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1. ABSTRACT

Aging is a complex process (or series of
processes). Recent evidence suggests that several of its
most important mechanisms are linked by means of cellular
damage caused by reactive oxygen species (ROS).
Oxidative damage may be a major factor in the loss of
physiological functions that occur in degenerative diseases
and aging. This is because, in aerobic organisms, the
mitochondrial electron transport chain plays an important
role in energy production and is a significant source of
ROS that damage DNA, RNA, and proteins in cells. While
oxidative events in other cell organelles are likely to
contribute to the pathobiology of aging, this review
highlights alterations in mitochondrial function that, due to
accumulated oxidative damage, occur with age.

2. INTRODUCTION

Oxidative damage is hypothesized to be one
cause of aging in metazoans (1-7). Oxidatively damaged
macromolecules accumulate with age in every organism
examined; thus, oxidative damage is implicated in many
human age-related diseases. We will review studies of
oxidative damage in mitochondria during aging and
arguments for or against oxidative damage as a major
mechanism of aging (7).

3. THE CHEMISTRY OF REACTIVE OXYGEN
SPECIES

ROS are produced as a byproduct  of normal
cellular metabolism. Aerobic organisms are constantly
subjected to ROS, which include:

I. Species derived from reduction of molecular oxygen:

1. Superoxide
2. Hydrogen peroxide
3. Hydroxyl radical

II. Species derived from reaction of carbon-centered
radicals with molecular oxygen:

1. Peroxyl radicals
2. Alkoxyl radicals
3. Organic hydroperoxides

III. Other oxidants that can result in free radical formation:

1. Hypochlorous acid
2. Peroxynitrite
3. Singlet oxygen

A major ROS produced by the cell is superoxide,
which is converted by SOD to hydrogen peroxide (H2O2).
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Catalase and superoxide dismutase (SOD) are enzymes
defending against ROS in all cells; Catalase converts H2O2
to molecular oxygen and water, however their defense is
not always completely effective.

SOD exists in two major forms in the eukaryotic
cell: Cu,ZnSOD in cytoplasm and MnSOD in mitochondria,
which are thought to be the primary cellular source of ROS
and which accumulate oxidative damage. Thus, MnSOD
may be an important defense against oxidative damage. In
mice MnSOD appears to be more critical because its
mutations have more severe consequences  than Cu,ZnSOD
mutations (8,5).

Ozone, nitric oxide, and nitrogen dioxide are also
ROS from exogenous sources. The latter two are also
produced endogenously (9). Possibly the most prolific
source of ROS, particularly superoxide and hydrogen
peroxide, is leakage from the mitochondrial electron
transport chain (10). Superoxide is formed in various
autoxidation reactions and by enzymes such as peroxidases,
cytochrome P450, and xanthine oxidase (11). By means of
the respiratory burst oxidase, as a defense mechanism
against infectious agents, phagocytes also produce ROS
(12-14).

Some experimental and epidemiological studies
suggest that administration of antioxidants may prevent
development of age-associated disorders such as cancer
(15) or cardiovascular and neurodegenerative diseases
(16,17) (e.g., Parkinson’s and Alzheimer’s disease (18,19).
But the Beta-Carotine and Retinal Efficacy Trial (CARET
study by Omenn et al., [20]) showed that after an average
of four years of supplementation, the combination of beta-
carotene and vitamin A had no benefit  - and may have had
an adverse effect - on the incidence of lung cancer and the
risk of death from lung cancer, cardiovascular disease, and
any other cause in smokers and workers exposed to
asbestos. Three other studies (Alpha-Tocopherol, Beta-
Carotene Cancer Prevention Study [ATBC] [21]),
Physicians’ Health Study [22] and the Linxian Study in
China [23]), examining the effects of supplementary
vitamin A and beta-carotene, suggest hypotheses for the
lack of effect.

In the CARET and ATBC studies, the study
populations were at high risk. In these studies the
administration of vitamin A appeared to have an adverse
effect on populations who presumably had already suffered
cellular damage leading to morbidity and death. In the
Physicians study, where there was a mix of high and low
risk groups (smokers and non-smokers), there was no
elevation (RR=1.01) of risk which could plausibly be the
average of an elevated risk in smokers and a lower risk in
supplemented non-smokers. In the Chinese study a benefit
(RR=0.91) was discovered in a population with a presumed
deficiency of vitamin A. Consistent with this is the negative
correlation of high cancer risks and baseline vitamin A
serum levels in the CARET study.

Two basic explanations are suggested. First, is
that once significant oxidative damage is incurred in high

risk groups, vitamin A will not reverse it and, as a potent
hormonal factor in cell growth and differentiation, could
even promote late stages in a multi stage model of
carcinogenesis. Second, the redox relations of vitamins A,
C, and E are complex and might be distributed by super-
supplementation of vitamin A. Thus the CARET study may
reflect more on the use of vitamin A as a “treatment” rather
than as a preventative anti-oxidant. A conclusive study
would be to start supplementation before starting toxin
exposure, (e.g., smoking).

