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1. ABSTRACT

We review here the molecular mechanisms that
underlie o;-antitrypsin deficiency and show how an
understanding of this mechanism has allowed us to explain
the deficiency of other members of the serine proteinase
inhibitor or serpin superfamily. These include the
deficiency of antithrombin, Cl-inhibitor and o4-
antichymotrypsin in association with thrombosis, angio-
oedema and emphysema respectively. Moreover the
accumulation of mutant neuroserpin within neurones causes
the novel dementia familial encephalopathy with
neuroserpin inclusion bodies (FENIB). We have grouped
these conditions together as the serpinopathies as
recognition of their common pathophysiology provides a
platform to develop strategies to treat the associated clinical
syndromes.

2. ALPHA-1-ANTITRYPSIN

2.1. Structure and function of o;-antitrypsin
Alpha-1-antitrypsin is a 394 amino acid (1), 52
kDa, acute phase glycoprotein (2) encoded on chromosome
14q31-32.1 (3). It is synthesised by hepatocytes (4, 5) and
secreted into the plasma at a concentration of 1.9-3.5
mg/ml. Alpha-1-antitrypsin is also synthesised by, and
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secreted from, macrophages (6) and intestinal (7) and
bronchial epithelial cells (8). The protein was originally
named because of its ability to inhibit pancreatic trypsin
(9). Subsequently it has been found to be an effective
inhibitor of a wvariety of other proteinases including
neutrophil elastase (10), cathepsin G (10) and proteinase 3
(11). The broad spectrum of proteinase inhibition gave rise
to its alternative name of o,-proteinase inhibitor (12)
although this too is inaccurate as other proteins in the o
band of serum (such as o,-antichymotrypsin) are also
proteinase inhibitors. More recently the serine proteinase
inhibitor (or serpin) superfamily have been classified into
phylogenetic clades with o;-antitrypsin being named
SERPINAT1 (13). For historical reasons, and as the term is
widely used in clinical practice, we will use o -antitrypsin
in this article.

Crystal structures have demonstrated that o,-
antitrypsin is composed of three P-sheets (A-C) and an
exposed mobile reactive loop (Figure 1) that presents a
peptide sequence as a pseudosubstrate for the target
proteinase (14-18). The critical amino acids within this
loop are the P1-P1' residues, methionine-serine, as these
act as a ‘bait’ for neutrophil elastase (19). After docking, the
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Figure 1. (a) Alpha,-antitrypsin can be considered to act as a mousetrap (14, 25, 180). Following docking (left) the neutrophil
elastase (grey) is inactivated by movement from the upper to the lower pole of the protein (right). This is associated with
insertion of the reactive loop (red) as an extra strand into -sheet A (green). Reproduced from (118) with permission. (b) The
structure of aj-antitrypsin is centered on [-sheet A (green) and the mobile reactive centre loop (red). Polymer formation results
from the Z variant of a,-antitrypsin (Glu342Lys at P,;; arrowed) or mutations in the shutter domain (blue circle) that open B-
sheet A to favour partial loop insertion (step 1) and the formation of an unstable intermediate (M*) (72, 76). The patent B-sheet A
can either accept the loop of another molecule (step 2) to form a dimer (D) which then extends into polymers (P) (14, 64, 67) or
its own loop (step 3) to form a latent conformation (L) (146, 181). The individual molecules of o;-antitrypsin within the polymer
are coloured red, yellow and blue. Reproduced from reference (72) with permission.
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enzyme cleaves the P1-P1' peptide bond of a,-antitrypsin
(20) and the proteinase is inactivated by a mousetrap action
(Figure 1a) that swings it from the upper to the lower pole
of the protein in association with the insertion of the
reactive loop as an extra strand (s4A) in -sheet A (21-25).
This altered conformation of a,-antitrypsin bound to its
target enzyme is then recognised by hepatic receptors and
cleared from the circulation (26-28). The remarkable
‘mouse trap’ action of oj-antitrypsin is central to its role as
an effective inhibitor of serine proteinases. Paradoxically, it
is also its “Achilles heel’ as point mutations in these mobile
domains make the molecule vulnerable to aberrant
conformational transitions such as the one that underlies
oj-antitrypsin deficiency.

2.2. Alpha-1-antitrypsin deficiency
2.2.1. Common mutations

Alpha-1-antitrypsin  deficiency  was  first
described as a clinical entity in 1963 by Laurell and
Eriksson who noted an absence of the alpha-1 band on
serum protein electrophoresis (29). Over 70 naturally
occurring variants have been described and characterised
by their migration on isoelectric focusing gels - the
proteinase inhibitor or PI system (30). The commonest
deficiency variants, S and Z, result from point mutations in
the o, -antitrypsin gene (31-33) and are so named as they
make the protein migrate more slowly than normal M a,-
antitrypsin on isoelectric focusing gels. Mutations that
cause more rapid migration of o-antitrypsin are labelled A
to L.

