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1. ABSTRACT

A framework model of single-proton conduction
through gramicidin was previously designed to incorporate
potentials of mean force and diffusion coefficients
computed by the molecular dynamics simulations of Pomès
and Roux (1).   The resulting diffusion model was solved
analytically using the lumped state approximation (LSA),
allowing a detailed comparison to be made with
conductance data from gramicidin A and two Trp  Phe
analogs (2).  The comparison included a sensitivity analysis
which required over 1 million current evaluations. A
numerical method for constructing framework models is
now introduced which involves finding the steady states of
random walks using a trapezoid rule closely related to the
rule for numerical integration.  The method is described
and then applied directly to the LSA.  Convergence of the
results to the analytical solution is seen as the number of
random walk sites increase.  The numerical method is then
used to construct a more elaborate framework model which
avoids the LSA.  This is also in very good agreement with
the analytical solution under the experimental conditions,
confirming the accuracy of the LSA.  The numerical
method remains fast enough to allow an extensive
comparison with conductance data.

2. INTRODUCTION

Molecular dynamics (MD) simulations give the
most detailed theoretical representation of ion permeation,
but there is a very large gap between times scales that can
be simulated directly and those required to evaluate
currents and perform detailed comparisons with
conductance data.  One way to overcome this gap in time
scales is to project the results of the MD to diffusion
models that can be used to rapidly calculate conductances.
These framework models  are designed to incorporate
potentials of mean force and diffusion coefficients
calculated by MD simulations.  Detailed comparisons of
the models with experimental conductances represent a
very severe test of the precision of the energies computed
in the simulations, providing corrective feedback for their
design.  At the same time, the simulations are already
accurate enough to suggest hypotheses regarding the
conduction mechanisms of ion channels.

The gramicidin monomer is a peptide with 15
alternating L and D amino acids. The  structure  of the
conducting N-terminal to N-terminal dimer has been
determined by NMR spectroscopy (3-4).   The dimer forms
a conducting channel in which the two monomers are
identical β helices.  The pore is about 25 Å long and 4 Å in
diameter. The relative simplicity of this structure makes it a
convenient testbed for developing models of proton
permeation and a point of reference for the discussion of
other, biologically important, proton channels (5).  Pomès
and Roux (1) performed MD simulations of  gramicidin
using the CHARMM force field.  The simulated structure
included the  channel, 10 pore waters, and a cap of water
molecules around each channel entrance.  To investigate
the mechanism of proton conduction, two sets of
simulations were performed.  One set included an excess
proton in the pore while the other set included only the pore
waters.

The potential of mean force for an excess proton
in the pore is shown in Figure 1A.  It was calculated as a
function of the reaction coordinate µH, which is the axial
component of the summed pore water dipole moment.  This
reaction coordinate has the advantage that it can be
calculated unambiguously, even though the excess proton
in the pore is not uniquely identified.  At the same time, its
values are proportional to a spatial coordinate: µ = -µA

H

corresponds to a proton at the channel entrance on side I
(on the left) and µH = µA

H corresponds to a proton at the
channel entrance on side II (on the right).  The proton PMF
is a shallow potential well. There is a very high associated
diffusion coefficient (6).

Potentials of mean force were also calculated for
the pore waters without an excess charge (1).  They are
shown as the dots (PM6 waters) and the dashes (TIP3P
waters) in Figure 1B.  These simulations investigated the
dynamics of water reorientation between conformations in
which the water dipole moments are aligned towards one
entrance or the other.   They were also parameterized by the
axial component of the summed pore water dipole moment,
now denoted µd.  Reorientation between these two
configurations is thought to be mediated by a defect in the
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Figure 1. Molecular dynamics simulations of single proton
conduction (4).  (A)  Proton potential of mean force (PMF).
(B)  Defect PMF.   Dots give the potential calculated using
PM6 waters and the dashed curves gives the potential
calculated using TIP3P waters.  The solid curve is the PM6
potential scaled to allow a fit to conductance data (10).
Notice that the abscissa increases to the left.  Boundary regions
are the intervals µC

d  < |µ| < µA
d.  (C) Simplified configuration

space of the permeation mechanism suggested by the
simulations.  Cartoons illustrate the state of the channel near
the ends and at the middle of each segment.  The sketches of
the water reorientation defects below the bottom segment are
consistent with the suggestion of Pomès (6).  Numerals on
either end of the lower left cartoon indicate entrances on side I
and II of the channel.  Both µH and µd increase as the state
diagram is traversed clockwise.  Two pairs of dashed lines
delimit families of transitions from the endpoints of the proton
(or top) segment to the boundary regions on the defect (or
bottom) segment.

water chain, about which the axial component of the water
dipole moment turns.  The lowest energy conformations, in
the boundary regions, correspond to water columns that are
nearly aligned, with defects only close to the channel
entrances.