4. NORMAL FUNCTIONS OF ROS

ROS formation takes place during normal
physiological functioning (24,25). Under aerobic
conditions in living cells, superoxide anions and hydrogen
peroxide are produced and converted into hydroxyl radicals
by the iron-catalyzed Fenton reaction. Excessive ROS
production may overwhelm the antioxidant capacity of
cells (such as intracellular nonprotein sulfhydryls [NPSH])
to modulate cytotoxicity, thereby initiating a pathogenic
cascade of events (26). This is exemplified in mitochondria
by interactions of free radicals with transition metal
centers. Gerschman et al (27) recognized: 1.) ROS are the
common mechanism of oxygen and radiation toxicity; 2.)
an increase in prooxidants, or a decrease in antioxidants,
will lead to cell damage; and 3.) oxygen toxicity is a
continuous phenomenon.

5. CLASSES OF MACROMOLECULES
UNDERGOING OXIDATIVE DAMAGE

Accumulation of molecular oxidative damage
may be important in the senescence-related decline of the
physiological fitness of organisms (28,29). Such damage is
a random, rather than a controlled, process (30-32). Old
animals have increased mitochondrial production of
superoxide and hydrogen peroxide (33,34). Many studies
demonstrate the sensitivity of mitochondrial protein, lipids,
and DNA to oxidative stress (35-38).

Accumulation of proteins damaged by oxidative
stress depends on tissue, cell, and protein type (39, 2,
40,32). The adenine nucleotide translocase (ANT) protein
shows strong carbonylation during normal aging because it:
a.) contains readily oxidized arginine, proline, and lysine
residues and b.) is associated with cardiolipin containing
unsaturated fatty acids (32). Accumulation of oxidized
dysfunctional protein in carbonyl groups could lead to
inter- and intra-molecular cross-links with other amino
groups and, therefore, to loss of biochemical and
physiological function. Age-related accumulation of protein
oxidation products in mitochondria may disrupt the
efficiency of energy production, thereby increasing ROS
production (2).

Head et al (41), in a canine model, showed an
increase in lipid peroxidation with age. Increasing oxidative
damage to lipids was found in the brain and serum, but not
in cerebrospinal fluid (CSF). The correlation of
malondialdehyde (MDA) levels in brain and serum
suggests that damage occurs both centrally and
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systemically. MDA levels may reflect not only the extent of
lipid peroxidation, but also the oxidative susceptibility of
high- and low-density lipoproteins in serum (42). Age-
dependent increases in MDA levels may be due to
increases in serum protein (43). MDA can cross-link
protein side-chains, slow protein degradation, and reduce
protein turnover in rats and humans (44).

Mechanisms underlying the age-dependent
increase in serum MDA may be linked to oxidative damage
- which, in DNA, accumulates over the life of a cell
(45,46). Generation of DNA strand breaks is necessary to
trigger the p53-dependent cell cycle pathway (47), which
mediates inhibition of proliferation and apoptosis with
features observed in replicatively senescent normal diploid
somatic cells (48). Whether or not strand breaks occur
depends on stabilization of the p53 tumor suppressor gene
product and induction of downstream mediators (49). There
are conflicting data on the relation of oxidative stress and
the type of proliferative senescence described by Hayflick
(50,51). Several experiments demonstrated oxidative stress
inhibits cell proliferation; others indicated inhibition of
proliferation mediated by hyperoxia was reversible (52,53).

During aging, oxidative damage to
macromolecules increases exponentially in a variety of
tissues in different species (54). That such damage causes
functional loss was found by in vitro models (55). Stadtman
(56) demonstrated that oxidative damage to proteins causes
loss of catalytic and structural integrity; altered proteins are
preferentially hydrolyzed. Protein and lipid oxidation
products may form cross-linked, undegradable products
such as lipofuscin (57). Studies (58;59) indicate that
oxidative damage to proteins is selective, implying that
some, but not all, catalyzed reactions are impaired in aging.
Specificity of protein damage provides a link between ROS
and senescence-associated functional alterations (e.g., age-
related carbonylation of mitochondrial aconitase and ANT
in flies is associated with loss of protein activity [59]).