A recent review of 70 surveys has provided an
assessment of the frequency and distribution of the S and Z
o-antitrypsin alleles throughout Europe (34). The greatest
frequency of the S allele occurs within the Iberian
Peninsula and gradually reduces in the direction of south to
north and from west to east. S o-antitrypsin (Glu264Val)
is found in up to 28% of Southern Europeans and although
it results in plasma a;-antitrypsin levels that are 60% of the
M allele, it is not associated with any pulmonary sequelae.
In contrast, the Z allele is most common in northwest
Europe with frequencies declining from west to east and
from north to south. The Z variant (Glu342Lys) results in a
more severe deficiency that is characterised in the
homozygote by plasma o;-antitrypsin levels of 10% of the
normal M allele and 60% in the MZ heterozygote (50%
from the M allele and 10% from the Z allele). The Z
mutation results in the accumulation of o-antitrypsin as
inclusions in the rough endoplasmic reticulum of the liver
(35). These inclusions predispose the homozygote to
juvenile hepatitis, cirrhosis (36, 37) and hepatocellular
carcinoma (38). Furthermore, the lack of circulating protein
predisposes the homozygote to early onset panlobular
emphysema (39-41).

2.2.2. Clinical features

The liver disease associated with the Z allele of
o-antitrypsin results from the ‘overload’ of abnormal Z
o-antitrypsin -~ within  the endoplasmic reticulum of
hepatocytes. The accumulation of abnormal protein starts in
utero (42) and is characterised by the accumulation of
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diastase-resistant, periodic acid-Schiff positive inclusions
of o,-antitrypsin in the periportal cells (35, 43) (Figure 2).
Seventy-three percent of Z a,-antitrypsin homozygote
infants have a raised serum alanine aminotransferase in the
first year of life but in only 15% of people is it still
abnormal by 12 years of age (36, 37, 44, 45). Similarly
serum bilirubin is raised in 11% of PI*Z infants in the first
2-4 months but falls to normal by 6 months of age. One in
ten infants develops cholestatic jaundice and 6 per cent
develop clinical evidence of liver disease without jaundice.
These symptoms usually resolve by the second year of life
but approximately 15% of patients with cholestatic
jaundice progress to juvenile cirrhosis. The overall risk of
death from liver disease in PI*Z children during childhood
is 2-3% with boys being at more risk than girls.

All adults with the Z allele of o;-antitrypsin
have slowly progressive hepatic damage that is often
subclinical and only evident as a minor degree of portal
fibrosis. However up to 50% of Z o,-antitrypsin
homozygotes present with clinically evident cirrhosis and
occasionally with hepatocellular carcinoma (38). The
accumulation of o,-antitrypsin within hepatocytes in
association with severe plasma deficiency is also seen
with 2 other rare mutations: the Siiyama variant
(Phe53Ser) which is the commonest cause of o-
antitrypsin deficiency in Japan (46, 47) and Mmalton
(48), which is also known as Mnichinan (49) and
Mcagliari (50), and results from deletion of 52Phe. The
Mmalton mutation is the commonest cause of aji-

antitrypsin deficiency in Sardinia. Both of these alleles
probably also cause liver disease but there is currently
insufficient evidence to conclusively state that this is the
case. The risk of liver disease in individuals who are
heterozygous for the Z allele (i.e. PI*MZ) is uncertain.

The respiratory disease associated with -
antitrypsin deficiency usually present with increasing
dyspnoea with cor pulmonale and polycythaemia
occurring late in the course of the disease. Chest
radiographs typically show bilateral basal emphysema
with paucity and pruning of the basal pulmonary vessels.
Upper lobe vascularisation is relatively normal.
Ventilation perfusion radioisotope scans and angiography
also show abnormalities with a lower zone distribution
(51). High resolution CT scans with 1-2 mm collimation
are the most accurate method of assessing the distribution
of panlobular emphysema and for monitoring progress of
the pulmonary disease (52, 53) although this currently has
little clinical value. Lung function tests are typical for
emphysema with a reduced ratio of forced expiratory
volume in 1 second to forced vital capacity (FEV1/FVC),
gas trapping (raised ratio of residual volume to total lung
capacity) and low gas transfer factor. The onset of
respiratory disease can be delayed to the 6" decade in
never-smokers with PI*Z o-antitrypsin deficiency and
these individuals often have a normal life span (54). Lung
disease is characteristically seen in PI*Z a,-antitrypsin
homozygotes but PI*MZ individuals also have a slightly
greater risk of emphysema if they smoke (55-58) although
this view is controversial (59).
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Figure 2. Z onl-antltrypsm is retained within hepatocytes as intracellular inclusions. These 1nclus1ons are PAS posmve and
diastase resistant (Figure 2a, arrowed) and are associated with neonatal hepatitis and hepatocellular carcinoma. Figure 2b.
Electron micrograph of an hepatocyte from the liver of a patient with Z a,-antitrypsin deficiency shows the accumulation of o;-
antitrypsin within the rough endoplasmic reticulum. These inclusions are composed of chains of o;-antitrypsin polymers shown
here from the plasma of a Siiyama a-antitrypsin homozygote (Figure 2c) and from the liver of a Z o;-antitrypsin homozygote
(Figure 2f). Similar mutations in o,-antitrypsin deficiency and neuroserpin encephalopathy result in similar intracellular
inclusions of oj-antitrypsin and neuroserpin. They are shown here in hepatocytes and neurons with PAS staining (Figures. 2a and
d respectively) and as endoplasmic aggregates of the abnormal proteins on electron microscopy (Figures 2b and e respectively).
Electron microscopy confirms that the abnormal neuroserpin forms bead-like polymers and entangled polymeric aggregates
identical to those shown here with Z a-antitrypsin (Figures 2c and f respectively). (Magnification left to right: x200, x20,000,
x220,000). Figure reproduced from reference (119) with permission.

