gain further insight
into aspects of transplant immunopharmacology that will
help us to provide better post-transplantation care to the
patients.  A preliminary analysis has shown some
differences in the expression of cytotoxic T lymphocyte
(CTL) effector molecules between steroid-free and steroid-
based patients post-transplantation (49) (Figure 6); in our
laboratory, we are currently using microarray analysis to
investigate other pathways, separate from the CTL
response, that also show differential regulation with steroid
usage.

7.6. Graft tolerance
The ultimate goal of organ transplantation is

allograft acceptance to the point that minimum or no
immunosuppressive therapy is required.  As yet, the
mechanisms leading to graft tolerance is only vaguely
defined and understanding the underlying molecular
processes of tolerance will have tremendous impact on
transplant medicine.  We have approached this through
microarray technology, since this can readily provide a
global gene expression snap shot of tolerant patients, and
thus aid in the identification of markers of tolerance which
can be further investigated.  Additionally, candidate gene
markers of tolerance, once identified, could be used to
custom design a ‘tolerance chip’, which could be used to
specifically profile patients in tolerogenic regimes prior to
and after complete immunosuppression withdrawal.  These
efforts are also currently being supported by the Immune
Tolerance Network (http://www.immunetolerance.org/).

8. PERSPECTIVE

The use of DNA microarrays is undoubtedly
beneficial in providing rapid and global views of the gene
expression profiles of different disease states, thereby

allowing improved understanding of the molecular
mechanisms of the diseases.  Further, this technology has
been used to help to identify attractive and potentially
important diagnostic, prognostic and therapeutic markers.
Although the cost of microarray technology and the
complexity of the data set may preclude it from being used
as a general monitoring tool in the clinic, it is nevertheless
a very useful screening tool to help highlight genes that
may be further studied as surrogate markers of disease
states and progression.  A combination of genomics and the
emerging proteomics technologies will prove to be
invaluable in helping to address many unanswered
questions relating to transplantation medicine.
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