6. MITOCHONDRIA AS MAJOR SOURCES AND
TARGETS OF ROS

Mitochondria are an important link between
accumulation of oxidative damage caused by ROS and
alterations in function associated with aging (60). Oxidative
damage in mitochondria is the leading candidate for a
unitary mechanism of aging in aerobic organisms (3). The
mitochondrial theory of aging, a variant of the free radical
theory of aging, suggests that accumulation of damage to
mitochondria, mitochondrial DNA (mtDNA), and RNA
leads to aging in both humans and animals (61-65).
Because approximately 90% of cellular oxygen is
consumed in mitochondria, and 3% of molecular oxygen
reduced by mitochondria is not reduced to water,
mitochondria may be the major intracellular contributor to
superoxide (O2

-) generation - and perhaps oxidative stress
in general (34)

6.1. Structure of mitochondria
Mitochondria are the main sources of energy in the

cell. They contain their own mtDNA, a small 16.5 kb

circular molecule in humans coding for 13 polypeptides, 22
tRNAs, and 2 rRNAs - all of which are components of the
respiratory-chain/oxidative phosphorylation system (66).
Mitochondria have four structural compartments: matrix,
inner membrane, intermembrane space, and outer
membrane. In the inner membrane there are protein
systems, such as the electron transfer chain complexes (20+

discrete electron carriers and an unspecified number of
“structural” proteins, all of which are organized into four
multi-protein complexes [I-IV]) and the “fifth” complex,
F1Fo-ATP synthase, [67]).

Optimal oxidative phosphorylation requires energy-
transducing membranes to have: a.) low proton
conductance and b.) exchange carriers allowing metabolites
to permeate while maintaining osmotic stability. Nicholls
(68) suggested that, in the mitochondrial inner membrane,
the high proportion of protein (50% integral protein, 25%
peripheral protein, and 25% lipid) results in close packing
of proteins. Recent x-ray studies indicate that much of the
protein mass is in water outside the lipid bilayer so the
mitochondrial bilayer may be more substantial than
Nicholls suggests (69).

6.2. Mitochondrial functions
Mitochondrial functions include ATP production,

heme and cholesterol biosynthesis, and cellular calcium
regulation (70). Although these functions are the most
important intracellular sources of oxidants (71,72), it is
uncertain how much O2

- they form (73). The main sites
where O2

- is generated are the ubiquinone pool and
nicotinamide adenine dinucleotide (NADH) dehydrogenase
(Complex I). Electrons are transferred, individually, to
form ubisemiquinone, which reacts with oxygen to form
O2

-. Mitochondrial macromolecules and mitochondria that
are isolated from old animals may produce more H2O2 than
younger animals (72-74). These oxidants (O2

-and H2O2
).damage cellular macromolecues, including DNA, protein
and lipid. Accumulation of such damage may contribute to
aging and age-associated degenerative diseases.

6.3. Mitochondrial DNA
Mitochondrial DNA (mtDNA) is located in the

matrix and is attached to the inner membrane. mtDNA
lacks introns, histones, and other DNA proteins and has
less complete repair mechanisms than nuclear DNA
(nDNA) (75-76). This makes mtDNA prone to oxidative
damage. Damage in mtDNA is more extensive, rapid and
persistent than damage in nDNA (31). ROS-promoted
damage to mtDNA includes fragmentation and deletions. A
marker for damage, 8-hydroxy-deoxyguanosine (8-OHDG)
(77), increases with age and degenerative diseases. In vitro
oxidative stress, as occurs during mitochondrial lipid
peroxidation or during the transition, is accompanied by
mtDNA fragmentation and increases in 8-OHDG. Because
mtDNA encodes proteins involved in electron transport and
oxidative phosphorylation, oxidative damage may lead to
respiration and phosphorylation deficiencies (74).

6.4.  MtDNA mutations
Since the sequencing of human mtDNA in 1981

(78), a number of mutations have been described and linked
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to a heterogeneous class of age-related disorders (79). The
incidence and abundance of mutant mtDNAs increase with
age, particularly in tissues with high energy demands (80-
88). A variety of point mutations are detectable (89).
Khrapko et al (90) found that colon, lung, muscle, and
tumors derived from these tissues share many
mitochondrial “hotspot” point mutations. Tissue-specific
characteristic mtDNA was discovered in Attardi’s lab at
CalTech (91). The levels of 8-OHDG mtDNA adducts and
deletions increase exponentially with age. (92-96). In
human skeletal muscle, fibers lacking cytochrome c
oxidase (complex IV) activity accumulate with age (97,98).

