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1. ABSTRACT

Genetic association analysis using thousands of
single nucleotide polymorphism (SNP) markers has
become a promising alternative to genome-wide linkage
scan. Analysis based on linage-disequilibrium (LD) is more
efficient because meiotic information of past generations is
utilized. However, in addition to the physical distance
between the disease locus and a marker locus, numerous
other factors such as admixture, genetic drift, and multiple
mutations can affect the observed value of LD. The effect
of these factors in a genomic LD association study must be
carefully analyzed to obtain an efficient study design. In the
following review, we consider studies using family-based
data and carefully study the effects of some of these
important design factors, including the sample size,
frequency of SNP markers, and marker density. For
example, we conclude that (1) for reasonably frequent SNP
markers, a moderately large sample of 500 families is
appropriate for a moderately stringent significance level (α
= 0.00009); (2) to maintain a power of 80%, maximal
difference in allele frequencies between the disease gene
and a SNP marker varies between 0.1 (under additive
model) and 0.5 (multiplicative); (3) a map density of 10cM
is appropriate only under idea scenario (moderately large
sample size, equal trait/marker allele frequencies,
maximum LD strength etc.). Results shown here should
have practical implications to designing efficient LD
association studies using dense SNP markers.

2. INTRODUCTION

Genetic studies of complex diseases have
progressed toward a more global view as more and more
high quality genetic markers become available. The

movement to global analysis is also due to the large number
of causative factors (genetic and non-genetic) involved in
the etiology. Researchers now-a-days take more systematic
approaches and perform genome-wide linkage scans using
hundreds of genetic markers and hope that the global
search will result in important leads. Certainly, methods are
evolving for finding complex disease genes (e.g., see Rao
and Province, 2001) (1).

While genome-wide linkage scan remains the
workhorse of many ongoing studies of complex diseases,
its utility is limited to detecting modest to large genetic
effects. A promising alternative design involves linkage
disequilibrium (LD) association studies using thousands of
single nucleotide polymorphism (SNP) markers across the
whole genome. This approach is potentially more powerful
because it utilizes more information across the whole
genome and from meioses in past generations. Under ideal
circumstances, such a design may require substantially less
sample size than linkage (2).

The choice of the LD approach was motivated
because LD is a much finer measure of the physical
distance between the disease susceptibility locus and a
polymorphic marker. The reality is, however, not as simple
as it first appears.  Numerous publications of genetic
association findings point to conflicting stories that rarely
lead to discovery of actual disease genes. This reality
reflects a lack of attention to some important factors in a
LD study design. It is a well-known fact that association
studies can lead to spurious results if underlying population
stratification is not taken into account. This problem can be
dealt with by constructing family-based controls and using
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transmission/disequilibrium tests (TDT). However,
everything does not stop with the application of TDT.
Numerous other design factors can affect the efficiency of a
LD association study.

In this article, we take a close look at the effect of
several such factors in the context of LD association studies
using densely placed SNP markers. Given the fact that
many ongoing genetic studies of complex diseases have
accumulated large samples of pedigree data that were
originally collected for genomic linkage scans, we
anticipate that many genetic association studies in the
future will utilize powerful LD methods on such existing
resources. We therefore concentrate here our analysis on
association methods using family-based samples only.

3. LINKAGE DISEQUILIBRIUM MAPPING

The primary advantage of linkage disequilibrium
(LD) analysis is its ability to utilize the recombination
information in past generations to achieve finer mapping
resolution (3). Linkage disequilibrium is a measure that
reflects the fact that alleles at tightly linked loci on an
ancient haplotype will result in higher than expected
frequency in later generations. Consider a QTL locus A
with alleles A and a, and a SNP marker locus with alleles M
and m. Let PAM denote the observed frequency of haplotype
AM, and pA = f(A) and pM = f(M) the corresponding allele
frequencies. Then, D = PAM− pA* pM gives a basic measure
of the linkage disequilibrium. The rationale for using LD in
fine mapping originates from the relationship Dt =
D0(1−θ)t, where the index of D indicates the initial (0) and
the t-th generation, and θ the recombination fraction
between the two loci. It is obvious from this simple
relationship (assuming constant population size, etc.) that LD
decreases as the marker moves away from the disease locus, which
provides the basis for testing the existence of a disease locus by
measuring the strength of LD along the genome. The LD also
decays rapidly over the generations. This should lead to a refined
mapping resolution for moderately old disease mutations.