The MD with and without an excess proton in the
pore suggests a mechanism of proton permeation through
gramicidin, sketched in Figure 1C. Consider an excess
proton which enters the channel through the entrance on
side I.   The center of excess charge may diffuse through
the pore and leave the channel through the entrance on side
II.  The proton (or top) segment parameterizes this process.
While in the channel, neighboring waters are aligned by the
excess charge, although the strength of the correlation declines
for waters well separated from the center of charge (7).  When

the proton leaves the channel, the remaining waters will remain
partially aligned. The water column can be left in a range of
states; the possible transitions are delimited by the dashed lines
from the proton to the defect (or bottom) segment.  The
interval of states on the defect segment encompassed by these
lines is boundary region II.  It is delimited by its endpoints, -
µC

d and -µA
d.

The defect segment parameterizes water
reorientation.  The waters must now turn before their dipole
moments will have a favorable energy of interaction with a
new excess proton entering the pore through the entrance on
side I.  Consistent with the MD simulations (1), water
reorientation in the model is mediated by a defect which
diffuses over the potential barrier in Figure 1B.  The alignment
of waters shown in the cartoons below the defect segment in
Figure 1C depicts a defect with a partial positive charge (8),
although defects with a partial negative charge have also been
suggested (9).  When the channel is in boundary region I,  the
range of states delimited by dashed lines on the left, it is
receptive to another proton entering the pore on side I.

The proton permeation mechanism suggested by
Figure 1C is the basis of a framework model (2,6,10) which
describes proton permeation through gramicidin A and
analogs in which either one pair of tryptophans was
replaced by phenylalanine (gramicidin B) or all four pairs
of tryptophans were replaced by phenylalanine (gramicidin
M).  By describing proton entrance and exit only from the
endpoints of the top segment, the model implicitly assumes
that waters in the occupied pore are fully aligned by the
excess charge.  Despite the cartoons drawn below the
bottom segment of Figure 1C, the mathematical model
makes no assumption regarding the structure of the defect.

A detailed comparison was made between
experimental and model proton conductances (2).  Very
good agreement was obtained with previous calculations of
the electrostatic interaction between the tryptophan indoles
and cations in the pore (11).  The permeation mechanism
suggested by Figure 1C describes at most only a single
excess proton in the pore.  A shoulder in the experimental
data for gramicidin A and B separating regimes of
conductance at high and low pH was interpreted as a
transition to a conduction mechanism in which states with
two or more protons in the pore are significant.

A fundamental assumption made by this
framework model is that the dynamics of proton
permeation and water reorientation can be adequately
described by processes parameterized by single reaction
coordinates.  This is not the same as assuming that the
dynamics are geometrically one dimensional.  For example,
the permeation pathway of a cation through gramicidin is
thought to have a helical character because of the
coordination of the cation with the helical peptide
backbone.  This helical character is simulated by the
molecular dynamics.  The full geometry of the simulation
enters into the calculations of the potential of mean force
and diffusion coefficients which are used by the framework
model.  The three dimensional geometry is therefore
implicitly taken into account.
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Figure 2. (A) State diagram for the lumped state
approximation (LSA) of the single proton conduction
mechanism.  (B)  State diagram of the nth random walk
leading to the LSA model.  States Hi correspond to proton
occupancy and di correspond to defect diffusion.  States bI
and bII model the boundary regions of Figure 1B.   (C)
State diagram for numerical computation of the LSA
model.  Escape rates from the endmost sites of the proton
and defect diffusion intervals are multiplied by factors of 2
as indicated - the trapezoid rule.  (D)  Locations of the
numerical random walk sites on the LSA state diagram for
n=3.  Boundary states are distinguished by surrounding
circles.

