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1. ABSTRACT

Male infertility is one of the biggest concerns of
today’s health care community. In the US and other
developed countries, approximately 70% of infertility
among couples is attributed to male reproductive failure.
Alterations in reproductive organ development and sperm
production have been listed as the mgor causes of this
phenomenon. Sex determination and differentiation, X
chromosome inactivation, gene imprinting and normal
germ cell development are important biological processes
that, in turn, control mammalian reproduction. Specific
patterns of gene expression and repression are important in
such processes. The strong correlation between DNA
methylation, a major epigenetic modification of the
genome, and gene expression patterns is well documented.
The effects of DNA methylation on the expression of genes
affecting mae reproductive organ  development,
spermatogenesis, and male sexual behavior have been
reported, suggesting that alterations in DNA methylation
could induce abnormal male sexual development and
reproductive  performance. Inheritance of epigenetic
processes and changes in DNA methylation patterns
induced by certain diets have been demonstrated in recent
years. However, the effects of DNA methylation on male
fertility have not been well studied. Since inherited altered
DNA methylation patterns could be a cause of increased
susceptibility to xenobiotics or abnormal phenotype in
future generations, multigenerational studies oriented to
determine the effects of xenobiotics affecting DNA
methylation in male fertility are recommended.

2. INTRODUCTION

DNA methylation is a maor epigenetic
modification of the genome (1). It is a heritable (2-4)
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enzymatic process (5-9) capable of being modified by
dietary manipulations (10,11). In mammals, methylation of
the 5 position of cytosine residues is a covaent
modification of DNA in the sequence 5-CpG-3' (12). In
most eukaryotic DNA, 60 to 90% of methylcytosine
residues occur a CpG dinucleotide seguences (13-17).
DNA methylation occurs primarily in areas where CpG
density is low. Most CpG islands are completely
unmethylated, at least in young people (18,19). CpG
islands often function as strong gene promoters and have
also been proposed to function as replication origins (20).
The strong correlation between DNA methylation and gene
expression, silencing some genes and activating others, is
well documented (1). Many very important biological
processes regulating sex differentiation such as genomic
imprinting (21), X chromosome inactivation (22) and
embryonic development (21) have been associated with
DNA methylation. Although the mechanisms that establish
methylation patterns during development are not
completely understood (5), programmed DNA methylation
and demethylation regulates the expression of genes during
mammalian development (23).

Male infertility is one of today’s biggest global
concerns (24). In the US and other developed countries,
15% of reproductive age couples are unable to conceive
(25). Infertility of the male contributes up to 70% of all
couples unable to conceive spontaneously (26). Many
causes of male infertility including gjaculatory dysfunction,
varicocele, obstructions, and infections have been
substantiated (27,28).

Although a considerable number of adequately
expressed genes have essential roles in human reproductive
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function, altered expression of just one of them can induce
deleterious effects in male reproductive capacity (29). The
role of mechanisms controlling gene expression, such as
DNA methylation, has not been investigated in this context.
Because the hypothalamic-pituitary-gonad axis controls
reproduction in mammals, in addition to the effects of DNA
methylation in spermatogenesis and male reproductive
organ development, other components of this axis are
briefly discussed in thisreview.

Since many genes expressed at the appropriate
time and levels are required for male reproductive organ
development, correct sperm production, and reproductive
performance, more studies addressing the effects of
mechanisms of gene expression, such as DNA methylation
and chromatin modification, in these biological processes
are necessary. In addition, since diet-induced DNA
methylation changes and DNA methylation inheritance
(suggesting abnormal susceptibility and phenotype in future
generations) have been reported, multigenerational studies
are recommended (30).

3.DNA METHYLATION

In mammals, DNA methylation occurs after
DNA replication and involves the transfer of a methyl
group from S-adenosyl-methyonine (SAM) to the 5
position of cytosine residues, in areaction catalyzed by the
enzyme DNA methyltransferase (Dnmt) (31).

A number of key biological functions have been
associated with DNA methylation. Genome organization,
chromosome stability (32-34), gene expression (1), cell
differentiation  (35), genomic imprinting (21), X
chromosome inactivation (22) and chromatin modification
(36) were some of the first to be associated with DNA
methylation. Earlier, specific pathologies and degenerative
processes including cancer (32,37) and aging (38,39) were
also associated with methylation. Finally, the role of DNA
methylation in  embryonic development has been
substantiated (21,36,40-45).