2.3. Molecular pathology of the liver disease associated strand 4 in B-sheet A (62-65).
with mutants of a,-antitrypsin
2.3.1. PI*Z a,-antitrypsin The Z mutation of o, -antitrypsin (Glu342Lys) is
There is now overwhelming evidence that the at residue P17 (17 residues proximal to the P1 reactive
liver disease associated with the Z variant of o-antitrypsin centre) at the head of strand 5 of B-sheet A and the base of
is due to a failure of secretion and accumulation of the mobile reactive loop (Figure 1b). The mutation opens
aggregated protein rather than the plasma deficiency of o;- B-sheet A, thereby favouring the insertion of the reactive
antitrypsin. Strong support is provided by the recognition loop of a second o;-antitrypsin molecule to form a dimer
that null alleles, which produce no o;-antitrypsin, are not (14, 64, 66, 67). This can then extend to form polymers that
associated ~ with  cirthosis  (30). Moreover, the tangle in the endoplasmic reticulum of the hepatocyte to
overexpression of Z oj-antitrypsin in animal models results form inclusion bodies (Figure 2). Support for this came
in liver damage (60, 61). Our understanding of the from the demonstration that purified plasma Z o-
molecular basis of a;-antitrypsin deficiency came from the antitrypsin formed chains of polymers when incubated
recognition that the normal, active protein undergoes a under physiological conditions (64). The rate of polymer
profound conformational transition to inhibit its target formation was accelerated by raising the temperature to
proteinase, neutrophil elastase (Figure la). Moreover 41°C and could be blocked by peptides that competed for
heating normal M o-antitrypsin at non-physiological annealing to [-sheet A (64, 65, 68). The role of
temperatures resulted in the formation of high molecular polymerisation in vivo was confirmed by the finding of o;-
mass polymers (62-65). Polymer formation was blocked by antitrypsin polymers in inclusion bodies from the liver of a
the incorporation of reactive loop peptides that annealed as Z o,-antitrypsin homozygote with cirrhosis (64, 69) and in
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hepatic cell lines expressing the Z variant (70). Moreover,
point mutations that block polymerisation increased the
secretion of mutants of o,-antitrypsin from a Xenopus
oocyte expression system (71).

The pathway of o -antitrypsin polymerisation has
been assessed by biochemical, biophysical and
crystallographic analysis and is shown in Figure 1b (66,
72). Step 1 represents the conformational change of a-
antitrypsin to a polymerogenic monomeric form (M*), step
2 represents the formation of polymers (P), and step 3
represents a side pathway which leads to the formation of
the stable, monomeric, inactive latent conformation (L) in
which the reactive loop is fully incorporated into B-sheet A.
The presence of the unstable, polymerising intermediate
M* was predicted from the biophysical analysis of polymer
formation (66), the demonstration of an unfolding
intermediate (73-75), and solving the crystal structure of a
polymerogenic mutant of a-antichymotrypsin (72). The Z
mutation forces o-antitrypsin into a conformation that
approximates the unstable M* and hence favours polymer
formation (76).

The quality control mechanisms within the
hepatocyte that handle polymers are now being elucidated
(77-79). Elegant studies have demonstrated that it is the
trimming of asparagine linked oligosaccharides that target
Z oy-antitrypsin - polymers into an efficient non-
proteosomal disposal pathway within hepatocytes.
However, the proteosome has an important role in
metabolising Z o,-antitrypsin in some hepatic (80) and
extrahepatic (81, 82) mammalian cell lines. Moreover,
there is increasing evidence that the retained Z o4-
antitrypsin stimulates an autophagic response within the
hepatocyte (83, 84). Despite our increased understanding of
the disposal pathway, it still remains unclear how the
accumulation of Z o-antitrypsin causes cell death and liver
cirrhosis.