Instead, the use of a single reaction coordinate
assumes that the dynamics depends only on a single
important degree of freedom.  An analogy can be made
with a ballet performance, where the positions and
movements of the dancers at any moment are determined
by the score.  Of course, the atomic positions and
orientations in a biomolecule would not progress steadily
through a parameterized sequence of states, but the value of
the parameter would change diffusively.  Further, high
frequency thermal motions with small amplitudes would be
superimposed on the synchronized dynamics.

However, proton permeation through gramicidin
may involve more than one significant degree of freedom.
For example, even in the presence of an excess proton in

the pore, the orientation  of waters which are well separated
from the center of excess charge is not rigidly constrained
(7).  The mechanism of proton escape may then be partially
determined by the interaction between the center of excess
charge and defects within the water chain. If the
movements of the center of charge and of the defects are
substantially independent, two or more degrees of freedom
may be required to describe their interaction.   A second
example is provided by the RR dioxolane linked analogs of
gramicidin (12-14).   Molecular modeling suggests that the
backbone carbonyls closest to the dimer interface can flip
between orientations of almost equal energy, one projecting
at an angle of 20-30° into the pore and the other projecting
at an angle of 20-30° away from the pore (15).  This
conformational change alters the environment of cations in
the pore and may need to be taken into account by a
permeation model as a separate degree of freedom.  This
suggests that a satisfactory description of cation permeation
through RR gramicidin may require a more complicated
configuration space than a description of permeation
through native gramicidin.

These considerations motivate the development
of methods to construct  and solve numerical framework
models which can be more elaborate than the one
dimensional models constructed so far (2,6,10,16).  This
article introduces a method which involves finding the
steady states of a random walk constructed using a
trapezoid  rule  closely related to the rule for numerical
integration.   It is first applied directly to the framework
model described by ref. 2, where an analytical solution is
available for comparison with our numerical result.  This
model simplifies the continuous families of transitions
portrayed in Figure 1C using the lumped state
approximation  (6, 17).  The numerical method is then used
to construct a more elaborate model which directly
incorporates the families of transitions; this is also
compared with the analytical solutions based on the
simplified diagram.

3. METHODS AND RESULTS

3.1. Lumped State Approximation Model
The state diagram of the lumped state

approximation (LSA) of the single proton conduction
mechanism is shown in Figure 2A, and is interpreted
similarly as the simplified configuration space of Figure
1C.  The top or proton segment parameterizes the diffusion
of an excess proton through the pore and the bottom or
defect segment parameterizes the diffusion of a defect
mediating water reorientation.  Mathematically, these are
both described by Smoluchowski equations, which are
diffusion equations that incorporate the systematic
influence of the proton and water reorientation potentials of
mean force.  Their boundary conditions allow an excess
proton to enter the pore with transition densities that are
exponentially distributed in time when the channel is
receptive.  The exponential distribution also underlies rate
theory models (for example, ref. 18) and is an appropriate
approximation when the concentration of excess protons in
the surrounding baths is not too large (16,19).  The
boundary regions of the defect segment are modeled as the
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Figure 3. LSA proton and defect state probabilities for
n=10.  These were constructed for  high symmetrical
concentrations of proton in bulk, CI = CII = 5M, an applied
transmembrane of ΨI = 25.5 mV (1 kBT at 23°C) and the
scaled PM6 potential given by the solid curve in Figure 1B
(10).   Dots are the numerical computation and the curve is
the analytical LSA model. (A) Proton density.  (B) Defect
density.

lumped states bI and bII.  The lumped state approximation
neglects the time required for diffusion across the boundary
regions, and is accurate as long as this is much shorter than
the time required to diffuse over the central barrier on the
defect segment (17).  The approximation is used because it
gives a model that can be solved analytically.