3.1. Enzymes associated with DNA methylation

Three enzyme families associated with DNA
methylation have been identified. Each of them plays
different roles in establishing and maintaining specific
methylation patterns. DNA methyltransferase 1 (Dnmtl),
first cloned in 1988 (46), primarily mediates maintenance
methyltransferase activity during the S phase (9).

On the basis of their preference for
hemimethylated or unmethylated substrates, several forms
of Dnmtl have been identified, each differing in their
trandation start site (47). The existence of other DNA
methyltransferases in mammalian cells was suggested by
the ability of Dnmt1 knockout embryonic stem cellsto de
novo methylate viral DNA (48).

A search of expressed sequence tags (EST)
databases revedled a second Dnmt (Dnmt2) (49,50).
Although the biological role of any of the Dnmt2 family
members remains to be demonstrated, a role of Dnmt2 in
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some aspects of centromere function has been suggested
(14).

Dnmt3a and Dnmt3b were discovered by EST
database screening using full length bacterial type Il
cytosine-5 methyltransferase sequences as queries (51).
The essential requirement of Dnmt3a or Dnmt3b for de
novo methylation in vivo and their importance for survival
has been confirmed by inactivation of both genes (36).
Methylation of a recombinant retrovirus transfected into
embryo-derived stem (ES) cdlls required either Dnmt3a or
Dnmt3b, but not both, suggesting redundancy of de novo
methylation function of Dnmt3a and Dnmt3b; however,
their unique patterns of tissue expression in the embryo
suggest that they have separated functions (18). No
evidence for the role of de novo methylation in normal
regulation of gene expression apart from embryonic tissue
has been reported (18). However, abnormal DNA and gene
methylation and gene expression have been described
during carcinogenesis (52-55).

3.2. DNA demethylation

Although the DNA methylation process is well
understood, the mechanisms of DNA demethylation remain
to be elucidated. Two types of demethylation process have
been postulated: 1) Genome-wide demethylation, which
occurs  during  gametogenesis, early  embryonic
development, and in some differentiating cells (56,57). 2)
Site-specific demethylation, which in many vertebrates
affects tissue specific genes at the time and site where they
are expressed. It may occur in absence of CpG islands
methylation (58).

Concomitantly, two possible mechanisms have
been suggested:

1) Since proteins with demethylase activity have been
isolated (59,60), a global process acting on the cellular pool
of enzymes involved in controlling DNA methylation,
followed by either activation of demethylating enzymes or
inactivation of Dnmts, is suggested (61). Two enzymatic
processes of genomic DNA demethylation have been
suggested. First, via passive demethylation, DNA
demethylation could simply result from an absence of
maintenance methylation after replication (62). It is thought
to be the primary mechanism of demethylation mediated by
cytosine analogs such as 5-AZA-2-Deoxycytidine (5-AZA
CdR). Certain DNA-binding factors may block cytosine
methylation that normally occurs during S phase (63).
Second, active demethylation, DNA demethylation occurs
independently of DNA synthesis involving demethylases.
The classical example could be DNA repair.

2) Local demethylation targeting specific sequences could
either develop specific mechanisms adopted to a precise
action, or use the activities involved in genome-wide
demethylation (17).

3.3. DNA methylation and gene expression

CpG idlands often function as strong promoters
and have also been proposed to function as replication
origins (20). It is estimated that CpG islands are associated
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with about haf of al mammaian genes (64).
Unmethylated CpG islands are associated with
housekeeping genes, while the CpG islands of many tissue-
specific genes are methylated, except in the tissue where
they are expressed (65).

Interactions between proteins and DNA are
changed by methylation, leading to alterations in chromatin
structure and a transcription rate change (66). In absence of
DNA methylation, DNA methyltranferases (DNMTs) can
function as transcriptional suppressorsin collaboration with
other proteins such as histone deacetylases (HDACs) (13).
Therefore, the suggested DNA methylation mechanisms for
gene regulation can be summarized as. 1) preventing the
binding of transcription factors to their target sequences via
proteins that bind preferentialy to methylated promoters
(67), 2) interfering with the binding of transcription factors
to the methylated cytosine (68), and 3) altering chromatin
structure leading to a change in the rate of transcription
(66).

