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1. ABSTRACT

MS is a chronic inflammatory disease of the non-immune) including CNS antigen-driven clonally
central nervous system (CNS). MS is a predominantly expanded B cells, autoantibodies, complement and
CD4+ T cell mediated autoimmune disorder. Recent mediators of the innate immune responses in MS lesions.
studies have challenged this existing paradigm by Further expansion of this global CNS dysfunction includes
supporting the role of other immune cells and factors (even oligodendroglial cell (OGC) loss, attenuated remyelination,
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axonopathy, and gliosis. The recognition of new "players"
directing effector and regulatory functions and further
insight into reparative mechanisms occurring at various
stages of the disease within a given individual will
influence ongoing and future therapeutic trials. The
following discussion will encompass evolving concepts in
the pathogenesis of MS with a focus on novel
immunotherapies. These new approaches reflect targeting
of a multifaceted spectrum of immune activity. The
immunotherapies will be characterized by their intervening
role of specific and/or multiple pathogenic steps including
initiation, peripheral activation, molecular co-stimulation
and immune effector responses during early, transitional
and late phases of disease. Emerging strategies for the
enhancement of  neuroprotection and  reparative
mechanisms will also be reviewed. Classification of novel
approaches will include the following main types of
immunotherapies: (1) targeting of myelin specific T cells:
antigen-specific therapies (2) targeting of B cell and
autoantibody responses (3) targeting of immunologic steps
of disease pathology (4) targeting of reparative stages of
disease: neurotrophic and neuroprotective, (5) global
therapies: broad-based polydirectional strategies.

2. GENERAL INTRODUCTION

2.1. Overview

The present review of current novel immune
trials is intended to assist the reader in the understanding of
evolving MS pathogenic paradigms and provide the reader
with an update of cutting edge therapies in multiple
sclerosis (MS), and potential future strategies toward the
advancement of care of MS patients.

2.2. Introduction

Multiple sclerosis (MS) is a clinical neurological
disease  characterized by  chronic  inflammation,
demyelination, variable axonopathy and gliosis of the
central nervous system (CNS) (1-6). It is the principal
(excluding trauma) neurological disease of individuals in
early to middle adulthood and has been estimated to
include 350,000 people in this country alone although the
actual incidence including the undiagnosed may be
considerably higher (7, 8). Immune mediated tissue injury
in MS appears to develop in genetically susceptible
individuals after exposure to a causal environmental agent
that is yet undefined (9-12). The disease is clinically and
histopathologically heterogenous. with several clinical
types of MS. (8, 13). Four histopathologic subtypes of MS
have been described with the demonstration of both CD4+
and CD8+ cells in MS lesions (3, 4, 14-17). The majority
of MS cases present as a relapsing-remitting (RRMS)
condition lasting approximately five to ten years that
transitions into a secondary chronic progressive state. Here
patients have less frequent relapses and radiographic
evidence of blood brain barrier break down but continue to
develop progressive neurologic deficits. Approximately 10-
20% of patients begin with a primary progressive (PPMS)
course characterized by a continuous progression without
acute relapses (13, 14). Recent studies suggest the role of
both regulatory and effector dysregulation in MS and have
raised the possibility of an intrinsic perturbation of CNS
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factors and neurodengenerative mechanisms contributing to
MS especially in the late chronic phases of disease. (18-
20). Demonstration that both axonopathy and cerebral
atrophy occur early in disease argue for early treatment
which may limit long term disability (2-4, 6).

Recently reported CHAMPS and ETOMS trials
have provided more direct evidence of the benefit of early
initiation of therapy (21, 22). There are currently three
FDA approved therapies for the treatment of RRMS and
secondary progressive MS. This includes interferon-beta,
glatiramer acetate and mitoxantrone. (23-26). These
medications have modest effect on disease activity but do
demonstrate the ability to reduce attack rate and frequency
of active lesions as determined by gadolinium-enhanced
magnetic resonance imaging (MRI) (24, 27). The limited
efficacy, side effect profile of approved treatments for
RRMS along with the failure to treat PPMS and chronic
progressive phases of disease has highlighted the need for
the development of new therapies to be utilized as mono or
combination therapy addressing the heterogeneity of this
disease (28, 29).

3. THE IMMUNOLOGICAL BASIS FOR DISEASE
INTERVENTION AND RATIONALE FOR NOVEL
IMMUNOTHERAPIES

3.1 Disease induction

MS pathogenesis involves a complex sequence of
cascading immune events that culminates in chronic
disease (Figure 1 ') MS is presumed an autoimmune
condition mediated at least in part by T cells (18, 30-34).
The precise initiating trigger and induction of the acute
phases of disease is unknown but occurs when immune
tolerance is disrupted. This process may occur due to
molecular mimicry whereby our immune system may
attack "self" if a microbe and human share a common gene
sequence encoding for a conserved structural
peptide/protein(s) such as CNS immunogenic antigens such
as, myelin basic protein (MBP), myelin oligodendrocyte
glygoprotein (MOG), proteolipid protein (PLP) (5, 35-37).
Initiation may occur from other mechanisms such as
microbial superantigens, or a self protein. It is possible that
the release of CNS antigens to the periphery following a
CNS insult such as, the introduction of non-self proteins
(CNS viral infection), or acute brain injury (trauma, stroke)
may be a mechanism of initiation (19). This process may be
perpetuated and expanded by "epitope spreading” that has
been defined in EAE, the experimental model of human
MS (38). Once initiated, neural antigens are processed by
antigen-presenting cells (APC) for presentation to
sensitized T cells (CD4+) with resultant activation and co-
stimulation in the periphery (33, 39). B cells and CD8+ T
responses primed and clonally expanded in the periphery
may also be contributory to disease pathology (17, 40-43).