The temperature and concentration dependence
of polymerisation (62, 64, 66), along with genetic factors
(85, 86), may account for the heterogeneity in liver disease
amongst individuals who are homozygous for the Z
mutation. The synthesis of oy-antitrypsin rises during
episodes of inflammation as part of the acute phase
response. At these times, the formation of polymers is
likely to overwhelm the degradative pathway, thereby
exacerbating the formation of hepatic inclusions and the
associated hepatocellular damage. This hypothesis has been
challenged by cell studies which do not show an increase in
intracellular Z a-antitrypsin in response to raised
temperatures (87). However our recent data in a Drosophila
model of serpin deficiency shows a clear temperature
dependence of polymerisation in vivo (88). There is also
anecdotal clinical evidence to support the role of
temperature in exacerbating the liver disease associated
with Z o -antitrypsin from the prospective study of Sveger
and colleagues in Sweden (36, 37). They screened 200 000
newborn babies and identified 120 Z homozygotes whom
they have followed into late adolescence. Two of these
patients developed progressive jaundice during the course
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of the study, in one this followed an acute appendicitis and
in the other severe pneumonia. Other asymptomatic infants
developed marked derangement of liver function tests in
association with coryzal illnesses and eczema. Further
prospective studies are required to assess whether pyrexial
episodes occur more frequently and increase the burden of
intra-hepatic polymers in Z o-antitrypsin homozygotes
who develop liver disease compared to those individuals
who remain asymptomatic.

2.3.2. Shutter domain mutants

Although many o,-antitrypsin deficiency variants
have been described, only two other (besides the Z allele)
mutants of a,-antitrypsin have similarly been associated
with profound plasma deficiency and hepatic inclusions:
oj-antitrypsin Siiyama (Ser53Phe) and Mmalton (deletion
of phenylalanine at position 52). Both of these mutants are
in the shutter domain underlying the bifurcation of strands
3 and 5 of B-sheet A (Figure 1b). The mutations disrupt a
hydrogen bond network that is based on 334His and
bridges strands 3 and 5 of the A sheet (89), causing it to
part to allow the formation of folding intermediates (74, 75)
and loop-sheet polymers in vivo (90, 91). Polymerisation
also underlies the mild plasma deficiency of other variants
that perturb the shutter domain: S (Glu264Val) and I
(Arg39Cys) a,-antitrypsin (92, 93). These point mutations
cause less disruption to B-sheet A than does the Z variant.
Thus, the rates of polymer formation are much slower than
that of Z ay-antitrypsin (66) and this results in less
retention of protein within hepatocytes, milder plasma
deficiency, and the lack of a clinical phenotype. However,
if a mild, slowly polymerising I or S variant of o-
antitrypsin is inherited with a rapidly polymerising Z
variant, then the two can interact to form heteropolymers
within hepatocytes leading to inclusions and finally
cirrhosis (93-95).

2.4. Molecular pathology of the lung disease associated
with PI*Z o,-antitrypsin

Alpha-1-antitrypsin levels are greatly reduced in
the lungs of individuals with o,-antitrypsin deficiency (96).
Moreover, the o, -antitrypsin that is available to protect the
lungs is approximately 5-fold less effective at inhibiting
neutrophil elastase than normal M a;-antitrypsin (65, 97-
99). The single most important factor in the development of
emphysema in patients with o,-antitrypsin deficiency is
smoking (41, 100). The combination of antiproteinase
deficiency and cigarette smoke can have a devastating
effect on lung function (40, 101), probably by allowing the
unopposed action of proteolytic enzymes. The inhibitory
activity of Z o-antitrypsin can be further reduced as the Z
mutation favours the spontancous formation of o-
antitrypsin loop-sheet polymers within the lung (102). This
conformational transition inactivates o-antitrypsin as a
proteinase inhibitor, thereby further reducing the already
depleted levels of as-antitrypsin that are available to
protect the alveoli (see (103) for recent review). Moreover
the conversion of o,-antitrypsin from a monomer to a
polymer converts it to a chemoattractant for human
neutrophils (104). The magnitude of the effect was similar
to that of the chemoattractant C5a and was present over a
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Table 1. Mutants of the serpins cluster in the shutter domain