3.4. DNA methylation, genomic imprinting and X
chromosomeinactivation

DNA methylation plays a key role in genomic
imprinting and X chromosome inactivation (14). In both
processes, gene silencing is strongly associated with
hypermethylation of CpG islands within the promoter
region of silenced genes (18). Genomic imprinting is a
process whereby only one of the two parenta aléles is
expressed, while the other gene is imprinted or silenced by
DNA  methylation  (69). Therefore,  epigenetic
reprogramming in germ cells and the early embryo is
critical for imprinting. In addition, this imprinting has
crucial roles in protecting the genome integrity (21), thus,
establishing nuclear totipotency (3) and stem cell
differentiation in animal development. Imprinted genes are
germline derived and inherited from either the maternal or
paternal gamete. CpG islands have been observed in about
88% of approximately 45 identified imprinted genes in
mice (70).

X chromosome inactivation is a related
methylation-dependent phenomenon and consists of the
transcriptional silencing of one of the two X chromosomes
in mammaian females (18). This process insures
equivalent levels of gene expression from the sex
chromosomes in males and females (22,71).

3.5. DNA methylation
development

DNA methylation is an epigenetic mechanism
that contributes to the coordination of gene regulation
during vertebral development (36,42,67,72-76). It has been
proposed that the methylation pattern of the mammalian
embryo genome is established during gametogenesis (76)
and changes through development (77). It involves
genome-wide demethylation and de novo methylation,
followed by selective demethylation of regulatory elements
occurring in parallel with their activation (57,78). During
mammalian development, programmed DNA methylation
and demethylation regulates the expression of genes

patterns and embryonic
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(23,78,79) controlling the interaction of
sequences with transcription factors (38).

regulatory

Mammalian development is accompanied by two
major waves of genomewide demethylation and
remethylation: one during germ-cell development and the
other after fertilization (32,62,72,77,80-82). During
embryogenesis, methylation patterns are reprogrammed
genome wide, generating cells with a broad developmental
potential. Passive genome-wide demethylation after
fertilization (by the lack of maintenance methylation
following DNA replication and cell division (62,82)) and
replication-independent  demethylation  during  early
embryogenesis have been suggested (43).

The mechanisms that establish methylation
patterns during development are not completely understood
(5). However, it is clear that the complete process in
mammals involves demethylation, de novo methylation and
maintenance methylation in  which genome wide
reprogramming of methylation patterns takes place (21). It
has been suggested that methylation patterns in males are
established by de novo methylation in prospermatogonia at
14-20 days post-coitum and in females during growth of
dictyate oocytes at 5 days post partum (83). In adults,
methylation patterns are reproduced at each round of cell
division (84) and vary according to cell type and
developmental stage (73).

3.6. DNA methylation and diet

Numerous studies suggest diet as a key
modulator of DNA (85) and gene (52,54,55) methylation.
Such madifications can be carried to the offspring affecting
DNA methylation, epigentic variations, phenotype and
likely long-term health (86). The exact mechanisms have
yet determined. However, the key role of Dnmts has been
suggested by the altered Dnmt activity observed in tumors
of rats fed methyl-deficient diet (53).

Falic acid, vitamin B12, vitamin B6, methionine,
choline and other nutrients influence the function of
enzymes that participate in various methylation processes
by affecting the supply of methyl groups that are
incorporated into a wide variety of molecules. Variations of
any of the factors that feed into the methylation pathway
could alter DNA methylation efficiency (10,11). Abnormal
methylation patterns are commonly found in cancer (87-
89). It is believed that diet alone contributes approximately
35% of all cancer deaths in humans (90).

3.7. DNA methylation inheritance

It was believed that acquired epigenetic
modifications such as DNA methylation or stable
chromatin structures could not be inherited through the
germline to future generations of mammals because they
were cleared and reset on passage through the germline
(91,92). However, in recent years it has been established
that in somatic differentiated cells, genomic methylation
patterns are generally stable and heritable (2-4,21).

Numerous recent publications indicate that
specific manipulations of early embryos, such as nuclear
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transplantation, can result in heritable altered patterns of
gene expression and induce phenotypic aterations at later
stages of development (93-96). Concomitantly, inherited
phenotypic changes can be induced by methyl group
supplementation (97). Roemer and collaborators reported
that DNA methylation and repression of genes encoding
magjor urinary proteins, olfactory marker protein, and
reduced body weight can be experimentaly induced by
nuclear transplantation in early embryos (95). Those
acquired phenotypes are transmitted to most of the
offspring of manipulated parent mice (4). Recently,
Morgan and collaborators described the inheritance of an
epigenetic modification at the agouti locus in mice (94).
Sutherland and collaborators reported the germline
inheritance of transcriptional silencing in mice and
reversion to activity after as many as three generations in
the silent state (3). Cisneros observed that altered global
DNA methylation patterns induced by a single dose of the
demethylating agent, 5-AZA-CdR, persisted to the F3
generation of treated mice (30). These studies support the
theory that silent genetic information is inherited and later
reactivated in mammals implying a mode of phenotypic
inheritance less stable than Mendelian inheritance (3).