3.2. Peripheral co-stimulation

Paramount in MS immunopathogenesis is the
activation, expansion, and differentiation of T cells that are
dependent on a coordinated series of signals exchanged
between the antigen-presenting cell (APC), the T cell, and
the environment. (Figure 1P YThe maturity of the APC is
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Figure 1. Schematic depiction of the pathogenic steps resulting in tissue injury in MS: (1-5) (1) Activation and co-stimulation of
autoreactive T cells in the periphery (2) Migration and trafficking to the CNS (upregulation of homing chemokines & adhesion
molecules) (3) Adhesion of proinflammatory autoreactive T cells to the endothelium, release of proteases and MMPs degrading ECM &
affording transmigration of the BBB of T, B, moncytes/macrophages into the parenchyma of CNS (4) Secondary activation and
amplication of the CNS intraparenchymal cellular and humoral responses with autoantibodies, induction of cytotoxic T lymphocyte
(CTL) and cytokine/neurotoxin (NO) mediated CNS damage. (5) Effector stage of disease with injury to the myelin sheath.

controlled by the inflammatory milieu and expression of APC
maturation factors (CD154, TNF, RANKL) by the cognate T
cells. Initial recognition of peptide-MHC class II by the T cell
leads to TCR stimulation delivering the "first signal" which
then induces expression of CD154, which in turn binds to CD40
expressed on the APC. CD40 stimulation results in the
upregulation of a series of co-stimulatory molecules, including
CD80 and CD86. CD80 and CD86 engage the T-cell co-
receptor CD28, thereby delivering a “second signal” that
culminates in  T-cell activation, proliferation, and
proinflammatory cytokine production (INFy, IL-2, IL12, TNFa)
Evidence indicates that there are multiple interactions between
the T cell and the APC leading to fulminant T-cell activation and
expansion. Interruption of these co-stimulatory interactions (such
as CD154-CD40) incapacitates APC maturation, thereby
impairing the activation, proliferation, and differentiation of
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antigen-specific T cells becoming potential targets of novel
therapies (39, 44, 45).

3.3. CNS migration and trafficking

After priming, highly coordinated sequential
interactions involving cellular homing (most likely dependent
on preferential expression of chemokine receptors, (CXCR3,
CCRS) (46, 47), and trafficking into the CNS compartment
proceed. Specifically a number of proinflammatory (Th1)-type
cytokines are elicited that induce upregulation of adhesion
molecules, and alter permeability of the blood-brain barrier
(30, 48). This subsequently promotes the adhesion of
proinflammatory autoreactive T cells (intergrins VLA-4 also
known as 041, LFA-1 on T cells) to the endothelium (via
corresponding VCAM, ICAM receptors) allowing T, B,
monocytes, macrophages to the extravasate into the
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Figure 2. Schematic depiction of the pathogenic steps
resulting in tissue injury in MS: (1-5) (1) Activation and co-
stimulation of autoreactive T cells in the periphery (2)
Migration and trafficking to the CNS (upregulation of homing

chemokines & adhesion molecules) (3) Adhesion of
proinflammatory autoreactive T cells to the endothelium,
release of proteases and MMPs degrading ECM & affording
transmigration of the BBB of T, B, moncytes/macrophages
into the parenchyma of CNS (4) Secondary activation and
amplication of the CNS intraparenchymal cellular and humoral
responses with autoantibodies, induction of cytotoxic T
lymphocyte (CTL) and cytokine/neurotoxin (NO) mediated
CNS damage. (5) Effector stage of disease with injury to the
myelin sheath, oligodendrocytes, and axons.

extracellular matrix (ECM) of the BBB (49, 50). In order to
then effectively breach the BBB and traffic into the CNS
compartment, activated cells must next pass through the ECM
which is comprised of type IV collagen. Upon direct contact
with collagen, T cells produce matrix melloproteineases
(MMPs) 2 and 9 which specifically degrade collagen type IV,
as well as contribute to the proteolysis of myelin components
in MS (51-53). Alpha 1 integrin on activate T cells may play a
role in the initial binding to collagen type IV (54). MMPs are
inhibited by tissue inhibitors of matrix metalloproteinases
(TIMPs) (52). In MS brain tissue and spinal cord fluid patients
MMP-2, MMP-7, MMP-9, MMP-12 and TIMP-1 have been
reported (52, 55, 56). Adhesive molecules, chemokines and
MMPs therefore represent another potential site of targeted
intervention (Figure 1°P2%%),

3.4. Effector mechanisms in the CNS compartment
Immune cells including B cells and sensitized T
cells (CD4+ helper and CD8+ cytotoxic) that successfully
traffic into the CNS are reactivated by antigen-presenting
macrophages and resident microglial cells with a subsequent
amplification of CNS cellular, humoral and complement
effector responses leading to the production of antibodies,
complement, toxic cytokines, apoptosis-mediating molecules,
and release of other neurotoxic mediators such as the oxygen
and nitrogen free radicals, glutamate and osteopontin (57-59).
This complex and inter-related process reflects both the innate
and acquired immune systems which target and remove the
antigenic source from the CNS tissue (19). For instance, nitric
oxide (NO) secreted by activated microglia is a potent
mediator of oligodenroglial cell loss. Expression of induced
nitric oxide synthetase (iNOS) catalyzes NO and transcription
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of iNOS is upregulated by macrophage/ migroglial elaborated
(TNFa) and T cell elaborated (IFNy). In the setting of this
proinflammatory milieu, NO and TNFa along with
autoantibodies and complement produce demyelination.
Macrophages and migroglia not only present antigen but in this
setting phagocytose myelin debris, and capture antibody-
antigen complexes by their Fc receptors. Thl cytokines (INFy,
IL-12) are further perpetuated by macrophage/T cell elaborated
osteopontin while downregulating Th2 cytokines (53). This
concerted attack of varied immune cells and their relative
effector mechanisms results in damage to oligodendrocytes,
myelin sheaths and even invariable degrees of axons and
neurons as well as, cerebral atrophy during early acute
inflammatory phases of disease. (Figure 157 **%) steplf these
effector mechanisms are of significant severity or persistence
resultant irreversible axonopathy and neuronopathy may occur
(60). The contribution of axonopathy appears to correlate to
irreversible disability (2, 6, 61). Clinically this stage is reflected
carly by exacerbations during the relapsing of disease which
may be antagonized by immunoregulatory and reparative
mechanisms (20, 62-70).

3.5. Protective and reparative mechanisms operative in
MS

Neuroprotective and homeostatic  regulatory
processes appear concurrent with the immune attack down-
regulating inflammation such as upregulation of regulatory cell
populations. Even proinflammatory mediators such as TNFa
may be involved in a dual role of tissue repair (71).
Oligodendrocyte progenitor cells (OCPs) are recruited to areas
of demyelination, expand and differentiate into remyelinating
cells that repair local tissue damage (72, 73).

Remyelination appears most efficient in the early
inflammatory phases of disease and within acute MS lesions.
In chronic lesions and progressive phases of disease
oligodendroglial cells may still be observed but with little
remyelination present (74, 75).

The debate regarding the cause of inadequate repair
is ongoing and may be due to a neurodegenerative processes
such as intrinsic abnormalities in recruitment and/ or
differentiation of OCPs or possibly secondary to chronic
severe demyelination (74, 75). Likewise axonal damage may
be a consequence of direct effector mechanisms of the immune
attack (macrophages, CD8 cytotoxic cells) (15, 17), or may
arise secondarily to chronic severe demyelination and
membrane destabilization. This may lead to increased Ca+2
influx and disrupted axonal transport, and/or primary axonal
dysfunction (76). Enhancement of neuroprotective and
regenerative factors have become attractive targets of novel
therapeutic strategies (62-65, 67, 77).