Certain control region (CR) mtDNA mutations
also accumulate with age (99). Mixtures of mutant and
normal CR mtDNAs (heteroplasmy) have been reported in
human brain (100), hair (101) and cancer (102,103) cells.
Mitochondrial oxidative phosphorylation (OXPHOS)
enzyme activities decline with age in human and primate
muscle (86,104,105), liver (106), and brain (107) tissue.
Cytochrome c oxidase (COX)-deficient muscle fibers
accumulate with age in heart and skeletal muscles
(108,109). COX-negative regions contain clonal expansions of
individual mtDNA rearrangements (110). This increase
correlates with accumulation of mtDNA mutations, including
deletions (80,82-85,92,110-126) and base substitutions (123-
126)

mtDNA damage is high in tissues prone to age-
related dysfunction. Basal ganglia accumulate the most
mtDNA damage, followed by various cortical regions. The
cerebellum remains relatively free of mtDNA damage
throughout life (127,119). This suggests that accumulation of
mtDNA mutations may be important in the age-related decline
of somatic tissues (111,128,129). As mutations accumulate,
they exacerbate inherited OXPHOS defects until combined
defects result in energetic failures (129).

A few hundred to a few thousand mtDNA
molecules are present in an individual cell. Production of
these molecules is not correlated with cell cycle
parameters. During mitosis (or meiosis), mitochondria are
randomly distributed to daughter cells. The existence of
multiple DNA molecules, all susceptible to mutation, leads
to heteroplasmy (130). mtDNA heteroplasmy is found in
numerous types of animals (131). Phenotypic
manifestations of mtDNA mutations are dependent on the
levels of heteroplasmic mutant mtDNA in a cell, tissue, or
organ (79, 132-137).

6.5. Role of mitochondria in telomere shortening
Human telomeres are specialized chromosomal end

structures composed of TTAGGG repeats. These telomeres
protect chromosomes from degradation, fusion and
recombination (138). Immortal eukaryotic cells, including
transformed human cells, use telomerase, an enzyme that
elongates telomeres, to overcome incomplete replication.
However, telomerase has not been detected in normal somatic
cells, which lose telomere length as they replicate (139).

In telomere the TG strand is longer than its
complement, leaving a region of single-stranded DNA of

up to a few hundred nucleotides at the 3' end. In mammals,
the single-stranded end is sequestered in a “T loop” (140),
is folded back, and paired with its complement in the
double-stranded portion of the telomere. Looped DNA is
bound by proteins TRF1 and TRF2. T loops may protect
the 3' ends of chromosomes, making them inaccessible to
nuclease and enzymes that repair double-strand breaks
(141). Data suggest that the G-rich strand is more
vulnerable to oxidative damage (142). Opening the
telomeric loop and exposing the single-stranded, G-rich
overhang might signal arrest of the cell cycle. Short
telomere length, single-strand breaks, low levels of loop-
stabilizing proteins, or other factors may trigger opening of
the loop (143,144).

6.6. Role of mitochondria in apoptosis: Relevance to
aging

Mitochondria are central to the life and death of
eukaryotic cells (145-152). Mitochondria contain and
release apoptotic proteins (e.g., cytochrome c and
apoptosis-inducing factor [153]). The mitochondrial
permeability transition (PT) pore is critical in apoptosis.
Opening of the PT pore releases cytochrome c and
apoptosis-inducing factor (AIF) into cytosol (154).
Mitochondrial oxidative stress occurs early in apoptosis -
prior to DNA fragmentation - and may cause PT pore
opening. Esteve (155) found decreases in mitochondrial
membrane potential (and an increase in peroxide content)
in apoptotic fibroblasts. Experiments show that change in
mitochondrial activity is common in apoptosis (156-158).
ROS-induced apoptosis may remove mitochondria when
ROS production exceeds scavenging capacity (159).

Age-related alterations in the mitochondrial
pathway of apoptosis can affect tissue function. These
alterations can arise from oxidative damage to
mitochondria. Common features of apoptotic cells and cells
from old animals include increased mitochondrial peroxide
production, oxidation of glutathione, and oxidation of
mtDNA (160). mtDNA and respiration are not essential for
apoptosis (161,162). However, the absence or impaired
function of mtDNA can influence the rate of this process -
probably by regulating ROS production (163). Therefore, it
appears that the relation of aging and apoptosis is not
established.

6.7. Functional decline of mitochondria with aging
With age, mitochondrial function declines and

mtDNA mutations increase. Cell energy deficits (caused by
declines in mitochondrial function) can impair cell
activities and compromise adaptation to physiological
stress (164). Age-related impairment in respiratory
enzymes decreases ATP synthesis and enhances ROS
production by increased electron leakage in the respiratory
chain. Human mtDNA is susceptible to oxidative damage
and mutation when exposed to high levels of ROS (64).

Aging is associated with declines in the capacity
of various cell types, including neurons, to respond to
metabolic stress due to impairment of mitochondrial
function. Although some neurodegenerative diseases are
associated with mitochondrial dysfunction, it is not clear if
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changes are due to normal aging or to exposure to
pathophysiologic agents (67).