We constructed the LSA model as the limit of a
sequence of random walks (10).  The state diagram for the
nth random walk is shown in Figure 2B.  The n random
walk sites Hi, i=1…n, are the proton occupancy states and
the n random walks sites di describe defect diffusion over
the water reorientation barrier.  The states bI and bII model
the boundary regions.  Transition probabilities between
neighboring states are defined so that a coupled pair of
Smoluchowski equations describing diffusion around the
state diagram is obtained in the limit n ∞.  This
construction is required in order to obtain the boundary
conditions described above.  The coupled system of
equations then describes either the diffusion of a single
proton in the pore or water reorientation in an empty pore.
The boundary conditions used by Goldman-Hodgkin-Katz
theory (for example, ref. 18) or Poisson-Nernst-Planck
theory (for example, ref. 20) lead to mathematical models
which correspond to an infinite superposition of occupancy
states (19). These mean field  theories do not take into
account correlations between ions and waters occupying
the pore and are not appropriate for our purpose.

Below, we compare the analytical LSA results with
numerical computation.  Figure 2C shows the form of the
numerical state diagrams.  States H0 and d0 have been
introduced, giving n+1 proton states and n+1 defect states.
The transition probabilities depend on n in the same way as
with the diagram shown in Figure 2B.  However, the endmost
sites, H0, Hn, d0 and dn, have only half weight.  The reason for
this weighting is easy to understand.  Consider the proton
occupancy states.  Each of the sites H0, …, Hn-1 may be viewed
as corresponding to subintervals of the proton segment, in
Figure 2A, centered at that site.  The endmost random walk
sites, H0 and Hn, correspond to endmost subintervals of the
proton segment that only have half the width of the others.
Assigning these states half weight is analogous to the extended
trapezoid rule used in numerical integration (for example, ref.
21).  In the numerical model, the half weighting is achieved by
multiplying the transition probabilities corresponding to escape
from these states by a factor of two.  These prefactors are
indicated in Figure 2C.  The location of the numerical random
walk sites on the state diagram is indicated in Figure 2D for n
= 3.

In the diffusion limit, n  ∞, states H0,…Hn
converge to the proton segment on which a probability density
is defined.  States d0,…dn converge to the region of the defect
segment between the boundary states on which a density is
also defined.  However, transitions between d0 and the
boundary state bII and between dn and the boundary state bI
scale with n differently than do transitions between states on
the proton segment or the interior of the defect segment.  In the
diffusion limit, these boundary states become mathematical
points associated with positive probability.  They are
distinguished by surrounding circles in Figure 2D.

The numerical solution of the LSA is achieved as
the steady-state solution of the numerical random walk at a
finite value of n.  If we denote the probability of site i as Qi and
the transition probability from site i to neighboring site j as ki,j,
then the following equation is satisfied at steady state:

(1)   Qi-1 ki-1,i + Qi+1 ki+1,i =  Qi ( ki,i-1 + ki,i+1).

There are 2 n + 4 such equations, one for each state
in Figure 2C.  One of these can be expressed as a linear
combination of the others and is discarded.  However, we must
also include the normalization condition that the sum of all of
the site probabilities Qi is 1.  This gives a linear system of 2 n +
4 algebraic equations which are solved simultaneously.  For
the examples below, this is achieved using the generic
LinearSolve command in the software package Mathematica
(version 4.1).  The net current J clockwise around the state
diagram can be calculated as

(2)     J = Qi ki,i+1 – Qi+1 ki+1,i

for neighboring sites i and i+1.

Figure 3 compares the numerical and analytical
state probability densities for protons in the occupied pore
and defects mediating water reorientation in the empty
pore.  Gramicidin A parameter values are taken from
optimal fits with the PM6 water reorientation barrier
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Figure 4. Comparison between analytical LSA currents and
the n=10 numerical computation.  Concentration in bulk are
symmetrical and applied potentials are indicated  on the
abscissas.  In the current panels on the left, the solid curves
are the analytical results and the dashed curves are the
numerical results.  (A)  Currents in picoAmps at 2mM.  (B)
Relative error at 2mM.  (C) Currents at 100mM.  (D)
Relative error at 100mM.  (E) Currents at 5M. (F) Relative
error at 5M.