The LD method has been effectively used in the final
stage to localize mutations for Mendelian disorders (4-6). For
complex diseases, successful stories are yet to come except for the
few examples in Mendelian subsets of common diseases such as
ApoE4 for Alzheimer’s and BRCA1 & 2 for breast cancer. The
challenge of complex diseases comes from the multiple
factors involved in the etiology and the unspecified past
population history rendering the LD relationship less
tractable. More realistic models were introduced to account
for past population history such as admixture, genetic drift,
multiple mutations, and natural selection (7-11). An excellent
review was given by Jorde (6) on some of the progress in this
front. We will concentrate in the following sections on how
controllable factors in an association study, in particular the
characteristics of SNP markers, can be determined to result in
an optimum study.

4. FAMILY-BASED ASSOCIATION STUDY

There are basically two types of designs of
genetic association studies: population based (case-control)

or family-based samples. The choice between the two
approaches is determined more by the constraints we are
faced with than power considerations per se, although
differences in power can be substantial and has been
reported (12;13). A case-control design is generally more
powerful, but not without limitations. It may suffer from
problems such as undetected population stratification. This
arises when there are more than two subpopulations in the
sample with different allele frequencies and disease
prevalence. Positive association in this case may be merely
a reflection of the subdivision and may have nothing to do
with linkage disequilibrium of interest to the disease
mapping (14).

Family-based designs on the other hand, have
several advantages: (1) They construct “virtually matched”
controls by utilizing alleles that were not transmitted to the
affected offspring or alleles transmitted to the unaffected
offspring; (2) They utilize data (genetic and
epidemiological) already collected in many
existing/ongoing linkage studies and can cross check with
the linkage analysis results invoking two stage approaches;
(3) Recently developed methods that carry out combined
linkage and association analysis provide additional ability
to resolve false-positive results; (4) When methods of
haplotype analysis are used, multi-generation pedigree data
provide better protection against poorly estimated
haplotype frequencies.

5. STUDY DESIGN ISSUES

As pointed out by many people time and again,
for genetic studies of complex diseases the study design
can be a determining factor for its success (15;16). Many
extensions and modifications have been carefully studied
since the early introduction of family controls by Falk and
Rubinstein (17). Zhao gave a nice review of the
mathematics behind the many variations of TDT tests
currently in use (18). Most of the analysis performed in the
following sections will be focused on a hypothetical LD
study design with a reasonably large sample (<750) of
nuclear families. A TDT extension of Knapp’s method by
Chen and Deng and its companion computer program will
be used to calculate the power under various models (19).
We will characterize properties of SNP markers that are
essential for an optimum LD association study design. We
want to look at the issues that influence the power of such a
study.

6. WHAT SAMPLE SIZE IS APPROPRIATE

The first question that should be dealt with in any
genetic study is how big a sample is appropriate. This is
essential both for scientific reasons and for practical
reasons such as budget and fieldwork. However, there is no
uniform answer to this question: the same sample size may
not lead to the same power because of the information
content of a sample may vary (missing parental information
etc.). Several recent publications gave detailed analysis of
power using nuclear families and various forms of TDT
tests (20-22).