4. EMERGING NOVEL THERAPEUTICS
(Figure 2, Tables 1).

4.1. Immunotherapies targeting myelin specific T cells:
antigen-specific therapies

Induction  of  tolerance by  targeting
immunoregulation and the modification of autoreactive T
cells or antigenic epitopes is currently being explored.
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Table 1

Target
BBB

Agent

Human Study

Animal
Study

1

Anti-o4 integrin (VLA-4) mAb-
natalizub Antegren

Phase III

*MMPs inhibitors

*TIMPs

Chemokine blockade

MHC-Class 11

Anti-MHC mABs

iNOS inhibitor

Hypervariable Peptide vaccines

Antigen

Altered peptide ligands

Phase /11 topped

PR [ [

Myelin specific T cell
Immunization MBP298

Multiple

DNA encoding Autoantigen vaccine

TCR

TCR VB immuni-zation/NeuroVax

Multiple

TCR peptides

Co-Stim Ulatory
Ligands

Anti-CD154 mAB IDEC-131

Phase I/I DB, PC

Anti-IL12 (p40) mAb CNTO 1275

Phasel/Il DB, PC

Anti-IL2ra mAb Daclizumab

Phase I/I1 OL,CO,R

Anti-CTLA4 mAb

Phase 1T DB, PC

Recombinant IL-1 receptor Antagonist
Anakinra

Phase I/I1 DB, PC

>

IL-10

PPARY receptor

Agonist Rosiglitazone maleate Avandia

Phasell DB,PC

Cell Recruitment

Anti-cytokines Chemokines (i.e MIP-1)

Macrophage
Astrocyte

Inhibitors of exocyotoxin Products
(,free radicals, PAF,

P [

Cytokines TNFa inhibitors

Treosulfan Apoptosis APC and T cell

Protein kinase inhibitors

Caspase signaling inhibitors

CDS cell

Chemotherapy Anti-CD8+ mAbs

B cell

Chemotherapy Anti-CD20+
mAbs/Rituxamab

Phase II/IIT

P [ [

Complement

Anticomplement mAbs

>

Inhibitors of complement MAC
Membrance attack Complex
interactions

Transplantation

Autologous bone marrow/peripheral
stem cell

Multiple OL

Oligodendrotocytes (fetal, adult)

Schwann cells

Hormone

Estriol

Phase I/I1

AndroGel Testosterone

Phase II CO

Regenerartion

Riluzole Inhibitor of glutamate receptor
(AMPA /kainite)

OL

P [ e

iNOS2 inhibitor in glial
cells/Ansamysins

Neuroprotection

Ginko Biloba

Phase |

A-lipoic acid, VitamenE/Selenium

Phase 11

el kel

Inosine/precursor of Antioxidant uric
acid

Phase IT

Neurotrophic
Growith factors

CNTF, NGF, IGF-1

IGF-1 Phasel/IT

X

Table modified from the National Sclerosis Society at http://www.nationalmssociety.org/pdf/research/clinicaltrials.pdf Subtypes of immune
therapy; (I) Antigen Specific Therapy, (II) Directed Immunotherapy see figure 1 and 2, [1. Activation and co-stimulation of autoreactive T cells
in the periphery 2. Migration and trafficking to the CNS 3. Adhesion of proinflammatory cells to the endothelium 4.Secondary activation and
amplification of the CNS ] (III) Repair Therapy, (IV) Global-polydirectional Therapy DB, double blinded; OL, open labeled; PC, placebo

controlled, CO, crossover

Antigen-specific therapies target the autoreactive myelin-
specific T cell, a major player of MS pathology. The
therapeutic goal is to enhance homeostasis and restore
immune tolerance. Suppression of clonally expanded
effector or helper T-cells and/or enhancement of regulatory
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populations are potential therapeutic strategies. These
strategies include (1) induction of T cell anergy (2)
activation induced T cell apoptosis whereby an activated T
cell upon exposure to an antigen undergoes cell death and
deletion (3) induction of bystander suppression whereby an
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activated T cell upon exposure to the same or modified
version of the autoantigen induces T cells with
immunoregulatory function.

To accomplish the above goal of immune
tolerance several novel therapies for the reinduction of
peripheral tolerance through immunization of the putative
pathogenic T cell, TCR receptor, and autoantigens have
been explored in animal and human studies. Efficacy of T-
cell immunizations may be less beneficial than those
reported in animal models due to the diversity of potential
antigenic epitopes, pathogenic T cells and TCR repertoire
in the outbred human population. Additionally, intact
immunoregulatory mechanisms present in experimental
allergic encephalomyelitis (EAE) an animal model for MS
may be dysregulated in the MS population. The challenge
is to identify the "key" autoantigens or encephalopathic T
cell populations and TCR repertoire that contribute to
disease and maybe overcome to provide a safe and viable
therapy in MS. The following are few examples of these
currently pursued approaches.

4.1.1. Immunoregulatory mechanisms

Induction of regulatory cell populations such as
CD4+CD25+CD45RB" and invariant Cdl NKT cells have
been shown to restore peripheral tolerance and attenuate in
EAE (20, 78-80). These regulatory cells may delete and/or
suppress pathogenic T cells by a variety of mechanisms
including the induction of anergy or a shift in polarity from
a Thl to a Th2 cytokine milieu. Analogous human
regulatory populations have been identified and appear to
play a critical role in balancing the need for autoimmunity
for protection and risk for non-controlled autoimmunity
offering potential future strategies (69, 81, 82). Although
the specific neural peptides involved in the induction of
these regulartory cells have not yet been characterized, this
would represent a novel approach for the induction of
antigen-specific regulatory response in active MS.

4.1.2. T-Cell and T-Cell receptor immunization

One novel strategy has utilized immunization
with putative pathogenic T cells (MBP-specific T cells)
reporting effectiveness in MBP induced EAE model (83).In
EAE and several small pilot T cell vaccination trials in MS
short term depletion of T cells reactive against different
myelin antigens was demonstrated. Peripheral tolerance
appeared to be mediated through deletion of myelin specifc
cells by CDS8" lysis in a MHC Class I restricted manner, or
by CD4' lysis MHC Class 1I restricted cytolytic activity
(84-88). A more recent phase II open label trial of MBP-
specific T cell immunization of RRMS and SPMS
demonstrated depletion of MBP specific T cells following
vaccination (43). Another T cell mediated approach is to
utilize T cell receptor VB (TCR) peptides derived from the
complementarity-determining region 2 and 3 (CDR2) and
(CDR3) of autoreactive T cells. These T cells have been
shown to ameliorate disease in EAE models (89, 90). MS
patients may have an overrepresentation of TCR Vp
subsets. Early pilot TCR VP peptide vaccination trials in
MS patients reported safety, induction of Th2 IL-10
cytokine and some depletion of the complimentary targeted
T cells (91). A later phase II trial did not show a clinically
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significant reduction gadolinium-enhanced MRI lesion,
their primary outcome (92). These modalities require
larger, randomized, double blind, controls studies to
demonstrate clinical efficacy in MS patients.