Figure 5. LSA proton and defect state probabilities for
n=57   This figure was constructed under the same
conditions as Figure 3. Dots are the numerical computation
and the curve is the analytical LSA model.  (A) Proton
density.  (B) Defect Density.

reduced in amplitude by 2 kcal/mol (2), shown as the solid
curve in Figure 1B.  In Figure 3, the analytical results are
given by the solid curve and the numerical results by filled
circles.  This figure was constructed assuming very high
symmetrical concentrations of excess protons in the bulk:
CI = CII = 5M and a transmembrane potential of ΨI =
25.5mV (1 kBT at 23° C).  Under these conditions, the
probability that a proton occupies the pore is nearly one.
The numerical results of the endmost sites are multiplied by
a factor of two for display in the figure, since their weights
are reduced by this factor according to the trapezoid rule.
The relative errors quoted below are given by

(3)  relative error = (numerical result – analytical result) /
analytical result .

The results shown in Figure 3 correspond to the
numerical calculation with n = 10 in the state diagram of
Figure 2C.  The relative error in the integrated proton
density is only –1.3 10-4, but there is a much bigger relative
error in the integrated defect density, 0.18.  The integrated
defect density is very small, and corresponds to the
probability that, at a given time, the channel will be found
with an empty pore and a water reorientation defect
diffusing between the boundary regions of Figure 1B (solid
curve).  Its large relative error can be understood from
Figure 3B.  The density increases rapidly toward the
endpoints, which are sites of the numerical calculation.
The density at these endpoints is much greater than the
average value in an appropriate neighborhood interior to
these points.  In contrast, the relative errors for the
probabilities of the boundary states are much smaller, that
for bI is -0.0045 and that of bII is 0.017.

We are ultimately interested in model currents,
since these numbers would be compared with experiments.
Figure 4 compares the analytic LSA currents with
numerical values for n = 10.  Currents are given in the left
hand panels and their relative errors in the right hand
panels.  For each current panel, the voltage is given on the
abscissa, in units of kBT = 25.5mV, and current is given on
the ordinate, in picoAmps (pA).  The solid curve shows the
results of the analytical LSA model and the dashed curve
the results of the numerical model.   The top row
corresponds to symmetrical concentrations of 2mM excess
protons in the bulk, the middle row to concentrations of
100mM, and the bottom row to concentrations of 5M.  The
largest relative errors are encountered for the high
concentration case.  Their density profiles at ΨI = 25.5mV
were given in Figure 3.

Figure 5 shows results of the numerical LSA
model with n = 57, a value that corresponds to one random
walk site at each reaction coordinate value between the
boundary regions where the molecular dynamics
simulations evaluated the water reorientation potential of
mean force.  The relative error of the integrated proton
density is –3.2 10-6 and that of the integrated defect density
is 0.0042.  These errors are smaller by a factor of about 40
compared with those obtained for n=10.  The relative error
for bI is –0.0021 and that of bII is 0.0017.
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Figure 6. Comparison between analytical LSA currents and
the n=57 numerical computation.  Panels are interpreted in
the same way as for Figure 4.  (A)  Currents at 2mM.  (B)
Relative error at 2mM.  (C) Currents at 100mM.  (D)
Relative error at 100mM.  (E) Currents at 5M. (F) Relative
error at 5M.

Figure 6 shows the corresponding currents for
n=57.  At symmetrical concentrations of 2mM, the relative
error has decreased by a factor of 40 compared with the
currents for n = 10.  Relative errors at 100mM are
comparable to those at 2mM.  However, the errors are an
order of a magnitude greater at 5M, and have decreased
only by about a factor of 5 compared with those at n=10.

The time required for a current evaluation may
potentially limit the analyses that can be performed to
compare models with experiment.  The sensitivity analysis
presented by (2) required over 106 current evaluations.
Evaluation of the analytical formula for the LSA current is
very fast.  Tables are pre-computed to allow rapid
evaluation of integrals.  On a 1 GHz Pentium III machine
running the Mathematica software package, a current
evaluation requires only  5 10-4 seconds.  To solve the LSA
model numerically for n = 57 requires the solution of a
linear system of 2n+4=118 equations.  Using the
LinearSolve command, this takes 0.017 second, about 35
times longer than the analytical solution.