Serpin template 49 50 51 52 53 54 55 56 57 58 Effect of polymer

number formation

Serpin  template | Asn Ile Phe | Phe Ser | Pro | Val | Ser | Ile Ala

amino acid

ouj-antitrypsin APhe | Phe Accumulation: cirrhosis
Lack of inhibitor:
emphysema

Neuroserpin Pro Arg Accumulation: dementia

Cl-inhibitor Ser Leu Lack of inhibitor: angio-
oedema

Antithrombin Thr Lack of inhibitor: thrombosis

o j-antichymotrypsin Pro Lack of inhibitor: emphysema

The homologous sequences at the commencement of the B-helix in al-antitrypsin, neuroserpin, antithrombin, C1-inhibitor and
al-antitchymotrypsin have been plotted on the serpin template rather than their own residue number (1). The replacements are

shown that result in polymerisation and disease

range of physiological concentrations (ECsy 4.5 + 2
Og/ml). Polymers also induced neutrophil shape
change and stimulated myeloperoxidase release and
neutrophil adhesion (104). The chemoattractant
properties of o-antitrypsin polymers may explain the
excess number of neutrophils in bronchoalveolar
lavage (105) and in tissue sections of lung parenchyma
(106) from individuals with Z o -antitrypsin
deficiency. Moreover polymers may contribute to the
excess inflammation that is apparent even in
individuals with Z a,-antitrypsin deficiency with very
early lung disease (107). Any pro-inflammatory effect
of polymers is likely to be exacerbated by
inflammatory cytokines, cleaved or complexed o,-
antitrypsin (108), elastin degradation products (109)
and cigarette smoke which themselves cause neutrophil
recruitment. Thus our understanding of the biological
properties of o;-antitrypsin provides novel pathways
for the pathogenesis of emphysema in individuals who
are homozygous for the Z mutation (104).

3. DISEASE CAUSED BY THE POLYMERISATION
OF OTHER SERPINS: THE SERPINOPATHIES
3.1. Antithrombin, C1 inhibitor
antichymotrypsin

Alpha-1-antitrypsin is the archetypal member of
the serine proteinase inhibitor or serpin superfamily. This
family includes members such as o -antichymotrypsin, C1
inhibitor, antithrombin and plasminogen activator inhibitor-
1 which play an important role in the control of proteinases
involved in the inflammatory, complement, coagulation and
fibrinolytic cascades respectively (12, 13). The family is
characterised by more than 30% sequence homology with
o-antitrypsin and conservation of tertiary structure (1,
110). Consequently, physiological and pathological
processes that affect one member may be extrapolated to
another. The phenomenon of loop-sheet polymerisation is
not restricted to oj-antitrypsin and has now been reported
in mutants of other members of the serpin superfamily to
cause disease. Naturally occurring mutations have been
described in the shutter (Table 1) and other domains of the
plasma proteins Cl-inhibitor (Phe52Ser, Pro54Leu,
Ala349Thr, Val366Met; Phe370Ser, Pro391Ser) (111,

and o; -
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112), antithrombin (Pro54Thr, Asnl58Asp, Phe229Leu)
(113, 114) and oy-antichymotrypsin  (Leu55Pro,
Pro229Ala) (72, 115, 116). In all cases the residue numbers
are based on the serpin template to allow comparison
between members of the family (117). These mutations
destabilise the serpin architecture to allow the formation of
inactive reactive loop into B-sheet polymers. The polymers
are most likely to form within the endoplasmic reticulum of
the liver but are rapidly degraded. They are usually not
associated with the formation of inclusions and the liver
disease seen in individuals with Z o -antitrypsin
deficiency, as Cl-inhibitor, antithrombin and o,-
antichymotrypsin are synthesised at approximately 10% of
the rate of o,-antitrypsin. However one variant of o,-
antichymotrypsin (Pro229Ala) has been shown to form
granular inclusions within hepatocytes analogous to those
formed by Z a,-antitrypsin (115). This mutation also
allows the spontaneous formation of polymers in vitro (B.
Gooptu and D. Lomas, unpublished observations). The
individual with the Pro229Ala o,-antichymotrypsin
mutation was infected with the hepatitis C virus and it
seems likely that the viral infection drove the inflammatory
response which increased the production of o-
antichymotrypsin polymers to form the inclusions. The lack
of circulating protein in individuals with Cl-inhibitor,
antithrombin and a,-antichymotrypsin deficiency allows
uncontrolled activity of proteolytic cascades and hence
angio-oedema, thrombosis and chronic obstructive
pulmonary disease respectively (117). In view of the
common underlying disease mechanism we have grouped
these conditions together as the serpinopathies (106, 118,
119).