4.1.3. Modification and targeting of antigenic epitopes

Other antigen-specific therapies underway have
attempted to downregulate autoreactive T cells by the
development of auto-antigenic peptides designed to
resemble the antigenic epitopes such as, altered peptide
ligands (APL), new modified copolymers, and vaccination
with DNA-encoding auto-antigen. Altered peptide ligand
(APL) is an auto-antigenic peptide with modifications
(amino acid substitution) in TCR contact positions.
Promising animal studies demonstrated APL could alter
pathogenic T cell responses to native peptide by T cell
anergy, TCR antagonism, partial agonism, or bystander
suppression  (93-95). An APL of the human
immunodominant MBP (83-99) peptide was utilized in two
separate phase Il clinical trials in MS but stopped due to
adverse events (96, 97). These preliminary trials however
highlighted important immunologic findings. APL induce
hypersensitivity reactions in several patients (97) induced
APL-specific Thl cells (98). Recently, a study confirmed
that myelin antigens induce classic anaphylactic responses
but can be easily treated with antihistamine prophylaxis
(99). This trial although clinically disappointing linked
disease exacerbation with expansion of activated MBP (83-
99). This gave support that disease induction and tissue
injury in MS is driven by myelin specific CD4+ Thl cell
population against CNS myelin components. Interestingly
lower doses of APL showed a trend towards clinical benefit
associated with a reduction of inflammation demonstrated
by MRI and a polarity skewing of APL-specific cells with a
Th2 immunoregulatory phenotype, suggesting APL
bystander suppression (96, 100). To establish optimal dose,
timing and administration for safe and efficacious therapy
larger, randomized, double blind, controls studies are
planned to address these issues.

Glatiramer acetate (GA) (Copaxone®, Teva
Industries) and FDA approved drug appears to employ
several mechanisms including bystander suppression with
the induction of GA-specific T cells that cross react with
native MBP autoantigen (101). New copolymers and
peptides are presently in investigational development to
find molecules with optimal benefit. One recent report has
shown that a four amino acid copolymer based on MBP
(85-99) but distinct from GA (aa size and content) had
greater affinity for the HLA-Dr2- restricted T cell clones
and more effectively attenuated EAE (102).

4.1.4. Modification of gene DNA encoding autoantigen
Another novel antigen-specific approach being
explored is DNA vaccination. This approach exploits recent
advances in gene therapy with the goal of preventing the
generation of encephalogenic T cells (103-106). A recent
study of DNA vaccine under development (106) involves
covaccination with DNA encoded myelin autoantigen(s)
alone or given with DNA encoded imummoregulatory
cytokines such as IL-4 in EAE. This model of proteolipid
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protein (PLP) induced EAE was attenuated after the
covaccination with IL-4 DNA and naked DNA encoding
(PLP139-151). PLP-specific T cells demonstrated a
polarity skewing towards a Th2 phenotype (106) DNA
vaccination in the presence of statins may also be explored.
Although preclinical methods offer potential site-directed
efficacy further investigation are essential to establish
safety and efficacy in humans.

4.2. Targeting of B cells

Autoreactive B cells and humoral responses
appear to contribute to EAE and MS pathology. The
functions of these B cells is not yet fully understood and
the functions may be quite diverse (107). Autoreactive B
cells can produce antibody that can directly mediate
effector mechanisms responsible for some of the
pathologies associated with autoimmune disease. Immune
complex deposition in the kidney and the resulting tissue
damage is a hallmark of systemic lupus erythematosis
(SLE). Antibody-mediated demyelination in the CNS in
primates is also characteristic of MS and MOG induced
EAE induced in rats, mice and marmosets (5, 108-110).
Secretion of effector antibodies may provoke direct CNS
damage or may also play less obvious roles in redirecting T
cell activities. This may be through mechanisms which
generate inflammatory mediators and chemokines that alter
the recruitment of T cells into an inflammatory site, as has
been shown in a model of oophoritis. In addition,
antibodies may facilitate the cross-presentation of antigens
via immune complex binding to FcR on dendritic cells and
facilitate the generation of self-reactive CD8' T cells.
Beyond the pathological effects of autoantibodies, B cells
themselves can also influence the development of
autoimmunity through their antigen presentation functions
and regulatory capacities. B cells, through their membrane
immunoglobulin can capture autoantigens and present these
antigens to self-reactive T cells. Under such circumstances
B cells can also function in the context of antigen uptake,
processing and presentation resulting in the expansion of
self-reactive CD4" T cells. In model systems where B cells
cannot secrete autoantibody but can express autoreactive
surface immunoglobulin, these B cells have been shown to
be able to mediate a systemic autoimmune syndrome,
clearly showing that the secretion of autoantibody is not
critical for autoimmunity to develop. In summary
increasing evidence supports the role of B cell and humoral
responses in MS (3, 12, 42, 111-116).

4.2.1. Anti-human CD20 mab (Rituximab) B cell
deletion

Rituximab is a chimeric anti-human CD20 mab
used in the treatment of B cell lymphoma that maybe of
potential importance in the treatment of both RRMS and
primary progressive disease. The anti-CD20 monoclonal
antibody (mAb) is a genetically engineered chimeric
murine human monoclonal antibody that depletes
circulating and tissue based B-cells. CD20 Rituximab has
been granted FDA approval for relapsed or refractory B
cell lymphoma with delineated safety and toxicity
guidelines. Rituximab (anti-CD20) has additionally been
administered in a number of B cell mediated autoimmune
diseases such as rheumatoid arthritis (RA) (117-122), cold
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agglutinin, disease (123, 124), warm antibody hemolytic
anemia (125), idiopathic thrombocytopenic purpura (126),
paraproteinemic polyneuropathy, (127) and myasthenia
gravis (128). Studies in RA suggest that the immunologic
benefit of rituximab is related more closely to decreases in
circulating autoantibodies than to B-cells (121). Like MS,
both B and T cell activation and proliferation may mediate
the pathogenesis of progressive RA, and several trials
support the targeting of-B-cell immunomodulation in
autoimmune diseases such as MS (129). Both a Phase II
randomized trial in RRMS as

well as a Phase II/III randomized, multicenter, double
blind, parallel group, placebo controlled study of
Rituximab are currently under development.