3.2. Constant entrance probability model
The model of proton conduction suggested by

Figure 1C includes families of transitions from the proton-
occupied pore to the empty (occupied only by waters) pore.
This is because the dipole moment of the empty pore will
not be uniquely determined after a proton leaves through a
channel entrance.  Especially near the opposite end of the
channel, the pore waters will be left in a distribution of
states.  This distribution could be estimated by molecular
dynamics.  An excess proton at a channel entrance might be
removed in repeated simulations, sampling the distribution
of remaining pore water dipole moments.  The intervals of

remaining pore water states in the empty pore are the
boundary regions.   The LSA simplifies these dynamics,
which cannot be parameterized by a single reaction
coordinate, by lumping the boundary regions into single
points bI and bII on the state diagram of Figure 2A.

This section introduces a the Constant Entrance
Probability (CEP) model of proton conduction which
instead explicitly incorporates the boundary regions.  Like
the LSA model, it is obtained as the limit of a sequence of
random walks.  The nth member of this sequence is shown
in Figure 7.  The states denoted Hi model proton diffusion
through the pore and the states denoted di model water
reorientation.  H0 models an excess proton at the channel
entrance on side I and is coupled to m+1 water
reorientation states which model the boundary region on
side I.  Similarly, Hn is coupled to m+1 states which model
the boundary region on side II.  The ratios of the entrance
to exit rates are determined, through the thermodynamic
principle of detailed balance, by the energy differences
between states in the boundary regions and states H0 and
Hn.  These ratios vary throughout the boundary regions as
the energy differences themselves vary; see Figure 1B.  In
the CEP model, the rate of proton entrance is assumed to be
constant within the boundary regions and the rate of proton
exit varies.

When the limit n  ∞ is taken, we obtain the
system of differential equations and boundary conditions
for the CEP model, whose state diagram is effectively
Figure 1C.  The top segment parameterizes the diffusion of
a proton through the pore, described by a Smoluchowski
equation as with the LSA model. Proton entrance and exit
are described only through the endpoints of the top
segment, again similar to the LSA model.  Diffusion of the
water reorientation reaction coordinate across the central
barrier, between the boundary regions of the bottom
segment, is also described by a Smoluchowski equation.
However, two additional terms appear in the diffusion
equations modeling transport in the boundary regions.
These describe densities of transitions to and from the
boundary regions and the endpoints of the proton segment.
Corresponding to these two densities, two integrals over the
boundary regions appear in the boundary conditions for the
Smoluchowski equation on the proton segment.

The CEP model is approximated numerically by
computing the steady state properties of the random walk
shown in Figure 7.  With the transition probability
prefactors shown, and further described by the figure
legend, the integrals that appear in the proton segment
boundary conditions are approximated as Riemann sums by
the trapezoid rule for numerical integration (21).  Steady
states are computed as the solution of a linear system of
2n+2 equations, one for each of the states, Hi and di, shown
in Figure 7.  There is an analytical relationship between the
CEP and LSA models, and CEP parameters values were
chosen to correspond to the LSA computations shown
previously.

Figure 8 compares the CEP and analytical LSA
probability densities for protons in the occupied pore and
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Figure 7. State diagram for numerical computation of the
CEP model. States Hi correspond to proton occupancy and
di correspond to defect diffusion.  The m+1 transitions
between the state H0 and the defect segment model the
family of transitions on side I of the channel in Figure 1C.
The m+1 transitions between state Hn and the defect
segment model the family of transitions on side II.  Escape
rates from the endmost sites of the proton and defect
segments are multiplied by factors of 2, with the following
exceptions.  Rates directly between the endmost sites are
not multiplied by prefactors and rates between Hn and dm
and between H0 and dn-m are multiplied by the prefactors
indicated (when no prefactor is shown, its value is 1).  In
the limit n  ∞, an analytical model is obtained whose state
diagram is Figure 1C.

Figure 8. CEP proton and defect state probabilities for
n=81 and m=12.  As in Figure 3 and 5, these were
constructed for CI = CII = 5M, and ΨI = 25.5 mV and using
the scaled PM6 potentials. Dots are the numerical
computation and the curve is the analytical LSA model.  A.
Proton density.  B. Defect density.  Compared to Figure 3
and 5, the defect diffusion interval has been extended to
include the boundary regions.  The LSA solution is defined
over[-µC

d, µC
d].