3.2. Familial encephalopathy with neuroserpin inclusion
bodies (FENIB)

The process of disease related polymerisation is
most strikingly displayed by the inclusion body dementia,
familial encephalopathy with neuroserpin inclusion bodies
(FENIB) (120-122). This is an autosomal dominant
dementia characterised by eosinophilic neuronal inclusions
of neuroserpin (Collins’ bodies) in the deeper layers of the
cerebral cortex and the substantia nigra. The inclusions are
PAS positive and diastase resistant and bear a striking
resemblance to those of Z a-antitrypsin that form within
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Table 2. Mutations, quantity of cerebral inclusions of neuroserpin and severity of disease in patients who died of FENIB (124)

Mutation Histology of inclusions at post-mortem Predicted Age of onset of Clinical Manifestations
gy p g
instability symptoms
Ser49Pro + 48 Dementia, tremor, seizures in
° Py terminal stages
2
Y o
‘e
. -
2 ®.
Ser52Arg 2 ++ 24 Myoclonus, status epilepticus,
° .o - dementia
o @ " .
o [
\) =
[
¢] o L
e @
His338Arg | N/A +++ 15 Myoclonic seizures, dementia,
tremor, dysarthria
___ . .
Gly392Glu | |: t ‘&, €Y @7 N BT g 13 Myoclonus, status epilepticus,
Ly e e e Oy 2 "'0‘3(_ dementia, chorea
r P4 3 il _‘..-‘_.-.-, a.ﬁ - e)""\.
i ® ﬂ.:’_ . : P % 'g A .. . _‘.
& § Ly -, -3 ? g
: "T‘;‘L % e 03 03" v O S
[ "n‘;.; "CP J,;J'. . . @ 5 "T.‘S" »
b e, 8 AT Ry, ) Ry 4
I NI (R R
ACRIRAL S R T i
g . o ST ) &
B an A e e T e e
W Eo K oegR IR
0 s ' olB\%: T o eiw ¥

the quantity of inclusions correlates with the predicted or measured degree of neuroserpin instability. Note the earlier age of onset

of disease with the increasing numbers of inclusion bodies

the liver (Figure 2). The observation that FENIB was
associated with a mutation Ser49Pro (Ser53Pro on the o-
antitrypsin template, Table 1) in the neuroserpin gene that
was homologous to one in oy-antitrypsin that causes
cirrhosis (Ser53Phe) (90) strongly indicated a common
molecular mechanism. This was confirmed by the finding
that the neuronal inclusion bodies of FENIB were formed
by entangled polymers of neuroserpin with identical
morphology to those present in hepatocytes from a child
with o,-antitrypsin deficiency related cirrhosis (121).
Moreover we have recently shown that recombinant
Ser49Pro neuroserpin has a greatly accelerated rate of
polymerisation when compared to the wild type protein
(123).

The direct relationship between the magnitude of
the intracellular accumulation of neuroserpin and the
severity of disease is clearly shown by the recent
identification of other mutations of neuroserpin in families
with FENIB (124). In the original family with Ser49Pro
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neuroserpin (neuroserpin Syracuse) the affected family
members had diffuse small intraneuronal inclusions of
neuroserpin with an onset of dementia between the ages of
45 and 60 years (120-122). However, in a second family,
with a conformationally more severe mutation (neuroserpin
Portland; Ser52Arg) and larger inclusions, the onset of
dementia was in early adulthood; and in a third family, with
yet another mutation (His338Arg) there were more
inclusions and the onset of dementia in adolescence. The
most striking example was the family with the most
‘polymerogenic’ mutation of neuroserpin, Gly392Glu
(Table 2). This replacement of a consistently conserved
residue in the shutter region resulted in large multiple
inclusions in every neurone, with affected family members
dying by age 20 years (124). Thus FENIB shows a clear
genotype-phenotype correlation, with the severity of
disease correlating closely with the propensity of the
mutated neuroserpin to form polymers.

The cellular handling of neuroserpin has been
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assessed by transiently transfecting COS cells with
wildtype neuroserpin and mutants of neuroserpin that cause
FENIB. The most striking feature of the cell model is the
retention of Syracuse (Ser49Pro) and Portland (Ser52Arg)
neuroserpin as intracellular aggregates composed of
polymers of mutant neuroserpin, similar to the loop-sheet
polymers of mutant neuroserpin that can be isolated from
the brains of individuals affected by FENIB (125) (Figure
3a). Moreover, N-glycan digestion of metabolically
labelled neuroserpin and co-staining with antibodies against
neuroserpin and the [ER chaperone calreticulin
demonstrated that neuroserpin aggregates are contained
within the ER (Figure 3b). This is in keeping with the
localisation of mutant neuroserpin within the brains of
individuals with FENIB.

These findings, added to the prior evidence from
o-antitrypsin-cirrthosis  (64), strongly indicate that
intracellular protein aggregation is by itself sufficient to
cause neurodegeneration (124). A possible mechanism by
which the polymers cause cell death is apparent from recent
studies showing that the accumulation of protein aggregates
can overwhelm and inhibit the ubiquitin-proteosome
pathway (126) and directly trigger cell death (127, 128).