Mitochondrial ROS generation has been studied
in animal models of neuronal disease (165). De la Asuncion
et al (166) found mitochondrial glutathione markedly
oxidized with aging in rats and mice. The oxidized-to-
reduced-glutathione ratio increases with age in the liver,
kidney, and brain. In the liver, glutathione disulfide
(GSSG) as a percent of glutathione (GSH) changed from
0.77 +/- 0.19% (n =5) in young rats to 2.47 +/-1.25% (n=5)
in old ones. In the brain and kidney, values for old rats
were higher than those for young rats. Oral antioxidants
protected against glutathione oxidation and mtDNA
damage in rats and mice.

Sohal (167) argues that accrual of molecular
oxidative damage as a mechanism governing the rate of aging,
is supported by: (i) life span of cold blooded animals and
mammals with unstable basal metabolic rate (BMR) being
extended and oxidative damage attenuated by a decrease in
metabolic rate (Experimental life span extensions are
accompanied by reduced oxidative damage. Both activity and
regimen might affect life span. For example, elimination of
flying prolongs the life span of flies by 3-fold and decreases
accumulation of protein and DNA oxidative damage
[168,169]. Regimens that extend life span of poikilotherms
decrease metabolic rates and accumulation of oxidative
damage [170]).; (ii) single gene mutations in Drosophila and
C. elegans that extend life span slow physiological activities,
albeit via different mechanisms, decreasing oxidative damage;
and (iii) caloric restriction decreases body temperature and
oxidative damage. He indicates that studies of transgenic over
expression of antioxidant enzymes are supportive but
ambiguous.

In rodents, life span is extended if caloric intake is
decreased from the level of ad libitum fed animals. The
temperature of calorically restricted animals is daily transiently
lowered by as much as 4°C in rats and 13°C in mice,
indicating that a BMR is responsive to caloric intake
(171,172). Stadtman (173) found that protein carbonyls
increase with age in insects with steady state concentration
inversely related to life expectancy. This was confirmed in
mammals. Macromolecular oxidative damage rates of
mitochondrial ROS increase with age and are inversely related
to species mean life span (MLS) (174).

7.  THE ROLE OF ROS IN GERIATRIC DISORDERS

ROS are involved in many diseases of the
elderly, including Alzheimer's disease (AD) and
Parkinson's disease(PD), as well as conditions affecting
vision, such as cataracts and macular degeneration (175).
Neurodegenerative diseases have been linked to mutations
in mtDNA and nDNA. Genetic and phenotypic variability
of mitochondrial diseases is due to the number of
mitochondrial genes involved and the cell pathways and
functions in which mitochondria play a role.

Oxidative modification of proteins is important in
aging and age-related neurodegenerative disorders (176, 2).

Modification of amino acid side chains in proteins can lead
to diminished function (176,2,177). Degradation of
oxidized proteins by proteinases is possible, but oxidatively
induced, proteinase-resistant, protein cross-linking can
occur preventing removal (178,179).

7.1. Alzheimer’s disease (AD)
Oxidative damage may play a critical role in AD

neuropathology (180). Friede (181) noted alterations of
oxidative metabolism in AD. This might precede and drive
amyloid deposition in brains of affected subjects. Extensive
evidence suggests that lipid peroxidation is important in
AD. Indices of lipid peroxidation in AD include TBARS,
phospholipid composition, levels of alpha- and beta-
unsaturated aldehydes, activities of enzymes that clear lipid
peroxidation products, and concentrations of isoprostanes
(180,176).

The most abundant oxidized DNA base product
from hydroxyl radical attack is 8-OHDG. mtDNA had a
threefold increase of 8-OHDG in the AD parietal cortex
compared with controls. A small, but noticeable, increase
in 8-OHDG in nDNA in AD cases, compared to controls,
was reported (182). Results, confirmed using gas
chromatography/mass spectrometry (183), were expanded
to frontal, parietal, and temporal lobes (184).
Immunocytochemical detection of 8-OHDG and
8-hydroxyguanosine showed increased DNA and RNA
oxidation is limited to vulnerable neurons in AD (185,186).
mtDNA abnormalities in AD were confirmed by in situ
hybridization studies (187).

The AD brain shows higher levels of oxidative
damage to proteins (188) and lipids (189). This may be due
to the deposition and accumulation of (Aβ) protein in senile
plaques (190). Amyloid precursor protein (APP), from
which Aβ is proteolytically cleaved (191), is vulnerable to
oxidative damage and exposing APP to metabolic stress
favors production of amyloidogenic fragments (192,193).

Epidemiological studies show a large reduction in
AD risk due to consumption of Non Steroidal Anti-
Inflammatory Drugs (NSAIDs) -- especially ibuprofen
(194). Ibuprofen may reduce the risk of AD — not only
through its anti-inflammatory properties but also due to
direct effects on amyloid proteins. Other drugs showing
promise in controlling AD are statins (possibly because of
anti-inflammatory properties) and the effects of nicotine
metabolites on amyloid proteins (195).