To come up with practically usable sample sizes,
we assume for the moment that a SNP marker is tightly
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Figure 1. Genetic models used for power calculation. Three types of genetic models (multiplicative, additive and dominant) are
considered. This figure shows the effect sizes of the underlying disease allele in terms of attributable fraction of cases in the
population (23).

linked to the trait locus and the frequencies are the same for
the alleles in LD. Relaxation of this assumption will reduce
power, as will other factors that may weaken the strength of
linkage disequilibrium. These will be considered in the
following sections. We considered three practical sample
sizes for the power calculation: a moderate sized study with
250 nuclear families each with 3 offspring, a large study
with 500 such families, and a really large study with a
mixture of 500 families with 3 offspring and 250 with 2
offspring. We then tested a wide spectrum of underlying
disease models to study the power of TDT. We let the
disease allele frequency vary from very rare (0.01) to fairly
common (0.5). Three types of genetic models were
considered: multiplicative, additive and dominant. A
measure of attributable fraction (23) is used to measure the
genetic effect size at each allele frequency under the 3
genetic models. As shown in Figure 1, the models were
chosen so that for a fixed value of allele frequency, the
genetic effect attributable to the disease allele is closely
comparable across the three models. The power under all
these models and sample sizes is summarized in Table 1.
We see that even using a moderately stringent threshold of
α = 0.00009, susceptible genes having common effects in
most of the 500 families can be detected by TDT test under

all the models tested for marker alleles that are reasonably
frequent (p>= 0.1).

7. WHAT MARKER ALLELE FREQUENCY

We have seen above how the frequency of the
disease allele affects the attributable fraction of cases in
population to the gene effect, as well as the power of LD
association test. Unlike linkage designs where rare disease
and low disease allele frequencies lead to more power,
association analysis is more efficient when disease allele is
more frequent for a common disease. Analysis by Chapman
and Wijsman (24) showed that markers with equifrequent
alleles give most powerful LD test. For a biallelic SNP, this
also points to common disease alleles.

The matter is complicated by the fact that LD is dependant
on allele frequencies. In its basic form, D, the strength of
LD has upper and lower bounds dependant on the allele
frequencies: Dmax= min[pA*(1- pM), (1-pA)*pM] if D>0;
max[–pA*pM,   – (1-pA) *(1- pM)], if D<0. Through simple
mathematics, one can see why LD strength achieves its
maximum when alleles in LD have similar frequencies and
the magnitude of LD depends on the value of the
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Table 1.  Power to detect genetic association for studies of moderate to large sample sizes
α  = 0.001 α  = 0.00009

p N=250 N=500 N=500
+250 N=250 N=500 N=500

+250
Multiplicative
0.01 1.0% 3.1% 7.4% 0.1% 0.6% 1.8%
0.05 15.2% 48.9% 80.8% 4.6% 24.8% 58.5%
0.10 43.6% 88.5% 99.2% 20.7% 70.8% 96.0%
0.20 80.8% 99.6% 100.0% 58.5% 97.8% 100.0%
0.30 93.2% 100.0% 100.0% 79.7% 99.8% 100.0%
0.40 97.1% 100.0% 100.0% 89.1% 100.0% 100.0%
0.50 98.4% 100.0% 100.0% 93.2% 100.0% 100.0%
Additive
0.01 1.0% 3.1% 7.3% 0.1% 0.6% 1.8%
0.05 14.3% 46.7% 78.4% 4.2% 23.0% 55.2%
0.10 39.5% 85.4% 98.6% 17.8% 65.4% 93.7%
0.20 71.9% 98.8% 100.0% 46.8% 94.5% 99.9%
0.30 83.3% 99.7% 100.0% 61.9% 98.4% 100.0%
0.40 86.2% 99.9% 100.0% 66.7% 99.0% 100.0%
0.50 85.0% 99.8% 100.0% 64.8% 98.8% 100.0%
Dominant
0.01 2.2% 8.9% 27.0% 0.3% 2.1% 9.5%
0.05 41.8% 89.1% 99.6% 18.3% 70.2% 97.7%
0.10 81.5% 99.7% 100.0% 57.7% 98.2% 100.0%
0.20 97.3% 100.0% 100.0% 88.8% 100.0% 100.0%
0.30 98.5% 100.0% 100.0% 93.0% 100.0% 100.0%
0.40 97.6% 100.0% 100.0% 89.7% 100.0% 100.0%
0.50 92.2% 100.0% 100.0% 76.4% 99.8% 100.0%