4. MALE INFERTILITY

Infertility, defined as the incapacity of achieving
pregnancy over a considerable period of time (usually a
year) in spite of determined attempts by intercourse without
contraception (27), isamajor health problem today (24). In
the US and other developed countries, approximately 15%
of couples who attempt to conceive are infertile (25). Male
failure causes approximately 70% of couple infertility (26).
A male is consider infertile if after 12 months of regular
intercourse without contraception he is not able to induce
pregnancy (98).

Ejaculatory dysfunction, varicocele, obstructions,
and infections have been substantiated as causes of male
infertility (27,28). The role of genetics in such phenomena
has been elucidated (25,28,99-103). However, for up to
23% of infertile males no specific cause (idiopathic) can be
found (104). Such infertile men are usualy headlthy,
suggesting the genes involved might be only expressed in
spermatogenesis, or be functionaly required only for
spermatogenesis and/or reproduction (105).

Multiple factors, including normal
spermatogenesis, genital tract integrity, erection and
gjaculation potential are important for norma male
reproductive  function. In addition, sperm transit,
capacitation, egg penetration, fertilization and early
embryonic development are determinant conditions for
male fertility (28). Genetic or epigenetic aterations
affecting any of these factors and conditions could alter
male reproductive capacity.

Although it is known that a considerable number
of genes have an essential function in human reproduction
and their aterations can induce pathology in the male
reproductive performance (29), the mechanisms controlling
gene expression such as DNA methylation have not been
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fully elucidated. This review details the current information
emphasizing the role of DNA methylation in male
infertility. Spermatogenesis and the development of the
male reproductive system are the focus, however, other
aspects of male sexual failure are also considered.

4.1. Spermatogenesis

Adequate production of viable sperm is necessary
to ensure a healthy male reproductive life. Many reports
have indicated decreasing sperm counts and increasing
reproductive problems in wildlife and humans as a
consequence of toxicant exposure (106,107).

Spermatogenesis, the biological processin which
sperm is produced, involves cell division, cell
differentiation and cell-cell interactions (105). Many genes
expressed in a specific amount and at the appropriate time
are required for such a complex developmental process. It
has been suggested that over 150 genes are associated with
mammalian spermatogenesis (28,108). If the required
expression of any of these genes were dtered, the
reproductive capacity of males could be compromised. The
reproductive incapacity could be caused by a diminished
sperm production (oligospermia/asthenospermia) or no
sperm production (azoospermia) (98).

In addition to the well known male and female
genomic methylation pattern differences (42), DNA
methylation patterns in males undergo changes in both
mitotic spermatogonia and post-replicative germ cells
(109). In the rat, a significant increase in methylation levels
of testis DNA occurs from 30 to 150 postnatal days, while
at 2 years of age a significantly decrease of methylation
levels take place. At cellular level, Pachytene spermatocyte
DNA contains significantly higher methylation levels than
spermatogonia, while elongated spermatids contains
significantly lower methylation levels than pachytene
spermatocyte and mature sperm DNA (110).

The role of DNA methylation in mae
gametogenesis has been substantiated in part because
Dnmtl is highly regulated during spermatogenesis
(111,112). Expression of high levels of Dnmtl messenger
RNA and protein in mitotic and early meiotic male germ
cells (111,113,114) consistent with its maintenance and
possibly de novo methylation activities have been reported.
Dnmtl down-regulation in pachytene spermatocytes
(111,112) and  up-regulation in  post-replicative
leptotene/zygotene spermatocytes suggest a role for Dnmtl
during meiotic prophase in male germ cell development
(112,115).

In the Y chromosome, two gene families that
show testis specific expression, RBM (RNA Binding
Motif) and DAZ, have been associated with
spermatogenesis (116). In a recent study, Dasari and
collaborators reported that expression of the Y
chromosome specific genes DAZ, SRY, RBMYI1A,
RBMY 1H, RBMII, BPY 1, PRY and TSPY is regulated by
DNA methylation in prostate cancer (117). Although the
role of methylation in these genes in testis or
spermatogenesis has not been studied, it is likely that DNA
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methylation governs their expression in al tissues and
processes where they are present.