7.2. Parkinson’s and other neurognerative diseases
Mitochondrial dysfunction occurs in Parkinson’s

disease (PD). Humans exposed to 1-methyl-4-phenyl-1, 2,
3, 6-tetrahydropyridine (MPTP) developed PD (196,197).
MPTP is converted to 1-methyl-4-phenylpyridine (MPP+)
by monoamine oxidase in glial cells (198). MPP+ is taken
up by cells possessing dopamine reuptake sites and
concentrated in negatively charged mitochondrial matrices
(199,200). Inside mitochondria, MPP+ inhibits Complex I
(201) causing degeneration of catecholaminergic neurons in
the substantia nigra and locus ceruleus (196,197,202,203).
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Evidence of mitochondrial dysfunction also
exists for other neurodegenerative diseases (e.g.,
degenerating and nondegenerating tissues of Amyotrophic
lateral sclerosis (ALS) subjects [204] in progressive
supranuclear palsy and multisystem atrophy [205-208] and
Huntington’s disease. Treatment of mitochondrial dysfunction
is hampered by the difficulty of delivering bioactive molecules
in vivo. Vitamin E has had only a modest effect on AD in
epidemiologic studies. Smith et al (209) developed a strategy
for targeting bioactive molecules to mitochondria by attaching
them to the lipophilic triphenylphosphonium cation through an
alkyl linker. These molecules rapidly permeate lipid bilayers
and, because of the large mitochondrial membrane potential
(negative inside), accumulate several hundredfold in isolated
mitochondria and in mitochondria in cultured cells. For
example, a triphenylphosphonium cation was coupled to
coenzyme Q or vitamin E derivatives. Significant doses of
these compounds could be fed safely to mice over long
periods, coming to steady-state distributions within the heart,
brain, liver, and muscle. Therefore, mitochondria-targeted
bioactive molecules can be administered orally, leading to
accumulation at potentially therapeutic concentrations in
tissues affected by mitochondrial dysfunction. Targeting
bioactive molecules to mitochondria can be adapted to any
neutral, bioactive molecule. This complements approaches to
target DNA and molecules related to mitochondria (210-212).

8. EVIDENCE FOR OR AGAINST OXIDATIVE
DAMAGE AS A MAJOR MECHANISM OF AGING

The SOD mimetic EUK-8 is a research tool for
investigating mechanisms of aging. It was reported to have
extended lifespan in C. elegans (213). However, Keaney
and Gems, (214), in five trials administering EUK-8 in
liquid culture with E. coli, and two trials using defined
liquid medium, found no increase in lifespan, but a dose-
dependent reduction of lifespan and fertility. Extension of
C. elegans lifespan by EUK-8 may occur only under
specific culture conditions.

8.1. Drosophila studies
To test models of oxidative aging, creation of

transgenic organisms complements traditional genetics.
Drosophila melanogaster is a popular model because of
transgenic and other genetic and molecular tools available, its
short life span (1–2 months), and ease of culture (215-217).

In Drosophila engineered to overexpress MnSOD,
Tower (218) used five approaches: two single component
systems (transgenes with native [normal] promoters and
transgenes with heterologous promoters) and three binary
systems (“GAL4/UAS”, “FLP-out”, and “tet-on”). He
concluded that over-expression of Cu,ZnSOD and MnSOD
genes increases life span.

Several studies tested the oxidative stress hypothesis
to determine if overexpression of antioxidative enzymes, either
alone or in combination, increased life span in transgenic
Drosophila (174). Three groups reported that overexpression
of Cu,ZnSOD increased life span (219).

Orr and Sohal (220) reported that life span
extension in Drosophila studies involving P element-

mediated introduction of genomic fragments bearing the
coding sequence and attendant regulatory sequences
including promoter, intron and 3' flanking sequences of
Cu,ZnSOD and catalase . No survival effects were found in
transgenic flies possessing a single extra copy of either
Cu,ZnSOD (221), or catalase (222). The life span of flies
with extra copies of both Cu,ZnSOD and catalase increased
by up to 34% over controls bearing two vector-only
insertions. This was accompanied by increased physical
activity, reduction in oxidative damage, and increased
metabolism as measured by oxygen consumption. Because
cis-regulatory sequences are present, overexpression of
antioxidative genes is likely to follow normal physiological
expression. Since P element insertion is a quasi-random
process, expression can be impacted by regulatory regions
near the insertion site — or the P element insertion can act
to alter gene expression at (or near) the integration site.
“Position effects” can impact longevity so it is important to
use multiple lines (219).