4.3. Immunotherapies targeting directed immunologic
steps of disease pathology
4.3.1. Targeting peripheral
proinflammatory cytokines
4.3.1.1. CD40L-CD40 co-stimulatory blockade

Treatment with a humanized monoclonal
antibody CD154 is a potential new immunomodulatory
treatment for RRMS. Preclinical studies have suggested the
importance of CD40L-CD40 costimulatory interaction in
the pathogenesis of MS. In specific the engagement of
CD40 and it's ligand CD154 are critical in eliciting the
activation of T cells and cell-mediated immunity (CMI)
responses  (130-133). Blockade of CD154/CD40
interactions prevents the development of CMI and a variety
of autoimmune disease models in mice. Importantly it has
been shown to prevent the progression of both monophasic
and relapsing remitting EAE models (39). Animal studies
also support that CD40-CD154 interactions are ongoing in
human MS plaques (132, 134). It is hypothesized that the
effects of CD154 blockade on CMI are due to a central
impairment of APC maturation (130, 132, 135, 136). It is
clear that CD40 signaling is critical for the "maturation" of
APC via the induction of a wide spectrum of APC activities
and that blockade in this pathway may lead to T-cell
tolerance or T-cell skewing. A phase I clinical trial of the
treatment of RRMS with anti-CD154 showed no evidence
of either systemic or neurological toxicity, which were the
primary outcomes for the study. Although the number of
subjects was insufficient to draw significance, several of
the secondary outcomes including MRI and EDSS suggest
that therapy may stabilize the disease process. These results
provide a rationale for a larger scale study and a phase 11
masked, placebo-controlled, randomized partial crossover
study in 46 subjects with relapsing-remitting multiple
sclerosis (RRMS) is underway to test safety and efficacy
(Figure 2, Table 1).

co-stimulatory and

4.3.1.2. Interleukin - 12p40 (IL-12p40) blockade
Another novel therapeutic approach involves the
inhibition of a proinflammatory IL-12, a heterodimeric
predominant cytokine in immune mediated inflammatory
disorders (137-140). Accumulating evidence indicates that
IL12 plays a pivotal role in the pathogenesis of EAE
mediating both cellular (Thl) and humoral responses.
(141). IL-12 antagonists and neutralization of IL-12 can
prevent EAE in both rodent and marmoset models, as well
as, being implicated in the pathogenesis of MS (142-150).
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The IL-12p40 subunit appears most important and other
monokines such as IL-23 that express this subunit may also
participate in the development of EAE (151). Local expression
of IL-12 within the CNS has been demonstrated in EAE
animal models (149, 152). Furthermore local expression of IL-
12 within the CNS of MS patients as well as increased levels
of IL-12 in CSF, plasma, serum and PBMCs during active
disease has been demonstrated (153-156). A Phase I/II clinical
trial for the treatment of psoriasis another Thl mediated
disorder with a humanized monoclonal anti-IL-12p40 antibody
evidenced statistical clinical benefit. These studies provided
theoretical evidence that therapy directed against IL-12p40
may be another new effective MS treatment. A multi-center
Phase I double blind, placebo-controlled trial in patients with
relapsing forms of MS, evaluating the safety of a single
administration of monoclonal antibody to IL-12p40
(CNTO1275) is presently in progress. A phase II trial is
planned later this year to examine drug efficacy in RRMS
patients (Figure 2, Table 1).

4.3.1.3. IL-2/IL-2 receptor o blockade

Daclizumab (Zenapax) is a humanized monoclonal
antibody against the IL-2 receptor alpha subunit. IL-2 is a
autocrine growth factor necessary for T cell growth. The
rationale for this novel therapy is that the interaction of of IL-2
and its receptor IL-2 on the surface on T cells leads to the
activation and expansion of autoreactive T cells and blockade
may result in the downregulation of encephalogenic T cells.
This agent has been FDA approved in renal transplant
recipients to induce immunosuppression for optimization of
graft acceptance (157) patients who had responded
incompletely to interferon beta therapy was pursued.

They reported during the past three years the
tolerability and safety of monthly administration of
daclizumab, as well as a reduction of disease activity by MRI
imaging. A further amendment of this study demonstrated
persistent efficacy of daclizumab after the interferon beta
therapy was discontinued. A current Phase II (ZAP) open-
label, baseline to treatment cross over trial is testing the
efficacy of daclizumab alone in RRMS patients.

4.3.1.4. Targeting B7-CD28-CTLA-4 co-stimulatory
pathway with CTLA-4Ig agonist

Cytotoxic T lymphocyte-associated antigen 4 Ig
[CTLAA4Ig]) is a soluble chimeric protein. Costimulatory
blockade using CTLA-4Ig has recently been explored as a
novel therapeutic in human studies. A phase I clinical trial of
the treatment of psoriasis vulgaris, with CTLA-4Ig improved
clinical outcomes and was associated with reduced cellular
activation of lesional T cells, keratinocytes, dendritic cells
(DCs), and vascular endothelium (158). Another pilot clinical
trial of the treatment rheumatoid arthritis evaluating CTLA-41g
also demonstrated safety, tolerance and dose-dependent
effectiveness (159). A current phase I clinical trial is testing the
safety of CTLA4Ig (BMS-188667) and CTLA4lg (Repligen-
RG2077) in MS patients.

4.3.2. Targeting adhesion molecules and cell trafficking
across the blood brain barrier (BBB)

Cellular homing, adhesion and transmigration of
a number of activated immune cells including autoreactive
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encephalopathic T cells across the BBB into the CNS
compartment is an early and critical step involved in the
immune pathology of MS. This is supported by in vitro and
in vivo animal and human studies (160). Targeting these
steps are intergral in a number of current and novel MS
therapies.The following are a few examples of these novel
strategies.