Another gene with a high degree of homology to
the DAZ gene family, frequently deleted in males with
azoospermia or severe oligospermia (118,119), is the
DAZLA (DAZ Like Autosoma) gene on human
chromosome 3, which has been suggested to be involved in
spermatogenesis. Like the DAZ gene family, this gene is a
homologue of the Drosophila male infertility gene, boule,
and is expressed specifically in testis. Cha and
collaborators reported that the 5' end of both DAZLA and
DAZ genes are hypomethylated in spermatozoa where they
are expressed, but not in leukocytes or placenta where they
arerepressed (108).

While studying the role of DNA methylation in
proliferation and differentiation of germ cells in testis,
Raman and Narayan found that DNA methylation plays a
critical role in the differentiation of gonia into primary
spermatocytes. Administration of 5-AZA-CdR to neonatal
mice having only spermatogonia (premeiotic) cells
induced considerable loss of methylation, complete
inhibition of differentiation into spermatocytic stage, and
altered expression of at least 5 polypeptides (120).

A significant decrease of pregnancy rates, and
increase of subfertility and time to pregnancy has been
associated with aged males (121). Reported studies indicate
that sperm motility rather than semen volume or sperm
number is most strongly affected by age (122), suggesting
altered sperm maturation in aged males. Ariel and
collaborators concluded that remethylation is part of the
process of sperm maturation that takes place in the
epididymis. These authors studied the DNA methylation
status of three spermatogenesis-specific genes, Pgk-2,
ApoAl and Oct-3/4, throughout the development and
differentiation of male germ cells in the mouse. Although
all these genes were unmethylated in adult spermatogenic
cells in the testis, they were remethylated in mature
spermatozoa in the vas deferens (123). In addition, a
preferentially age methylated DNA ribosomal locus region
in spermatozoa has been reported (124).

In vivo and in vitro age-related atered DNA
methylation patterns have been reported (125). Recently,
Doerksen and collaborators reported different degrees of
susceptibility to 5-azacytidine (5-AZA) (126). Male rats
treated with the demethylating agent resulted in abnormal
embryo development when germ cells were exposed
throughout  spermatogenesis, encompassing mitotic,
meiotic, and postmeiotic development, but not if they were
only exposed postmeioticaly. This suggests that the
hypomethylating effects of 5-azacytidine were stronger in
spermatogonia than in spermatocytes. In  addition,
histological testicular alterations were dependent on the
time of exposure and degree of germ cell DNA
demethylation. Altered testicular histology was observed
only after 11 weeks of exposure.

It has been suggested that a gene in the Prader-
Willi syndrome (PWS) critical region, "chromosome 15
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open reading frame 2" (C150rf2), may play a role in
primate spermatogenesis. Cl15orf2 is an intronless gene
located between MAGEL 2 and SNURF-SNRPN associated
with a CpG island, which is hypomethylated in germ cells

(127).

The role of DNA methylation in testis-specific
H2B (TH2B) histone gene of rat transcriptional repression
has been reported. During spermatogenic differentiation,
TH2B is expressed in the meiotic events as early as
spermatogonia type A and continuing on to sperm. During
this time, CpG sites in the promoter region are
unmethylated (128).

The spermatogenic capacity of the testis is
regulated in part by follicle-stimulating hormone (FSH).
The Sertoli cells response to FSH is controlled by the FSH
receptor (FSHR) gene expression. CpG dinucleotides in
rodent FSHR promoter are methylated in non-expressing
cells and tissue but unmethylated in Sertoli cells (129).
DNA methylation in testes is differentially regulated during
development and is controlled by gonadotropic hormones.
Hypomethylation of seminiferous tubular and Leydig cells
DNA can be achieved by administration of FSH and
Luteinizing hormone (LH), respectively (110).

Hata and collaborators, while investigating the
function of Dnmt3L in reproduction observed that the male
Dnmt3L -/- mice were completely infertile (5). At birth,
mutant mice testis size appeared norma but it was
significantly reduced at 8 weeks of age compared to the
controls. Very few differentiated spermatids or
spermatozoa were found in the testes of mutant adult mice,
suggesting that Dnmt3L is probably required for the
differentiation of spermatogonia. This was consistent with
the expression pattern of Dnmt3L in the testis. This
observation lead the authors to conclude that Dnmt3a and
Dnmt3L are required for spermatogenesis.