4. SEEDING OF POLYMERISATION

The polymerisation of o-antichymotrypsin is
unusual in that the addition of pre—formed ;-
antichymotrypsin ~ polymers  to  monomeric  o;-
antichymotrypsin progressively abolished the initial lag
phase in the light scatter profile during polymer formation
(129, 130). Moreover the shape of the curve was transformed
from sigmoidal to hyperbolic. This behaviour is
characteristic of a nucleation—dependent process and has
never been previously described in polymerisation of other
members of the serpin superfamily (64, 66, 113, 131, 132). It
resembles the mechanism of polymerisation of B-amyloid
and o-synuclein in Alzheimer’s and Parkinson’s disease
respectively (133, 134). In order to explain the mechanism
by which oy-antichymotrypsin polymers accelerate the
polymerisation of the monomeric protein it is important to
consider the structure of the polymer (Figure 1b). The final
molecule in any polymer chain must undergo a
conformational change that makes it a more efficient
acceptor or donor of reactive loops in the loop—sheet
polymerisation reaction. The binary complex of o-
antichymotrypsin with an exogenous reactive loop peptide
bound as s4A was used to investigate whether the effect
could be due to more efficient loop donation (129). The
binary complex has a loop that is available for donation but
has a complete six—stranded (3-sheet A and so cannot accept a
reactive loop from another molecule of a;-antichymotrypsin.
The light scatter assay demonstrated a concentration
dependent acceleration in o-antichymotrypsin
polymerisation upon addition of binary complex. Cleaved
o-antichymotrypsin did not accelerate the polymerisation
reaction, demonstrating that completion of f-sheet A with a
sixth strand was not in itself the cause of seeding.

The acceleration of polymerisation is not a non-
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specific effect of serpin polymers as neither short nor long
chain polymers of ay-antitrypsin nor polymers of
antithrombin were able to accelerate the polymerisation of
native  oy-antichymotrypsin.  Sonication  of  oy-
antichymotrypsin polymers further increased the rate of
native o,-antichymotrypsin polymerisation supporting the
hypothesis that it is the polymer end, probably the free-
reactive loop end, that seeds the polymerisation of the
monomeric protein (129). This result was particularly
striking as the sonicated a,-antichymotrypsin was able to
accelerate polymerisation of native o,-antichymotrypsin
under physiological conditions, that is at body temperature.
Thus the polymerisation of at least one serpin, ;-
antichymotrypsin, can be accelerated by seeding. This
observation may have implications for the deposition of a;-
antichymotrypsin in the -amyloid plaques of Alzheimer’s
disease (135).

5.  POLYMERISATION OF
ACTIVATOR INHIBITOR 1 (PAI-1)

PLASMINOGEN

Plasminogen activator inhibitor type 1 (PAI-1) is
a member of the serine proteinase inhibitor or serpin
superfamily (12, 136). It inhibits urokinase-type
plasminogen activator (uPA) and tissue-type plasminogen
activator (tPA) (137) and as such is an important modulator
of events of extracellular proteolysis, fibrinolysis and
turnover of extracellular matrix (138). The striking feature
of PAI-1 is that it can spontaneously form an inactive latent
conformation (see Figure 1b) in which the intact reactive
centre loop is stably inserted into B-sheet A (139-142). This
controls its ability to act as a proteinase inhibitor in vivo.
Alpha;-antichymotrypsin (143) and antithrombin (144) also
form the latent conformation in vivo and antithrombin and
o]-antitrypsin can be induced to adopt this conformation

