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1.  ABSTRACT

This article focuses on the distinct role of
chemokines and chemokine receptors during CNS
inflammation in experimental autoimmune
encephalomyelitis (EAE) as an animal model for multiple
sclerosis (MS).  We review the evidence that chemokines
and chemokine receptors have an intrinsic role in regulating
and amplifying the inflammatory reactions in EAE or MS
leading to disease outcome.  A variety of studies examining
temporal chemokine expression patterns, using chemokine
and chemokine receptor knockout mice as well as
administering passive anti-chemokine antibodies indicates
that these molecules are critical regulatory components for
leukocyte recruitment and/or leukocyte retention in the
CNS.  Therefore, chemokine and chemokine receptor
expression is tightly interrelated to composition of
inflammatory cells in CNS lesions and the onset of clinical
diseases and provide viable targets for therapeutic
intervention.

2.  INTRODUCTION

Multiple Sclerosis (MS) is chronic or relapsing
neuroinflammatory disease of the central nervous system
(CNS) characterized by local inflammation and
demyelination in the CNS as a result of the infiltration of
activated or memory T cells and macrophages across the
blood-brain barrier (BBB) (1).  Pathogenicity of both MS
and EAE involves: 1) activation of myelin-reactive T cells,
2) upregulated expression of chemokines and adhesion
molecules, 3) focal T cells and macrophage infiltration into
white matter in CNS, 4) demyelination and axonal injury
and loss of neurological function (2).  In the CNS lesions of
MS patients and EAE animals, infiltrating immune cells are
mostly monocytes, CD4+ and CD8+ T cells,  rarely B cells,
neutrophils or eosinophils (3).  While it is accepted that MS
(4) and EAE (5) are both CNS inflammatory diseases
where neuroantigen-specific T cells are responsible for the
induction of the process, onset of disease has been
correlated with the influx of nonspecific inflammatory cells

into CNS (6).  Furthermore, endogenous CNS microglia
have also been hypothesized to be important effector cells
in the process of CNS inflammation leading to clinical
paralysis (7).

EAE can be induced in susceptible mice by
immunization with immunodominant peptides from myelin
proteins such as myelin basic protein (MBP), proteolipid
protein (PLP), and myelin oligodendrocytes glycoprotein
(MOG) emulsified in complete Freund’s adjuvant followed
by injection of pertussis toxin as an additional adjuvant for
certain mouse strains (8,9,10,11,12).  Disease development
is variable from strain to strain.  For instance in SJL/J mice,
PLP or MBP induce a relapsing-remitting progression,
whereas C57BL/6 mice are resistant to MBP disease
induction but develop a chronic form of disease induced by
MOG.  The pathogenesis of EAE is generally believed to
begin with the activation and differentiation of Th1 cells
(13,14,15,16) that leave the lymph nodes and traffic into
the CNS via the cerebrovascular endothelium (17,18).
However, the necessity for IFN-γ production by T cells is
still a controversial subject in the pathogenesis of EAE
(19,20).  EAE also can be induced by transferring antigen
specific CD4+ T cells into recipient animals (21).
Adoptively-transferred, activated T cells migrate to the
CNS within 24 hours (22,23) and only neuroantigen-
specific T cells remain (24).

Access of leukocytes, including activated T cells
and macrophages, to CNS occurs through the intact blood
brain barrier (BBB) regardless of CNS antigen specificity,
which is coordinated by a series of molecular interactions.
In the case of T cells, the first of these events appears to be
an early rolling event mediated by P selectin as antibody
treatment inhibited T cell migration into CNS (25).  Cell
surface expression of VLA-4 (α4β1 integrin) by T cells
(26) is necessary for entry of neuroantigen-specific T cells
into the CNS as anti-VLA-4 treatment can inhibit T cell
binding to cerebrovascular endothelium and inhibit the
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development of histological and clinical EAE (27,28).
There is additional evidence indicating that CD44
expression by migrating T cells is necessary for entrance
into the CNS (18).  A role for the matrix metalloproteinases
(MMP7, 8 and 9) (29,30) has been postulated in the
extravasation of T cells across cerebrovascular endothelium
into the CNS.  The adhesion molecule PECAM has been
shown to be a negative regulator of disease as inhibition
(31) or deletion (32) of the molecule results in exacerbation
of symptoms.  Less is known about the molecular
requirements for macrophage migration into the CNS,
however, the LFA-1/ICAM-1 receptor/counter receptor
molecules have been postulated to be involved (33).
According to the predicted model of leukocyte migration
(34), chemokines are another molecular regulator of T cell
and macrophage migration to the CNS.