Sun and Tower (223) used the FLP-out binary
transgenic system, which yields transgene expression in
adults in all tissues. One element of this system is the FLP
recombinase transgene control led by a heat shock
promoter. The second is the target gene under control of a
constitutive promoter (Actin 5C), interrupted by a FLP
recognition target (FRT) bounded sequence preventing
expression. FRTs are target sequences for FLP
recombinase. Consequently heat shock may liberate FRT-
defined elements, permitting expression of the target gene.
Advantages of this system are, a.) expression of the
Cu,ZnSOD gene can be delayed until the adult phase
avoiding negative consequences of over-expression on
redox regulation during development and, b.) control is
represented by genetically identical flies not subjected to
heat shock. Since the two elements of this system are
inserted by P element-transformation, position effects can
affect expression as well as expression of neighboring
genes, which can affect longevity.

The amount of MnSOD enzyme overexpression
varied between six independent transgenic lines, with
increases of up to 75%. Life span increased in proportion to
increases  in MnSOD enzyme. MLS increased up to 33%.
Maximum life span, as measured by time to 90% mortality,
increased by as much as 37%. Therefore, adult Drosophila
life span is limited by MnSOD activity, analogous to results
for Cu,ZnSOD (223,224). Both Cu,ZnSOD and MnSOD
increased mean and maximum life span with no detectable
negative effect on metabolic activity. Overexpression of
catalase and MnSOD did not increase life span, consistent
with catalase being found in excess in adult flies (223).

Sun and Tower (223) found, in most cases, no
life span extension in female flies. With the exception of
the SOD3A1 line, extensions in male flies were observed in
short-lived lines (mean life spans <40 days). In a third
experiment, male life span increases of 48% and 14% were
noted, where control mean life spans were 25 and 36 days.
The genetic component impacted life span increases only of
male flies. Their graph of life span extension vs. control life
span reveals a negative correlation, suggesting that



Role of Oxidative Damage in Mitochondria during Aging

1106

Cu,ZnSOD has beneficial effects only in a compromised
genetic background. A rescue effect is notable, but its
relevance to aging uncertain.

Parkes et al (224), to determine the consequences
of SOD1 overexpression in motorneurons on normal
longevity, generated transgenic Drosophila expressing
human SOD1. Using the GAL4/UAS system, they
demonstrated that overexpression of SOD1 motorneurons
extends lifespan by up to 40% and rescues the lifespan of a
short-lived SOD null mutant. This suggests that SOD
activity in motorneurons is important to aging and
longevity in Drosophila. Life span increase was sufficiently
large, relative to its genetic variation, to be convincing.

However, Tower (218) indicated that increased
longevity is not associated with decreased metabolism as
assayed by O2 consumption; therefore, both life span and
metabolic potential might be increased. The pattern of
expression produced by the D42-Gal4 “driver” was: broad
during embryogenesis; in motorneurons, interneurons,
some peripheral glial cells, and low level in fat body in
larvae; a small number of cells within the central brain; and
in motorneurons within the ventral ganglia in adults.

Expression in any or all of these tissues and
stages could extend life span. Since, in adults, aging occurs
primarily in motor neurons, these neurons are likely an
important site of transgene action (218).

In Drosophila, overexpression of Cu,ZnSOD and
catalase (but not of either alone) increased mean lifespan
by 33% (220). This indicates that control of ROS and a
need to balance SOD and catalase (225) are important for
longevity. The balance differs over cell types because
overexpression of human SOD1, without additional
catalase in Drosophila motor neurons, extends lifespan
(224).

8.2. C. elegans studies
The dauer is an alternative larval stage in C.

elegans which allows animals to survive low food
availability. Well-fed worms live three weeks. Dauer larvae
can live for two months without affecting post-dauer
lifespan (226). Mutations in daf-2 and age-1, produce a
dauer constitutive (Daf-C) phenotype and in clk-1
mutations, which are believed to slow metabolism and
markedly increase lifespan (227).

Taub et al (228) no longer have confidence in
observations associating a reduction in C. elegans adult
lifespan with a mutation in the catalase gene ctl-1. They
confirmed that C elegans has multiple catalase genes and
that the original strain, TU1061, had decreased
transcription of ctl-1 messenger RNA. They found several
errors - one identifying a single nucleotide deletion as the
defect in the ctl-1 mutation and others in the identification
of strains carrying mutations in multiple genes. They did
not see the expected reduction in ctl-1 mRNA in other
strains. Longevity results obtained with these strains are
therefore meaningless.

A handful of genes affect C. elegans lifespan
through pathways downstream or parallel to the insulin

signaling pathway. The feeding-defective eat mutants live
slightly longer in a daf-16-independent manner. eat
mutations might extend lifespan through a mechanism
resembling caloric restriction in mammals (229). clk
(biological timing abnormality) mutations also extend
lifespan, though not as much as mutations in daf-2 pathway
genes, and slow physiological processes (230). clk-1
encodes a protein in coenzyme Q synthesis, implicating
mitochondria in lifespan determination (231,232). clk-2
encodes a protein in DNA repair and telomere maintenance
(233-235).