frequencies. Several variations of D were proposed in
attempt to reduce the dependency of D on allele
frequencies. Devlin and Risch (25) studied commonly used
measures of LD, including Lewontin’s D’, Hill’s ∆,
Bengtsson and Thomson’s δ, and Yule’s Q (26-29). They
concluded that δ is directly proportional to the genetic
distance and is the best measure for simple LD mapping.
For rare diseases and randomly sampled haplotypes, D’ ≈ δ
is also more favorable than the other two measures. These
various forms of LD measures share the same numerator,
which is D, and uses different denominator to standardize
D. All of them are frequency dependant, though some are
less sensitive than others. Even the well-behaved ones can
become dependent with certain past population history such
as heterogeneous haplotype backgrounds (30). Recently,
Malecot’s measure ρ of LD was introduced for a better
resolution of the dependency problem (31).

When the frequency of a chosen marker allele is
not in sync with that of the disease allele in LD (disparity
of allele frequencies), the total LD strength is
compromised. This will lead to reduced power of LD
association test. Since we do not know the allele frequency
of the disease allele in question, we cannot determine the
best marker allele frequencies for an optimum study.
However, we can approach the problem from a slightly
different angle. We can test the effect on power of various
combinations of disease and SNP allele frequencies across
a wide spectrum of hypothetical models and look for ranges
of (p,q) that give acceptable statistical power over a large
variety of models. In Figure 5, we plot such power surfaces
under the three types of disease models over all

combinations of p and q between 0.05 and 0.95 on a 0.05-
grid. It is clear that the underlying genetic model influences
the level of robustness of the LD association test against the
disparity of allele frequencies. Such influences are more
apparent in the contour plots shown in Figure 6. Area
colored green in Figure 6 covers those (p, q) pairs that can
achieve a power of 80% and above at a significant level of
0.0009; and in light blue those can achieve a power 60-
80%. The moderately large sample of 500 families was
used for the calculation. Additive models are most
sensitive, for which to maintain higher than 80% of power
the difference between QTL and SNP allele frequencies has
to be less than 10% for even fairly common disease alleles
(p=0.2). Maximum tolerance is about 20% when QTL
allele is fairly common (p~0.5). We see that although
multiplicative models is not most powerful for a given
disease allele frequency (see table 1 and Figure 1), it has
the highest tolerance of disparity in allele frequencies. For
highly common QTL alleles (p~0.5-0.7), it can tolerate an
allele frequency up to about 50% and still maintain a power
above 80%.

8. VARIABLE LD STRENGTH

We have seen in the previous section that total
LD strength is dependent on the allele frequencies. Adding
to the complexity, observed values of LD are often less
than the maximum possible LD values. Even when the
marker locus is tightly linked to the disease locus, where
genetic distance is essentially zero, other factors such as
genetic drift and allelic heterogeneity can lead to weakened
LD strength observed in a sample. Tu and Whittemore (32)
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gave a detailed analysis of the effect of weakened LD
strength on the power of LD analysis. Their analysis
showed that lost of LD strength combined with less
frequent disease allele could render a LD association study
less favorable to a linkage design.

We have analyzed the power loss due to weakened LD
strength caused by any known or unknown reasons.
Displayed in Figure 2 is a study for fairly common alleles
(p=0.2), and use our large sample of 500 families, such a
design can tolerate up to (~25%) loss in LD strength
without suffering substantial loss in power. Combined with
knowledge learned from population genetic studies on
distribution of LD among loci in interested region (33;34),
results of the power analyses can provide a practical
guideline of the sizes of detectable association effects.