3.  CNS CHEMOKINE EXPRESSION

Chemokines are small molecular weight
chemotactic cytokines that can be classified into four sub-
families (CXC, CC, C, and CX3C) based on the position of
the conserved amino-terminal cysteines (35,36).  The CxC
chemokines are further categorized based on the presence
or absence of a glutamate-leucine-arginine (ELR) motif in
the amino terminus.  Those chemokines (ligands for
CXCR1 and CXCR2) which possess the ELR motif are
chemotactic for neutrophils and are angiogenic while the
non-ELR CxC chemokines (ligands for CXCR3) are
chemotactic for activated T cells and are angiostatic (37).
The CC family of chemokines are chemoattractant for a
wide variety of cells types including
monocytes/macrophages, T lymphocytes, basophils,
eosinophils, and dendritic cells (38,39,40).  The C family,
lymphotactin, is chemotactic for T cells and NK cells (41)
while the Cx3C chemokine contains a chemokine domain
attached to a membrane bound mucin chain which produces
a soluble chemoattractant after proteolysis or mRNA
processing (42).  This chemokine is a chemoattractant for T
cells, NK cells, and neutrophils (35).  Overall promiscuity
of chemokines and chemokine receptors can allow for
redundant functions in vivo.

There are numerous reports in the literature that
have demonstrated an association between chemokine
mRNA or protein expression and appearance of clinical
EAE.  Hulkower et al .(43) demonstrated a correlation
between CCL2 expression and EAE in the Lewis rat model.
Using semi-quantitative RT-PCR and in situ hybridization
Ransohoff et al. (44) demonstrated that CXCL10 and
CCL2 were expressed in the spinal cord of SJL mice with
relapsing EAE.  Additional studies of relapsing EAE
demonstrated up-regulation of mRNA chemokine
expression for CCL5, CCL4, CCL3, CCL1, CXCL10,
CCL2, CXCL1, and CCL7 just prior to the first appearance
of clinical symptoms in a mouse model of EAE and that the
chemokine levels remained elevated throughout the course
of the disease (45).

One question that arises with respect to the idea
that chemokines regulate migration of neuroantigens-
specific T cells and macrophages into the CNS is whether

chemokines are expressed by parenchymal cells prior to
inflammation as opposed to infiltrating leukocytes after
inflammation.  It is important to realize that the existing
evidence suggests CNS inducible chemokine mRNA
expression correlates with histological signs of
inflammation and is not detected in the absence of
leukocyte infiltration (46,47).  In support of this idea are
studies that demonstrate co-localization of CCL3 and
CCL5 mRNA with infiltrating leukocytes, while CXCL10
and CCL2 mRNA expression co-localized with astrocytes
(48).  In addition to the association between CNS mRNA
levels and tissue-specific inflammation, CNS chemokine
protein levels have been associated with differential phases
of relapsing disease.  CCL3 and CXCL10 protein levels
have been shown to be elevated in the CNS following
adoptive transfer of activated neuroantigens-specific T cells
(49,50) and correlate with acute disease development while
CCL2 levels increase with the development of the relapsing
phase of disease (51).  Therefore, it reasonable to speculate
that there is a differential distribution of mononuclear cells
during the disease course, with T cells migrating in
response to CCL3 during the acute phase of disease and
macrophages migrating in response to CCL2 during the
relapsing phase of disease.

More recently parenchymal cells of the CNS
have been shown to constitutively express a subset of
chemokines that may be responsible for the initial T cell
and/or macrophage migration into the CNS according to the
multi-step paradigm (34).  Cerebrovascular endothelial
cells have been shown to express CCL19 and CCL21 (52),
astrocytes have been shown to constitutively express
CXCL12 (53) and neurons have been shown to express
CX3CL1 (54).  These examples support the idea that
leukocytes may gain entry to the CNS via a chemokine-
mediated mechanism where they in turn can express
chemokines themselves and induce further chemokine
expression by parenchymal cells such as astrocytes.

4.  LEUKOCYTE CHEMOKINE RECEPTOR
EXPRESSION

It has been hypothesized that chemokine
receptors corresponding to specific ligands are expressed
by CNS-infiltrating T cells and macrophages and that the
level of CNS inflammation correlated with specific
chemokine receptor expression.  T cells and macrophages
that gain entry to the CNS have been shown to express a
wide variety of chemokine receptors, however, selective
CCR1, CCR5 and CXCR3 expression has been
documented for T cells that migrated to the CNS compared
to those that remained in the periphery (55).  The idea of
disease-inducing Th1 cells specifically upregulating CCR1
and CCR5 expression has recently been corroborated
(56,57).  While CCR2 is expressed on both T cells and
macrophages (55), the primary functionality for this
receptor is related to macrophage migration to the CNS
(58).