4.3.2.1. Inhibition of a4p1 integrin-VCAM-1 mediated
adhesion

Natalizumab  (Antegren) is a humanized
monoclonal antibody against the a4 chain of the a4f1
intergin (VLA 4) expressed on the surface of activated
lymphocytes and monocytes. a4p1 intergin (VLA 4) and
it's associated receptor VCAM-1 on endothelial cells are
important prerequisites of adhesion, transendothelial
migration and enhanced cellular activation within inflamed
tissue. In an EAE model natalizumab evidenced inhibition
of T cells trafficking across the BBB with subsequent
amelioration of disease (160). In a Phase II clinical trial,
two doses of natalizumab were administered over a 8 week
course. The results of this novel study showed a reduction
of gadolinium-enhancing MRI lesions at 12 weeks but not
at the follow-up second 12 weeks which were the primary
outcomes for the study. Secondary outcome measures
showed a significant increase in relapse rate in the follow
up period (161). This suggested a rebound effect with drug
cessation and the possible need for long term drug therapy.
(161). In a multicenter, randomized, double-blind, placebo
controlled phase II trial, 213 patients with RRMS or
relapsing SPMS were assigned 3mg/kg, 6mg/kg or placebo
every 28 days for 6 months. This extended both treatment
and follow-up period (162). In both treatment arms a 90%
reduction in the number of new gadolinium lesions, the
primary outcome. A secondary outcome showed a
significant reduction of clinical relapses compared to
placebo but was not powered for clinical outcomes (162).
Patients returned to pre-treatment relapse rate following
discontinuation of therapy. Currently two larger multi-
center Phase III trials are in progress in RRMS. One trial is
a monotherapy trial of 1200 patients (AFFIRM) and the
other is a combined trial of 900 patients with interferon
beta-1a (Avonex) (SENTINAL). A smaller phase III trial of
110 patients has combined natalizumab with glatiramer
acetate. Another Phase III trial utilizing small-molecule
antagonists has been initiated. These agents may offer
advantages over monoclonal antibodies such as oral
availability and lack antigenicity in the future. (163).

4.3.2.2. Inhibition of matrix
(MMPs): treatment of minocycline

Preclinical evidence supports the pathologic role
in MS for several of 23 MMP family members. In normal
CNS low to non detectable levels of MMPs are found
whereas upregulation and high levels are found in several
neurologic diseases including MS (55, 56, 164, 165). A
recent study extended the identified members of the MMP
family in MS and showed a distinctive pattern of
expression in T, B, and monocytes (166). Several EAE
animal studies support the promotion of disease activity
and course (52, 165). Synthetic inhibitors of MMPS
(TIMP-1 like) have been shown to ameliorate or prevent

metalloproteinases
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EAE and genetically deficient MMP-9 mice are more
resistant to EAE induction compared with wild-types (167,
168). A pivotal role of MMPs in MS and EAE is the
facilitation of leukocyte transmigration across the BBB,
reversed by inhibitors of MMP activity (169-171).
However many other effector functions of MMPs may
contribute to MS pathology including breakdown of the
BBB, promotion of CNS inflammation, and direct
neurotoxicity (172-174). Based on the above data,
identification and targeting of MMP members is a
promising area of future treatments. Interferon beta IFN-
has been shown to inhibit the activity of MMPs.
Minocycline, an antibiotic has been shown to attenuate
EAE (175) and inhibit MMP activity and production
(MMP-9). A phase II open label cross over trial of
minocycline in RRMS is underway.

4.3.3. Targeting secondary activation and amplification
within the CNS

As previously discussed immune cells including
B cells and sensitized T cells (CD4+ helper and CD8+
cytotoxic) that successfully traffic into the CNS are
reactivated by interactions with resident APCs with the
subsequent amplification of CNS cellular and humoral
effector responses. These complex molecular interactions
in the CNS may lead to inflammation, demyelination,
oligodentrocyte loss and axonal and neuronal dysfunction.
Several animal and human studies are currently exploring
this class of immumodulators and immune independent
neurodegenerative mechanisms operative in the CNS
compartment which may provide effective future MS
therapeutic interventions. The following are a few
examples of preliminary animal studies elucidating data
that support pivotal roles of several novel CNS targets but
which require further research to determine therapeutic
possibilities in MS patients.

4.3.3.1. Targeting of a brain proinflammatory mediator:
osteopontin

In recent animal studies performing genetic
sequencing of MS brain libraries revealed a role of a
pleiotrophic brain binding protein osteopontin produced by
glial cells may have a role in MS progression (59). In
transgenic mice deficient for osteopontin (OPN) the
progression of EAE was inhibited and severity of disease
was reduced. (59, 169, 176, 177). Furthermore, inhibition
of CD44, a ligand of OPN prevented EAE and elevated a
non-inflammatory Th2 cytokine IL-10 (169).This study
suggests that the proinflammatory effect of OPN may be
mediated by CD44 and provide a new CNS target.
(169).Genetic  osteopontin  polymorphisms appear to
correlate with disease course in MS. (178, 179). In
addition, elevated osteopontin levels have recently been
shown to be associated with disease activity in relapsing
remitting MS patients (10, 180) supporting their future role
in the arsenal of novel strategies.

4.3.3.2. Suppressive effects of ansamycins on inducible
nitric oxide synthetase 2 (iNOS2)

Another central target of immune effector
mechanisms in the CNS is the suppression of inducible
nitric oxide synthetase (181). The inducible form of nitric
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oxide synthetase (iNOS2) by brain glial cells is thought to
contribute to the production of neurotoxic mediators and
expression of proinflammatory cytokines such diseases as
Alzheimer and MS (181). Reduction of iNOS2 by a heat
shock response (HSR) attenuated the histologic and clinical
symptoms of EAE (182). Recently ansamycins, a class of
antibiotics demonstrated a suppressive effect on iNOS2
exerting a potent anti-inflammatory response on brain glial
cells in EAE (181). Other novel nitric oxide scavengers
such as (NOX-100) have been shown to reduce the severity
or ameliorate EAE progression in mice (183).
4.3.3.3. Targeting of intracellular amino
monophosphate (cAMP) in the CNS

Human and animal studies examining
phosphodiesterases (PDE)  which critical enzymes
expressed in the immune system and brain have been
shown to be responsible for the degradation of cAMP
and/or cGMP (184). PDE enzymes exist as 11 distinct
families (135, 185, 186). Recent data has shown that
inflammatory cells predominantly express PDE4 followed
by PDE3 and, to a lesser extent, PDE7 with isotypes of
PDE4 being preferentially expressed in the brain (184).
Inhibitors of cAMP-specific PDE4 have been shown to
inhibit T cell proliferation, proinflammatory mediator
release with modulation of T cell-polarization (Thl toTh2
skewing) contributing to the cytokine milieu and
influencing the upregulation of distinct costimulatory
signals.They recently have been shown to alter DC capacity
and cytokine production (187-190). PDE4-specific
inhibitors, such as Rolipram, Cilomilast and Mesopram,
(191), have been demonstrated to elevate cAMP levels, and
inhibit proliferation, cytokine production and mediator
release of several cells, including T cells, monocytes and
eosinophils (96, 192). Other animal studies have shown
PDE4 inhibitors demonstrate the ability to abrogate acute
and chronic-relapsing EAE in mice, rats and marmosets
(188, 193, 194). Human in vitro studies have demonstrated
similar immunmodulating effects of PDE4 inhibitors with a
preferential inhibition of Thl type cytokines elaborated by
autoreactive T cells in MS patients versus healthy controls
(188, 193-195). These studies lead to the support of PDE
inhibitors as candidate therapies for Tj1-mediated human
diseases such as MS. Presently a phase II, open label,
crossover trial with the treatment of Rolipram (PDE4
inhibitor) for RRMS and SPMS patients is in progress. The
trial will use MRI measures as the primary outcome and the
treatment phase will be for 8 months.

cyclic

Salbutamol also inhibits cAMP albeit by distinct
mechanisms versus PDE inhibitors and demonstrated
disease suppression in EAE models (196). The
administration of oral salbutamol evidence a shift in T cell
polarity toward a Th2 phenotype in peripheral blood
moncyte cells (PBMCs) of MS patients (196, 197).
Presently phase II trials of this agent are underway to
examine drug efficacy in MS patients.