9. FEASIBLE MARKER DENSITY

Since the past history of a population is beyond
our control, much attention has been turned to searching for
an optimal choice of marker density used for dense SNP
association study. While the physical distance between the
QTL and SNP markers are not the sole factor that influence
the strength of LD, it is still considered a main factor in
most of the cases. Both theoretical studies and population
genetic studies have tried to address this important question
(12;33-35). Most of these studies used LD tests for
population-based samples. Conclusions were somewhat
different: some suggested to use a very high dense map
with about 500,000 SNP markers spanning the whole
genome; others suggested that strong LD can be extended
up to 1cM and 30,000 SNPs will probably be enough for a
whole-genome association study.

At a practical level, studies may only afford to
have several hundreds to lower thousands SNPs either
distributed along the whole genome or clustered around
candidate regions. To get a practical sense of how power of
LD test changes as a function of the genetic distance
between the marker and the QTL locus, we calculated the
power of our hypothetical studies with 500 nuclear families
under all the models specified in Figure 1. We allow the
genetic distance between QTL and the SNP marker to vary
from 1cM to 10cM, which translate to a marker map
density with between-marker distance of 2 to 40cM.   

In Figure 3, we display the result for a
moderately common allele frequency of 0.2. As the
distance between the marker and the trait locus increases,
the power to detect LD at the marker dissipates. With 500
families, under best scenario (equal frequencies and
maximum LD strength), a map density of 10cM apart can
still achieve a decent statistical power above 80% across
the models tested. If genetic heterogeneity is a problem and
only part of the sample is informative (say, 250 families), a
much denser map (<2cM) would be needed (data not
shown).

More interestingly, the genetic distance between
the QTL and a SNP also affects how fast the power of LD
test decays. In figure 4, we plot the loss of power of LD test

as a function of genetic distance between QTL and a SNP
marker, under various models. For moderately common to
fairly common alleles (p=0.2 and 0.4), across the three
types of models, the power is less sensitive to increased
distance when the marker is close to QTL. For less frequent
alleles (p=0.1), the power under dominant model is more
sensitive to increased distance in the close vicinity of the
QTL. Under multiplicative and additive models, however,
it is much more sensitive at the distal sites (loss of >3% of
power per 1cM increased). This should have implications to
placing of SNP markers when some prior knowledge is
available about the underlying genetic mode of the disease,
especially a candidate gene.

10. QUANTITATIVE TRAITS AND COMBINED
LINKAGE AND ASSOCIATION ANALYSIS

Many complex diseases manifest quantitative
phenotypes that are measured on a continuous scale. Such
quantitative traits generally contain more information than
mere affection status of a disease. Many linkage methods
are routinely used to map such quantitative traits. Several
methods also have been developed to perform LD
association studies using pedigree samples. Several score
tests were proposed by Allison (36) and one based on F-
ratio was shown to perform better under a variety models.
Multiple regression procedure were used by George (37)
and extended by Zhu and Elston (38) with careful
considerations of power. Rabinowitz (39) considered a
score test utilizing information of multiple siblings by using
parental information to correct for correlation and
admixture.  The method was extended to 1-TDT by Sun
(40) and colleagues to handle cases when only one parent
genotype is available.

Alternatively, score tests based on likelihood of
distribution of the phenotype employ a general regression
treatment (20;41;42). Of special note are such methods
using a variance components framework and can perform
combined linkage and LD analysis using family-based data.
Such analyses can be carried out with a sibpair design as
suggested by Fulker. (43;44). Both the general regression
and the variance components frameworks can entertain the
addition of covariates and interaction terms into the general
model. Using the variance components approach to analyze
linkage and LD simultaneously, however, can enhance the
true positive signal on a background around the QTL. It is
because that the linkage effect in the combined model will
dissipate quickly as markers move away from the QTL site.
When compared the results to a pure linkage model, an
elevated bump around the true QTL will appear in the plot
of test scores, which leads to a refined resolution of
mapping (Figure 7).