Recently, the role of FKbp6 gene in male fertility
has been reported. In the mouse, expression of Fkbp6
MRNA was restricted to the testes. Both mRNA and protein
were found in the cytoplasm and nucleus of spermatocytes.
While male Fkbp6 deficient mice were sterile, femaes
were not. Reduced testis size with lack of spermatids was
observed in Fkbp6-/- males. Mature spermatozoa were not
observed in the caudal epididymis or seminiferous tubules.
An increase in apoptosis in spermatocytes of mutant mice
was evident via terminal deoxynucleotidyl transferase-
mediated deoxuridine triphosphate nick-end labeling
(TUNEL) stain. This suggested that a complete block in
spermatogenesis and cell death of meiotic spermatocytesis
the cause of the infertility observed in Fkbp6-deficient male
mice (130). The mechanisms controlling the expression of
this particular gene have not been reported; however, since
this gene induced apoptosis and apoptotic genes have been
correlated with DNA methylation (41,131), the potential
role of DNA methylation must be considered.

4.2. Genital tract development
A coordinated expression of specific genes in a
strict spatiotemporal manner is required for mammalian
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gonadal development and sexua differentiation (132).
Several of these genes are more crucial than others, but al
play very important roles in maintaining these
developmental pathways (133,134). Sexual development is
a very complex process including gonadal determination
and differentiation. After gonadal sex determination, an
indifferent gonadal primordium becomes ovary or testis. In
males, sex determination has been associated with testis
determination. Several hormones such as antimullerian
hormone (AMH) and sex steroids are imperative to develop
the male phenotype. Therefore, atered hormone secretion
induced by abnormal testicular development might result in
hermaphrodites or even individuals presenting a complete
female phenotype (135).

4.2.1. SRY gene

The sex determining region of the Y
Chromosome (SRY), the gene that triggers the testis
determining cascade (136), has been suggested to function
as a transcriptiona regulator (137). Complete and partial
gonadal dysgenesis (GD) of 46 XY individuals has been
associated with mutation in SRY or in its flanking regions
(138). Complete and partial GD as a consequence of SRY

5 and 3 microdditions, which might modify its
expression, have been observe in cases of 46XY

individuals (139). Although individuals with a mutation in
SRY areinfertile, suggesting that all mutations are de novo,
several cases of familial mutations associated with 46 XY
complete GD have been reported (140).

The existence of a threshold for the appropriate
function of murine Sry (141,142) and human SRY
(143,144) has been proposed since reduced levels may
produce sex reversal. Therefore, a disruption of the timing
and/or amount of SRY expression may result in an
abnormal sex phenotype (135). Veitia and collaborators
after analyzing the main components of testis development
pathways conclude that almost all steps are dosage
sensitive (135).

While in the somatic cells of the genitalial ridge
(precursors of Sertoli cells) of mice, Sry transcripts appear
between 10.5 and 12.5 dpc (days post coitus) peaking at
11.5 dpc (145). In man, expression of SRY mMRNA is
initiated at 41 dpo (days post ovulation), peaks at 44 dpo
and persists there after at low levels throughout the entire
individual life (146). The presence of SRY protein in the
genital ridge after testis formation (147) and in the nuclei of
Sertoli and germ cells in the testes of individuas of
different ages (135) has been demonstrated. Therefore, any
SRY expression changes could induce pathologies of male
reproductive organs.

Complete inactivation of SRY protein induced by
SRY (murine Sry) mutations has led many to believe that
gonad determination is the main function of SRY gene.
However, the presence of SRY protein in the nucleus of
Sertoli and germ cells in developing and adult individuals
suggests additional SRY male specific functions (148). The
Y chromosome contains a number of genes that have an
important role in the development and maintenance of male
specific organs, including testis and prostate (117,149).
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The expression of genes dependent on the SRY
gene, including WT-1, SF-1, SOX-9, DAX-1, and FGF-9 is
very important for genital tract development. WT-1 knock-
out mice die in utero lacking kidneys and gonads and
present a female phenotype (150). SF-1 null mice are able
to survive in utero but die shortly after birth. They lack
adrenal glands and male gonads and consequently have
female interna and externa genitalia (151). Disruptions of
human SOX-9 gene (SRY -related HM G box, 9) often result
in XY sex reversa (152). Loss of function in DAX-1
causes hypogonadotropic hypogonadism (HHG) and
congenital adrenal hypoplasia (CAH) (153). It appears that
Sry promotes mesenchymal cell proliferation, mesonephric
cell migration, and Sertoli cell differentiation in the XY
gonad (testis) by activating Fgf9. Therefore, sex reversa
has been observed in Fgf9 knock out mice (154). Since the
role of DNA methylation in the expression of some of these
genes has been aready reported (117), the importance of
DNA methylation in genital trat development is evident.