4.4. Immunotherapies targeting reparative stages of
disease

Recent evidence supports that axonal and
neuronal degeneration occur as the disease progresses (2-6,
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60). These MS lesions predominantly involve the white
matter however, recently demyelination and neuronal
pathology have also been demonstrated in the (gray matter)
cerebral cortex of MS patients. Novel approaches inhibiting
brain neurotoxicity and/or promotion of repair and recovery
affording ODG, axonal and neuronal protection represent a
rapidly evolving area of research potentially offering
protective and beneficial treatment for MS patients at
various stages of disease. Interestingly, even immune cells
associated with inflammatory responses in the CNS can
produce a variety of neurotrophic factors of different
molecular families supporting their potential for not only
detrimental but beneficial effects in MS. Indeed some of
the most potent members of the neurotrophin family such
as nerve growth factor, (NGF), brain-derived neurotrophic
factor (BDNF) act on or are endogenously produced by
immune cells in MS lesions (62-65, 77). Resident CNS
cells appear also to have immuno-regulatory properties
(66). The following are only a few examples of the
investigations  underway exploring the use of
neuroprotective-reparative agents.

4.4.1. Neurotrophic factor

Neutotrophic factors are proteins that direct
differentiation and survival/apoptosis acting through
specific neurotophin receptors (65, 77, 198, 199) that have
been shown to shift Thl-Th2 and may promote
neuroprotection (65, 200). Potential neurotrophic
therapeutic candidates include brain-derived neurotrophic
factor (BDNF), glial growth factor, ciliary neurotrophic
factor (CNTF), neuroimmunophilin ligand (FK506) and
NGF (77, 201-203). CNTF elaborated by activated
astrocytes induced growth and trophic factors such as FGF-
1 and IGF-1 which indirectly protected neurons from cell
death and promoted oligodendrocyte generation. CNTF
was also shown to inhibit neuronal and glial degeneration
resulting from microglial cytotoxins (202). A phase I/II
trial examining insulin-like growth factor is currently being
explored. There is evidence from other neurodegenerative
systems to support the use of gene delivery of growth
factors for the promotion of remyelination (204).

4.4.2. Inhibition of the glutamate receptor o-amino-3-5-

methyl-4-isoxazoleppropionic acid/kainite
(AMPA/Kkainite) receptor
Preliminary studies suggest the glutamate

neurotoxicity is an important contributing factor in MS
pathogenesis (69, 70, 205). In EAE and MS lymphocytes,
brain microglia and macrophages release excessive levels
of glutamate which activate AMPA (o-amino-3-5methyl-4-

isoxazoleppropionic acid)/kainate receptors on
oligodendrocytes (OGCs) and neurons. OGCs are
especially  vulnerable to  glutamate-AMPA/kainate

excitotoxicity (206, 207). Blockade with AMPA/kainate
antagonists have been shown to ameliorate EAE (58, 76,
205). AMPA/kainate antagonists also appear to protect
OGCs and axons from immune-mediated damage. A recent
study investigated riluzole affect in MOG-induced EAE a
chronic model and demonstrated this agent attenuated the
clinical severity of disease and reduced inflammation,
demyelination and axonal damage in the CNS (205) of MS
patients versus controls. MS patients also demonstrated
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increased CSF glutamate levels correlating with disease
severity (70). An anti-glutaminergic agent riluzole (2-
amino-6-triflouromethoxy benzothiazole) found to be
protective in several models of neurodegenerative disease
including ALS (208), Parkinson's (209) and ischemia (210).
Based on riluzole's neuroprotective properties, safety and
tolerability the FDA approved this agent for the treatment
of ALS (211). Riluzole is presently being explored as a
potential neuroprotector in MS. An open label clinical trial
in primary progressive MS patients to test the
neuroprotection of riluzole (Rilutek®) is currently in
progress.

4.4.3. Targeting of neurotoxic and nitrogen free radical
mediators

Other studies suggest a role of oxygen and nitrogen
free radicals in the immunopathogenesis of EAE and MS. In
animal models of MS, these chemical reactions have been
associated with break-down of the BBB and CNS tissue injury.
Additionally, increased levels of iNOS have been evidenced in
active demyelinating lesions, as well as, showing increased
CNS and CSF levels of reactive nitrogen oxide species
(RNOS) in MS patients versus matched controls (164, 212).
Uric acid (UA) is a RNOS scavenger and natural inhibitor of
chemical interactions associated with peroxynitrite (213). In
several mouse EAE models uric acid administration attenuated
disease severity and was associated with alterations in BBB
permeability, inhibition of CNS inflammation, and tissue
injury (213-215). The above data and observations that MS
patients have serum uric acid levels that are lower than age and
sex matched healthy controls (216-218). This data provided the
rationale for a novel treatment of MS aimed at raising levels of
the natural antioxidant UA or it's precursor inosine (219).

A small preliminary clinical trial of oral
administration of inosine in 11 MS patients showed clinical
stability in 9 patients and improvement in 3 patients. Further in
two patients who had notable pretreatment gadolinium-
enhanced lesions none were detectable following inosine
treatment. Currently a phase II, double blind, placebo
controlled trial is underway to determine whether oral
treatment with inosine has an effect on cumulative number of
newly active lesions on MRI and to evaluate safety and
tolerability of inosine in 30 RRMS and SPMS patients.
Upcoming phase I/II trials examining three other natural anti-
oxidants (ginko biloba, a-lipoic/essential fatty acids and
selenium) for MS treatment is planned and sponsored by
National Center for Complimentary and Alternative Medicine
(NCCAM).

4.5. Global
mechanisms

The following class of novel therapies have
diverse properties but share the characteristics of exhibiting
polygenic mechanisms and broad based
immunomodulatory targets. Below are a few examples of
this category of agents.