Lee et al (236) used 5,690 genes in an RNAi
screen to identify genes that, when inactivated, extend
lifespan. A number of genes essential for mitochondrial
function affected C. elegans lifespan. In a screen for
increased lifespan, they found a probable null mutation in a
mitochondrial leucyl-tRNA synthetase gene (lrs-2)
increased lifespan.

Long-lived worms with impaired mitochondria
had lower ATP content and oxygen consumption, but
different responses to ROS and other stress. Thus, the
longer lifespan of C. elegans with compromised
mitochrondria cannot be due simply to lower ROS
production, suggesting a more complex coupling of
metabolism and longevity.

8.3. Mouse studies
Van Remmen (235) found that oxidative damage

occurs during aging of SOD2 knockout heterozygotes.
Heart mitochondria from heterozygous (Sod2-/+) knockout
mice had 50% less MnSOD. The decrease was associated
with increased oxidative damage (reduced activity of iron-
sulfur proteins sensitive to oxygen stress [aconitase and
Complex I]). Mitochondrial function was altered in Sod2-/+

mice, as shown by decreased respiration by complex I and
increased sensitivity of PT to induction by calcium and t-
butylhydroperoxide. Induction of PT in heart mitochondria
from Sod2-/+ mice was associated with release of
cytochrome c and DNA fragmentation. Cardiomyocytes
from neonatal Sod2-/+ and Sod2-/- mice were more sensitive
to death than cardiomyocytes from Sod2+/+  mice after
t-butylhydroperoxide treatment. Sensitivity was decreased
by inhibiting PT with cyclosporin A.

To understand the role of MnSOD in antioxidant
defense and apoptosis in the heart, Remmen examined
reduced MnSOD expression on oxidative damage,
mitochondrial function and oxidative stress-induced
apoptosis in hearts of Sod2-/+ mice. MnSOD regulated the
mitochondrial pathway  of apoptosis as well as antioxidant
defense. There was no change in life table parameters.

Diverse genes have evolved to protect cells from
macromolecular damage. One class includes structural and
regulatory genes for scavenger enzymes (e.g., SOD  1, 2, 3
and catalase). G.M. Martin (personal communication)
found evidence supporting the theory in mice. Independent
lines of transgenic mice overexpressing a cDNA for human
catalase directed to mitochondria had ~17% increases in
maximum life spans. Transgenic mouse lines
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overexpressing human CAT in perioxisomes or nuclei did
not show a significant extension in life span.

In a series of studies (236,237,28,29), effects of
oral supplementation with acetyl-L-carnitine and alpha
lipoic acid on the physiological and memory function of
elderly mice were examined. The physical activity of
elderly mice - and their performance in memory tests -
improved to nearly the level of young mice. Acetyl-L-
carnitine was hypothesized to increase mitochondrial
energy production by affecting membrane function and
alpha-lipoic acid to deal with increased production of ROS.
Improvement in function was greater when both agents
were administered than when each was administered
independently.

Bluher et al (238) engineered mice to have the
insulin receptor in adiocytes disabled. These were raised in
an experiment with several other strains - all were fed ad
libitum diets. Mice with the insulin receptor knocked out
had an 18% higher mean and maximum life span even
though they ate more food. Knockout mice were lean
despite higher food consumption.

This study suggests the importance of hormonal
factors in controlling metabolism and oxidative processes.
IGF-1, insulin and GH have been studied in multiple
species (239). As biological complexity increases, receptor
complexity increases (e.g., from one insulin receptors in
flies and worms to four in tetrapods). Metabolic functions
and growth and development processes may separate, as
suggested by results of the Baltimore longitudinal Study of
Aging (240). This may be due to thyroid (T3) hormone
which controls mitrochondrial function and
mitrochondriogenesis under oxidative stress (241).

9. CONCLUSIONS

Numerous studies support the notion that
mutations and oxidative damage to mtDNA (with
associated decline in mitochondrial respiratory function)
are important contributors to human aging. Many animal
models provide insights into effects of oxidative damage to
mitochondria in aging. Mitochondrial oxidative damage
plays a major role in life span control in various systems. It
is not clear if this represents an effect on pathology or is
related to basic aging processes.

As the biological complexity of an organism
increases, the competition of growth and reproductive
processes with somatic cell maintenance for energy may be
reduced (239). The caloric restriction model may not apply
in the same way to humans as it does in simpler test
systems (240). Respiratory function and longevity may
simultaneously increase in humans as has been found in
some test systems (241). The role of oxidative processes in
human mitochondria may be more complex, with multiple
inter-dependent tissue systems linked by hormonal systems
(242) than in, at least, some test systems.
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