We demonstrated such effect in an earlier
simulation study (45). Three simulated samples were used:
Study A with a sample of 120 nuclear families each with 5
offspring, Study B with 600 nuclear families each with 2
offspring and Study C with 1000 families each with 2
offspring (total number of subjects are 600, 1200, and
2000). We simulated positive LD signal for Study A and B,
and no LD effect for Study C. The QTL was simulated
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Figure 2. Tolerance of weakened LD strength in terms of TDT power loss. A reasonably large study with a sample size of 500
can tolerate a sizable reduction in LD strength (25% of Dmax) while maintaining an acceptable power of ~70% across all three
types of models.

Figure 3. Effect of SNP markers density on power of TDT. Power displayed here were calculated based on a sample size of 500
and a disease allele frequency of p=0.2, and by assuming the marker allele in LD has the same frequency. The map density is
reflected on the x-axis, where a distance value translate to a map density twice of that value, e.g., for a map density of 10cM apart
the maximum distance between the QTL and closest marker will be 5cM. Power under dominant models is generally better than
the other models, although for high frequent alleles power under multiplicative can be as high (data not shown)
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Figure 4. Rate of power loss as a function of SNP map density. The loss of power is less sensitive to increased distance when the
marker is close to QTL for moderately common to fairly common alleles (p>=0.2). For less frequent alleles (p<=0.1), it can be
more sensitive either in the close vicinity of the QTL or at distal sites, depending on the underlying model. Power under three
types of models are plotted separately as shown.
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Figure 5.  Power surface of TDT as a function of disparity between trait- and marker-allele frequencies. Power is calculated and
plotted over combinations of trait- and marker-allele frequencies, ranging from 0.05 to 0.95 on a 0.05-grid, based on the
moderately large sample of 500 families. Varying shapes of the power surface in (a) to (c) indicate that the robustness of the LD
association test in respect to the disparity of allele frequencies is largely model dependent.
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Figure 6.  Contour plot of power surface as function of disparity between trait- and marker allele frequencies. Contour plots of
the power surface displayed in the previous figure. The model dependence of the robustness of the LD test becomes more
apparent. Multiplicative models are most tolerant to possible disparity between trait- and marker- allele frequencies (p and q). For
a given significant level of 0.0009, areas colored green represent (p, q) pairs with a power of 80% and in light blue a power of 60-
80%.
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Figure 7.  Illustration of enhanced mapping resolution by combined linkage and LD analysis. Combined linkage and association
analysis produces test LOD scores that decays rapidly as the marker moves away from the trait QTL and gives enhanced or
comparable test score near the trait QTL compared to linkage analysis alone. This may lead to improved resolution for fine
mapping of disease genes.

Table 2. Summary of a simulation study of the utility to
reduce false positives by combined linkage and LD analysis

Linkage analysis
only ( p-value )

Combined analysis of  Linkage &
LD ( p-value )

D=0.08 7.09 ( 0.008 ) A: N=120 K=5 59.56 ( < 0.1e-6 )
4.84 ( 0.029 ) B: N=600 K=2 94.14 ( < 0.1e-6 )

D=0 6.89 ( 0.009 ) C: N=1000
K=2

3.86 ( 0.2770 )

using an additive model with a heritability of 20% and a
disease allele frequency of 0.125. An equifrequent marker
with an allele frequency of 0.125 is simulated for D = 0.08
for sample A and B, and for D = 0 for sample C.  Analysis
was carried out using Fulker’s method and a modified
version of the SEGPATH program which performs
likelihood tests on general pedigrees using a wide variety
models (46). The result is summarized in Table 2. We see
that the large sample size of Study C led to a moderately
significant false positive using linkage analysis only. When
applied with the combined linkage and LD analysis (in
Study A and B), false positive rate is much reduced while
the true signal enhanced.

Recently, Abecasis and colleagues extended
Fulker’s method to accommodate more general models and
multi-generation pedigrees (47;48). They showed that with
a locus specific heritability of 20% and parent genotypes
available, a sample of 360 families with 3 sibs per family
can achieve a power above 70%, even when 25% of LD
strength is lost. Further enhancement of power may be
achieved by selective sampling schemes similar to that
applied in the context of linkage analysis (36;49;50).