Studies of chemokine receptor expression by
leukocytes in EAE have yielded strikingly similar results to
what has been found in MS patients.  CXCR3 expression
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by circulating T cells was augmented in relapsing-remitting
MS compared to control subjects and both CCR5 and
CXCR3 expression was increased on T cells in peripheral
blood during progressive MS (59).  In cerebrospinal fluid
(CSF) from patients with active MS CXCR3+ T cells were
enriched compared to peripheral blood (60).  Additionally,
CCR5+ lymphocytes and macrophages were detected in the
CSF of patients with active MS more frequently than
peripheral blood (60).  In a separate study of MS patients
both CD4+ and CD8+ T cells in CSF at relapse were
enriched for CXCR3 and CCR5 expression, and were
reduced for CCR3 and CCR4 expression compared with
those of the blood (61). Furthermore, CCR1 and CCR2
expression by T cells was increased in CSF and blood (61).
Therefore, it appears that selective chemokine receptor
expression is found on leukocytes that infiltrate into the
CNS during different stages of demyelinating disease.

5.  CHEMOKINE AND CHEMOKINE RECEPTOR
KNOCKOUT

Chemokine and chemokine receptor knockout
mice have been utilized to ask questions about the roles of
those molecules in the development of EAE.  Use of the
CCL2-deficient mouse on the C57Bl/6 background in the
study of EAE pathogenesis has demonstrated a requirement
for this chemokine in the migration of macrophages to the
CNS in order to effect acute clinical disease (62).  In
contrast, the CCL3-deficient mouse on a mixed C57Bl/6
and 129 background developed clinical EAE in a similar
fashion compared to control animals (63).

A number of studies using mice genetically
deficient for chemokine receptors have shown that CCR1
(64) and CCR2 (58) expression are biologically important
for the development of acute EAE.  In the CCR1 knockout
mice there was approximately a 50% decrease in clinical
disease severity, however, the mechanism behind disease
attenuation is not known.  Since both T cells and
monocytes have been shown to express CCR1 (65), it is
possible that CCR1 expression by either lymphocytes or
monocytes or perhaps both is required for EAE
development.  In the CCR2 knockout mice, there was
almost a total absence of disease due to a failure of
monocytes to traffic to the CNS (58).  These two examples
are in contrast to EAE induction in CCR5 knockout mice
where the same level of disease severity was seen
compared to wild type control animals (63).  One advance
that has come from both the chemokine and chemokine
receptor studies in EAE is development of small molecular
weight antagonists to chemokine receptors.  Indeed, a small
molecular weight antagonist of CCR1 has shown efficacy
in the inhibition of clinical EAE (66,67).

6.  ANTI-CHEMOKINE TREATMENT STRATEGIES

The biological importance of CNS chemokine
expression in EAE has also been explored and
demonstrated by in vivo anti-chemokine antibody
treatments strategies.  Experiments have been designed to
test the role of chemokines in acute and relapsing disease
by varying the timing of anti-chemokine treatment relative

to disease induction (68).  In the SJL mouse EAE model
anti-CCL3 (49) and anti-CXCL10 (50) treatment prevented
acute clinical disease while anti-CCL2 treatment was
shown to prevent relapsing disease (51).  In the C57Bl/6
mouse EAE model anti-CCL2 and anti-CXCL10 treatment
prevented acute clinical disease (68).  More recently,
CCL22 was shown to be an important chemokine in the
pathogenesis of EAE (69) by regulating the early T cell
activation events rather than effecting neuroantigen-
specific T cell or macrophage migration into the CNS.  A
significant finding from the in vivo neutralization studies is
that while a wide variety of chemokines may be expressed
during inflammatory autoimmune disease, only a subset of
chemokines actually plays a significant biologic role in
disease pathogenesis, dispelling the idea of redundancy and
promoting the concept of specific regulation.

7.  PERSPECTIVE

Chemokines and their receptors are a family of
inflammatory mediators that are associated with many
tissue-specific inflammatory events including CNS
diseases.  One current view of chemokines is to regulate the
migration of leukocytes at a particular tissue site for the
general function of infection clearance and tissue repair.
However, aberrant accumulation of leukocytes, including
antigen-specific T cells and macrophages, can induce
pathology and result in tissue-specific inflammatory
disease.  Our best understanding of the role of chemokines
in CNS disorders comes from the EAE model where the
temporal and spatial chemokine expression patterns appear
to regulate mononuclear cell accumulation and subsequent
disease development (70).  In the case of autoimmune-
mediated disease or bystander inflammatory tissue
destruction, it would be beneficial to limit the biological
effect of chemokine expression in order to control self-
tissue damage.  To this end small molecular weight
chemokine receptor antagonists have been developed and
are being evaluated for efficacy in a variety of human
inflammatory diseases (71).
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