4.3. Hypothalamic-pituitary-gonadal axis

It is well known that the hypothalamic-pituitary-
gonadal (HPG) axis controls male sexua and reproductive
activity. Therefore, in addition to a well-developed male
reproductive tract and appropriate production of viable
sperm, there are other aspects to consider. Hormones,
growth factors, their receptors, and other associated signal
transduction proteins may be altered and could affect the
HPG axis inducing male reproductive failure (155).

In addition to alterations of early primordial germ
cell determination, gonadal differentiation, gametogenesis,
development of external genitalia, various chemicals, and
physical and biological conditions could affect critical
signaling events regulating sexua behavior (107,156-159).
These events may include male sexua behavior which is
mediated in part by androgens and estrogens (160,161).
These hormones act in the brain to influence male mating
(161,162). The relationship between androgens, estrogens
and DNA methylation has been substantiated (163-165).

In recent years, the analysis of mutant animals
has demonstrated that a number of imprinted genes
influence brain development and behavior (166-172).
Recent studies indicate that the expression of genes
affecting sexual behavior and reproduction such as Y
chromosome specific genes (DAZ, SRY, RBMYI1A,
RBMY1H, RBMII, BPY1, PRY and TSPY) (117), IGF
(173), and c-fos (174) isregulated by DNA methylation.

The insulin-like growth factors (IGF-I and IGF-
II) are essential for normal growth and development in
different species (175-179). IGF-I, alow molecular weight
peptide that mediates the cell proliferating actions of
growth hormone, has been implicated in a variety of
reproductive  processes (178,180,181). Dyck and
collaborators reported that IGF-1 expression is dependent
on DNA methylation. Human IGF-I (hIGF-I) was
expressed only in testicular tissue of hlGF-I trangenic mice,
where it is hypomethylated relative to non-reproductive
tissue. Its expression was evident in germ line, and
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occurred during early spermatogenesis between day 10 and
15 of sperm development (181).

Recently Cisneros and collaborators, while
studying the intra-embryonic exposure effects of 5-AZA-
CdR, found that in utero exposed mice presented growth
retardation and impaired male reproductive activity
(30,182,183). The dtered male reproductive activity,
possibly an atered behavior (184), was correlated with low
levels of serum IGF-1 and higher global DNA methylation
levels (183). Therefore, alteration of DNA methylation
patterns during development affects IGF-1 and male
reproductive capacity.

Finally, the role of TRP2 gene in activating the
mouse vomeronasal organ (VNO) that mediates social
behaviors and neuroendrocrine changes elicited by
pherohormone cues was reported. Indiscriminate sexual
and courtship behavior toward both males and females and
absence of normal male — male aggressive behavior was
observed in TRP2 deficient male mice (185). Since the
mechanisms of TRP2 expression are unknown, there is the
possibility that DNA methylation could be one of the
mechanisms controlling its expression.

5. PERSPECTIVE

Male infertility isaglobal health concern. In addition to the
adequate time of expression, the need of expression
threshold for genes controlling male reproductive organ
development, spermatogenesis and normal male sexua
activity has been substantiated. The role of DNA
methylation in controlling the expression of several specific
genes necessary for appropriate male reproductive
processes has been reported. Therefore, the role of DNA
methylation in male fertility is evident. If certain diets,
drugs, or environmental pollutants are able to alter DNA
methylation, the need for more studies examining the
effects of such xenobiotics in male reproductive capacity is
evident. Since many genes important for male reproductive
organ development, spermatogenesis and sexua behavior
are controlled at least in part by DNA methylation, all these
aspects should be considered. In addition, the heritability
of epigenetic mechanisms has been substantiated in recent
years. Therefore, the effects of such xenobiotics should be
investigated in multigenerational  studies, because
xenobiotic-induced DNA methylation changes could be the
cause of altered disease susceptibility and abnormal
phenotype in future generations.
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