defects mediating water reorientation.  The numerical
results are computed for n = 81 and m=12, corresponding
to one random walk site at each reaction coordinate value
of the defect segment, including the boundary regions.
The LSA results are given by the solid curve and the CEP
results by filled circles.  Increasing values of the reaction

coordinates µH and µd correspond to progress clockwise
around the diagram of Figure 1C.  Conditions again
correspond to high symmetrical concentrations of excess
protons in the bulk: CI = CII = 5M and ΨI = 25.5mV.  CEP
results for the endmost sites are multiplied by two, since
their weights are reduced by this factor in the trapezoid
rule.  The relative error is defined by Eq. (3).  That of the
integrated proton probability density is –5 10-6 and that of
the integrated defect density between the boundary regions
is 0.0040.  The relative error between the integrated CEP
boundary region I density and the weight of LSA boundary
state bI is –7 10-4, and the corresponding error on side II is
0.0024.  These last two comparisons suggest that the
lumped state approximation works very well under the
conditions of these computations.

Figure 9 compares the numerical CEP currents
for n=81 with those computed using the analytical LSA
model.  Panels are arranged as in Figure 4 and 6.  Relative
errors are comparable to those obtained from the numerical
LSA model with n=57; compare with Figure 6.  As with the
LSA computations, the relative errors are largest at high
proton concentrations. Each CEP current evaluation
requires the solution of a linear system of 2n+2 = 164
equations.  Using Mathematica on the 1 GHz Pentium III
machine, an evaluation requires 0.032 seconds, a factor of
64 greater than required by the analytical LSA model.

4. SUMMARY AND DISCUSSION

This article has described numerical methods for
constructing framework models of single proton
permeation through gramicidin.  Numerical LSA models
are first constructed, based on the trapezoid rule which is
described in the text in section 3.1 that discusses Figure 2C
and 2D.  These numerical models are compared with the
analytical model (2) using the relative error defined by Eq.
3.  For n = 10, the relative errors of the numerical currents
are under 5% for symmetrical [H+] of 100mM or less and
transmembrane potentials of 150mV or less. This includes
the range of apparent single proton conduction in
gramicidin A. The 5% relative error in the current value is
much less than that expected from molecular dynamics due
to uncertainty in PMFs and diffusion coefficients.  For n =
57 the relative error of the numerical LSA model decreases
by a factor of about  5 at symmetrical [H+]=5M and by a
factor of about 40 for [H+] = 100mM or less.

The numerical methods also allow construction
of the CEP model, which explicitly models the continuous
families of transitions between the proton occupied pore
and the empty pore indicated in Figure 1C.  The CEP
model has an analytical relationship with the LSA model
which allows the identification  of corresponding parameter
values.   Using these, the comparison between CEP and the
analytical LSA currents is as close as between the n = 57
LSA and analytical models.  This result reinforces the
conclusions of a previous study (17), which showed the
mean first passage times for diffusion across a potential
barrier using the lumped state approximation closely
matched those in the absence of the approximation, so long
as the potential barrier had an amplitude greater than 2 kBT
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Figure 9. Comparison between analytical LSA currents and
the numerical CEP  computation.  Panels are interpreted as
in Figure 4 and 6. (A)  Currents at 2mM.  (B) Relative error
at 2mM.  (C) Currents at 100mM.  (D)  Relative error at
100mM.  (E) Currents at 5M. (F) Relative error at 5M.

and the boundary regions were not too wide.  The
construction of the CEP model also demonstrates that the
numerical methods can construct framework models that
would be difficult or impossible to solve analytically.

Framework models have been constructed to
describe the permeation of single Na+ ions (16) and single
protons (2) through gramicidin.  These models describe the
dynamics of permeation in simplified configuration spaces
that are designed to incorporate potentials of mean force
and diffusion coefficients calculated by the molecular
dynamics simulations. The accuracy of the energies
obtained by MD is controversial (22).  However, the close
comparison between the water reorientation potential
whose amplitude was reduced to allow a detailed fit to
conductance data (2) and the potential of mean force
calculated using TIP3P waters (1) in Figure 1B (dashed
curve) is very attractive.  The difference between the
original MD results for PM6 and TIP3P waters may
suggest the uncertainty that remains.  The use of PMFs and
diffusion coefficients calculated from MD means that the
framework models implicitly take into account the detailed
interactions between a permeating ion, the channel and
pore waters.  The comparison with experimental
conductances provides both insight into permeation
mechanisms and feedback that can be used to refine the
MD.  However, the framework models of Na+ and H+

permeation through gramicidin depend on the assumption
that the dynamics of permeation are so constrained that
they can be reasonably projected onto a single reaction
coordinate.