11. DISCUSSION

Genetic association studies are all based on the
principle of “guilty by association”, namely, one identifies

excessive correlation of a particular genetic variant or
variants (alleles) and a phenotype of interest. Association
studies based on the linkage disequilibrium between closely
linked disease and marker alleles coupled on the same
haplotype can lead to a more efficient study and, perhaps
hold the key to the analysis of complex diseases. In a sole
LD mapping design, implicit assumptions are made about
the sample population. Therefore, possible misspecification
introduces considerable instability of observed LD strength
around disease loci. Such variation becomes intractable
because of the unknown past events in the population
history. Family-based designs of LD association analysis
can reduce the influence of some of these factors such as
population admixture.

We reviewed methods currently available in the
literature to perform family-based LD association analysis,
and investigated the effect of several design factors on the
efficiency of such a study. We did this from a practitioner’s
point of view and selected the TDT platform for our power
calculation. Our analysis is by no means exhaustive and
should be taken in the context specified.  By testing a wide
spectrum of models, we showed that the disease allele has
to be frequent enough for the LD association studies to be
fruitful. We also showed that when there is no way to tell if
a SNP marker frequency is equal to that of the disease
allele, one can perform analysis to get the range of
frequencies under a given model for a desired power. The
density of the SNP marker map is a tricky and debatable
topic. We want to stress that it is perhaps more important to
know which SNPs one uses, rather than how far they are
placed apart. For example, it is known that when closely
placed markers are in strong LD among themselves, the
power to detect the disease locus will be compromised.
Also, whether a SNP can result in a nonsynonymous
change (coding SNPs) may have biological implications
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and should be included even if some conditions such as
common allele frequency were not satisfied.

There are many practical issues that we did not
address here. These include the many extensions of TDT
for using multi-allelic markers (42;51;52). We did not
discuss in detail of how to handle various kinds of missing
information in family-based LD association studies. Both
score test extension of TDT and regression based methods
have been developed to handle the missing information
(13;48;49;53;54). We also did not address the important
issue of multiple testing. This has become the bottleneck of
global genomic analysis, be it traditional genome-wide
linkage scan or the more recent genomic LD association
analysis using highly dense SNP markers. Instead of
applying simple adjustment such as Bonferroni correction,
more sophisticated permutation or bootstrapping
procedures have been used by many to derive more
practical empirical significance levels (55). Alternatively, a
sequential multiple-decision procedure (SMDP) can be
applied as proposed by Province (56) to solve multiple
testing problems in genome-wide linkage scans.

The multiple testing problem is closely related to
the problem of whole-genome LD scanning versus
candidate gene scanning. The whole-genome scanning
approach has many attractive aspects, such as the global
assessment of LD strength and highest resolution for
pinpointing the location of disease variant. However, the
time may not be ripe yet for such a grand design. The large
number of potential false-positives resulting from a whole-
genome high-density scan may require either prohibitively
large sample sizes (57) or huge cost in chasing false leads.
Apparently, additional information is needed to help reduce
the false positive findings. One solution is the candidate
gene SNP scanning approach. Instead of an unconditional
scanning of the whole genome, dense SNP markers are
placed in clusters around candidate regions implicated by
known positional significance (e.g., by linkage analysis) or
physiological function (15). Such a design allows
simultaneous analysis of association of multiple tightly
linked markers in a small region to the QTL by haplotype
analysis (51;58). Further investigation of such a design in
the context of dense SNP scans at a large number of
candidate genes is certainly warranted. Recently, a public
effort has been launched to devise a haplotype map to
identify segments of the chromosome that have virtually no
recombinant activities so only flanking SNPs of such
segments will be necessary for scanning. Success of this
project will substantially reduce the necessary number of
markers (SNPs) for genome-wide LD scanning. By
scanning candidate genes this way by haplotype analysis,
not only one can pinpoint a disease mutation site with high
resolution but also can study collective actions of multiple
variants within and across candidate genes that can lead to
the etiology of the complex disease (59).
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