Therapies: broad based polygenic

4.5.1. Depletion of multiple immune cellular subsets:
treatment with anti-CD52, alemtuzumab

Alemtuzumab (Campath) directed at CDS52
appears to have polygenic mechanisms including the
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depletion of leukocytes (T & B) as well as, monocytes and
macrophages. This agent was initially approved by the
FDA (2001) to treat patients with B-cell chronic
lymphocytic leukemia and revealed immune suppressing
actions. A phase II clinical trial in SPMS demonstrated that
alemtuzumab had pronounced effects the immune system
reducing relapse rate and brain inflammation as shown by
serial MRI. Specifically, during the 18 month follow phase
gadolinium enhanced lesions were significantly reduced
(220). Safety concerns were raised however, due to the
observation that about 30% of patients in these early
studies developed Grave's autoimmune thyroiditis (221).
Currently there are two clinical studies extending the
investigation of Campath® affect on immune function
including a retrospective study of 58 RRMS and SPMS
patients and an open labeled multicentered clinical trial of
Campath® MABCAMPATH® versus Rebif (interferon-
beta-1a) in early active RRMS.

4.5.2. Statins

A class of orally administered cholesterol (lipid)
lowering drugs, the statins or (HMG-CoA) reductase
inhibitors are safe and appear to have biological effects
independent of their cholesterol reducing properties (222).
Neuhaus and collegues reported that cells (PBMCs) of
RRMS exposed in vitro to several forms of statins
including mevastatin, simvastatin (Zocar®) and lovastatin
(Mevastatin®) inhibited several different immune
responses involved in MS. This study along with other
early laboratory studies demonstrated that statins have
several immunomodulatory effects by varied polygenic
mechanisms including; (i) suppression of T and B cell
proliferation,(ii)reduced expression of activation -induced
adhesion molecules on T cells,(iii) skewed the polarity of
Thl to Th2 cytokines,(iv) downregulated chemokine
receptors of T and B cells and (v) reduced the secretion of
MMP-9 protease, inhibition of potential neurotoxins such
as TNFa and inducible nitric oxide synthetase (iNOS)
(223-229). Furthermore, statins have been shown to
ameliorate in several EAE models modifying the balance of
Thl and Th2 cells to a proinflammatory Th2 phenotype
(230, 231). A small pilot open labeled proof of
concept/Phase II was the first human study of simvastatin
(Zocar®) in 30 RRMS. The preliminary analysis of the
study results were recently reported demonstrating that
Zocar® safely reduced the number of new lesions. Analysis
of immune responses suggested a shift away from
inflammation however no differences were observed in
neurologic disability in this short study (232) controlled
trials of simvastatin and atorvastatin (Lipitor®) are in the
planning and will begin this year.

4.5.3. Pregnancy-induced hormonal therapy: treatment
with oral estriol (E; ) hormone

Pregnancy induced hormones and their potential
as therapeutic agents has been entertained. This has
evolved from longstanding clinical observations that sex-
specific differences and hormonal influences exist in MS
patients. Patients with MS have fewer relapses during
pregnancy especially during the third trimester and disease
exacerbations during first few months after birth (233). In
several EAE models exogenous estrogens (estriol/estradiol)
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ameliorated disease by altering multiple immune responses
(234-236). These polygenic mechanisms included; (i)
suppression of Thl proinflammatory cytokines,(ii) reduced
the secretion of metalloproteases, (iii) downregulated of
chemokines and chemokine receptors of T and B cells with
inhibition of T cell, B and macrophage recruitment (234-
236). A small open label, cross-over, proof of
concept/Phase II trial with the treatment of estriol in
nonpregnant women with RRMS and SPMS was
performed. Compared with pretreatment baseline, patients
with RRMS but not SPMS showed a significant reduction
of number and volume of gadolinium enhancing lesions.
Furthermore, when the estriol was stopped during the
posttreament phase the number and volume of gadolinium
enhancing lesions returned to pretreatment values and then
decreased when treatment was reinstated (237). Correlating
with these clinical findings were decreases in
proinflammatory cytokines including INF-y (237). The
above studies are the rationale for a larger placebo-
controlled trials to examine long term efficacy with an
acceptable side effect profile. One such trial is currently in
the planning. The potential long term benefits must be
weighed against side effects and toxicities including
carcinogenesis and thrombosis.

4.5.4. Targeting with oral peroxisome proliferator-
activated receptor gamma ((PPARy) agonists:
treatment with avandia

Potential targeting of EAE and MS with oral
peroxisome proliferator-activated receptor gamma (PPARY)
agonists are currently being investigated. The ligand
agonists of the peroxisome proliferator-activated receptor
(PPARYy) exert anti-inflammatory effects on a number of
inflammatory cells including glial cells. This molecular
interaction results in reduced proliferation and activation of
T cells, and induction of myelin gene expression (238-241).
Several of these oral agents have been FDA approved to
treat diabetes. PPARy-deficient heterozygous mice
evidence myelin oligodendrocyte glycoprotein (MOG)
induced EAE exacerbation and Thl response (239). Several
other models of EAE have shown that orally administered
PPAR gamma ligands ameliorate the severity of
monophasic, chronic disease and of relapsing disease in
mice immunized with myelin oligodendrocyte glycoprotein
(MOG) and/or myelin basic protein (MBP). Attenuation of
clinical signs appear to correlate with decreased CNS
inflammation and a reported reduction in lymphocyte
infiltration, inflammatory chemokine and cytokine
expression, and increased inhibitor of kappa B (IkB)
expression in the brain (238-240). A clinical phase II
double blinded placebo controlled trial of an oral diabetic
agent (Avandia ®) is underway to examine safety and
effectiveness in RRMS patients.

5. SUMMARY

Advancing knowledge of disease mechanisms
and a deeper understanding of the immune pathogenesis in
MS will refine current drug-specific therapies and shape the
rationale for future immunotherapeutic strategies.
Exploding technologies in areas such as neuroimaging,
genomic cDNA microarray and proteomic analysis of MS
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will further transform and delineate the heterogeneity and
mechanisms underlying MS, yielding new targets for
therapeutic strategies. Currently a more complex and
intriguing picture of MS immune dysregulation is evolving.
For example, immune cells and CNS inflammatory
reactions may have dual roles inducing both
proinflammation and neurotoxicity as well as, anti-
inflammatory and protective immunity. Insight into this
interrelated and aberrant neuroimmune imbalance,
reflecting variable components such as encephalogenic
effector cells, dysregulated regulatory populations and
possible neurodegenerative processes will yield more
specific and complimentary therapies. These mechanisms
of disease pathology may impact differently upon
subpopulations of patients and even vary within different
stages of MS in a given individual. Future treatment
options therefore will most likely utilize a combination of
synergistic therapies with distinct mechanisms of action to
address the treatment of a diverse MS patient population in
all stages of disease offering greater efficacy and long term
benefit. Tommorow's arsenal of novel immune agents will
reflect a patient-tailored treatment regimen of immune
modulatory, suppressive and protective strategies for the
treatment of MS shaped by different disease types and
stages.
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