Brownian dynamics simulations have also been
used to fit potential profiles and diffusion coefficients to
gramicidin conductance data (23).   This method does not

assume that the dynamics of permeation are highly
constrained.  Moreover, it does take into account
correlations between ions, which mean field theories of ion
permeation do not (19,24-25).  However, Brownian
dynamics does not incorporate the detailed description of
the ions and the channel found in molecular dynamics, and
water molecules are not modeled individually at all.  These
details may be very important for understanding
permeation through narrow ion channels in which ions and
waters must be ordered in single file.  For example, a cation
in the channel reorients neighboring water molecules so
that, on average, partial negative charges are directed
towards the cation (7).  This may well influence the
energetics of a second ion trying to enter the pore.  In
addition, the energetics of the doubly occupied state depend
on how water molecules pack between the ions at their
binding sites (26).

An attempt to model these interactions by
Brownian dynamics simulations would involve the
introduction of additional empirical forces acting on the
ions, including free parameters.  Optimizing the values of
those parameters would require comparing model currents
with experimental data.  In the Brownian dynamics
simulations (23), the computations to complete a simulation
period of 1 µsec required  30 hours CPU on a
supercomputer.  In 1 µs, only a net 6 elementary charges
pass through the channel at a current of 1 pA.  In contrast,
an evaluation of the analytical LSA currents takes 5 10-4

seconds on a 1 GHz desktop PC, allowing an extensive
comparison between model currents and conductance data
in the free parameter space that required more than 106

current evaluations (2).  The time required for the
evaluation of numerical framework model currents is
longer, but remains short enough to allow an extensive
comparison between model and experiment.

Framework models make the assumption that the
dynamics of ion permeation, which involve thousands of
degrees of freedom in molecular dynamics simulations, can
be reasonably projected onto simplified configuration
spaces with a small number of degrees of freedom.  This
assumption was motivated, in part, by the empirical success
of rate theory (for example, ref. 18), which framework
models generalize.  The framework approach has provided
a simple explanation for a large set of proton conductance
data from gramicidin A and two analogs, which is
consistent with independent calculations (2).  However,
there may also be a theoretical justification for projection
onto a simplified configuration space.

Dynamics described by complicated systems of
ordinary differential equations or by partial differential
equations can sometimes be shown to be controlled, in a
clear mathematical sense, by much simpler equations.  The
number of essential degrees of freedom in these simpler
equations is related to the concept of dimension in
nonlinear dynamics.  Strogatz (27) gives a wonderful
introduction to the point of view of nonlinear dynamics and
the concept of dimension. Schreiber (28) reviews methods
developed to estimate dimension from experimental data.
However, these depend heavily on the use of time delayed
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coordinates, which do not handle the thermal noise which
dominates the dynamics of molecular systems well.

Fortunately, a related sense of dimension seems
to emerge from principal coordinate analysis, which has
already been introduced to the study of molecular dynamics
simulations of protein folding (29,30).  Snapshots of a
simulation correspond to a set of points in the high-
dimensional configuration space of a selected group of
atoms within the simulation.  Projections of these points to
lines through the centroid of the set are considered.  That
which gives the greatest variance is the first principal
coordinate.  It corresponds to the degree of freedom (a
synchronized trajectory which may involve all of the atoms
in the system) which moves the most in the simulation.
The process is repeated to obtain the line orthogonal to the
first coordinate with the greatest variance, and so forth.

Principal coordinate analysis has already been
applied to the analysis of the fluctuations of water filled
gramicidin (31).   It was found that 70-80% of the
fluctuations in the pore direction were due to the correlated
movement of the whole water column.  This result suggests
that an analysis of water permeation through gramicidin
which refers only to this one degree of freedom would be
appropriate.  However, the number of essential coordinates
required to describe the permeation process is likely to
increase as the channel environment is made more complex
(13, 15) or as the pore radius increases (32).  The
development of numerical methods for constructing
framework models would then be required to apply this
approach to the description of these more complex
molecular motions.
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