by heating in stabilising concentrations of sodium citrate
(145-148). It has long been believed that PAI-1 is unique
amongst active serpins in that it does not form polymers.
However the crystal structure of recombinant active PAI-1
revealed PAI-1 as a polymer, in which the reactive loop
anneals as strand 7A of -sheet A (149). This is in contrast
to other models of serpin polymers in which the loop
anneals as either strand A4 or strand 1C sheet of another
molecule (Figure 4). A more detailed examination has
shown that recombinant native and latent PAI-1
spontaneously form polymers in vitro at low pH, though
with distinctly different electrophoretic patterns of
polymerisation (132). The polymers of both the native and
latent species differ from the typical loop-A-sheet polymers
of other serpins in that they readily dissociate back to their
original monomeric form. The findings with PAI-1 suggest
different mechanisms of linkage, each involving [-strand
addition of the reactive loop to s7A in native PAI-1 and to
s1C in latent PAI-1. Glycosylated native and latent PAI-1
also formed polymers under similar conditions, which may
be of in vivo importance in the low pH environment of the
platelet (132). A similar acid-dependent polymerisation of
o-antitrypsin has also been reported (150) indicating that
oj-antitrypsin can also be induced to form non B-sheet A
polymers under denaturing conditions. More recently
classical reactive loop:f-sheet A sheet polymers of PAI-1
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Figure 3. (a) Mutant Syracuse and Portland neuroserpin aggregate within COS-7 transfected cells. a-l. Immunocytochemistry with an anti-
neuroserpin antibody showing the distribution of wildtype (a, d, g, j), Syracuse (b, e, h, k) and Portland (c, {, i, 1) neuroserpin in COS-7 transfected
cells. The nucleus appears blue due to DNA staining with DAPI. Scale bar:10 pm. Over a 3 day period, wildtype neuroserpin shows a normal
endoplasmic reticulum staining pattern whereas the neuroserpin mutants form distinct protein aggregates after 24 hours of expression that persist
for the 3 days of the experiment. (b) Intracellular localization of wildtype, Syracuse and Portland neuroserpin in COS-7 transfected cells.
Confocal microscopy of cells cultured for 24 h after transfection and stained for neuroserpin (labelled with Texas red) and an ER-resident protein,
calreticulin (labelled with fluorescein). The merged image shows that the mutant protein is retained within the endoplasmic reticulum. The
nucleus appears blue due to DNA staining with DAPI. Scale bar:10 pm. Figure 3a and 3b reproduced from (125) with permission.
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Figure 4. Schematic representation of serpin polymers. The loop-A sheet interaction (left) is believed to underlie the long chain
polymers which result from naturally occurring mutants of o 1-antitrypsin (67) but the C-sheet (middle) and s7A linkages (right)
have been described in crystal structures of antithrombin and PAI-1 respectively (145, 149). In each of these models, the acceptor
molecule is shown in blue, the donor molecule in red and the reactive loop centre loop in cyan. Figure reproduced from reference
(132) with permission.

have been formed by incubating the protein with negatively inhibited by annealing peptides that are homologous to the
charged organochemical ligands (151, 152). The polymers reactive centre loop of PAI-2 (158). The X-ray structure of
ranged from dimers to multimers of more than 20 units, had PAI-2 showed a unique configuration of amino acids at the
increased thermal stability and were inactive as proteinase top of [-sheet A (159) but mutational analysis
inhibitors. Further studies showed that the ligands could demonstrated that this was not the reason for the propensity
also induce the polymerisation of heparin co-factor II but to form polymers (160). Instead PAI-2 is held in a
not other serpins such as oy-antitrypsin, o- ‘polymerogenic’ configuration with a patent B-sheet A by a
antichymotrypsin, PAI-1, o,-antiplasmin, antithrombin, disulphide bond between Cys79 (in the flexible CD loop)
Cl-inhibitor, protease nexin 1 or ovalbumin (152) and Cys161 (at the base of the F-helix) (161). Reduction of
this bond ‘closes’ B-sheet A and abrogates polymerisation.
6. POLYMERISATION OF PLASMINOGEN Thus it has been proposed that the Cys79-Cysl161
ACTIVATOR INHIBITOR 2 (PAI-2) disulphide bond acts as a redox-sensitive switch that
converts PAI-2 between an active stable monomeric and a
Plasminogen  activator inhibitor-2 is a polymerogenic conformation. The role of this switch within
predominantly intracellular serpin. No intracellular target the cell, the biological function of intracellular polymers in
has been identified to date but PAI-2 has been implicated in vivo, and the way in which polymers of PAI-2 are handled
protecting against apoptosis (153, 154), perhaps by by cells remains to be elucidated.
enhancing the tumour suppressor activity of the
retinoblastoma protein (155). This effect is mediated, not 7. ANIMAL MODELS OF THE SERPINOPATHIES
by the reactive centre loop, but by the loop linking helices
C and D (155, 156). PAI-2 is unique in that it is the only There are ‘knockout’ mouse models for serpins
native serpin that spontaneously forms polymers under such as antithrombin, heparin co-factor II, a,-antiplasmin,
physiological conditions (157, 158). In keeping with the hsp47, PAI-1, PAI-2, protease nexin 1, protein C inhibitor,
observations for o-antitrypsin, the polymerisation of PAI- maspin and angiotensinogen that show a range of structural
2 is concentration and temperature dependent and can be and physiological abnormalities (see (13) for review). Mice
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have also been generated that over express the M and Z
alleles of a-antitrypsin (60, 61, 162). They have a variable
severity of liver disease in keeping with the accumulation
of polymers of Z a,-antitrypsin within hepatocytes. More
recently we have reported a Drosophila model of serpin
polymerisation (88). The necrotic (nec) gene in Drosophila
melanogaster is one of a cluster of serpin transcripts
mapping near the base of the second right chromosome arm
(163, 164). Lack of function nec mutants hatch as weak
adults that develop black melanised spots on the body and
leg joints and die within a few days of eclosion (hatching).
In addition to the visible phenotype, the TOLL-mediated
immune response to fungal infections is constitutively
activated in nec mutants (165). The Nec protein consists of
a serpin core, that has sequence homology with o;-
antitrypsin, and a polyglutamine-rich N-terminal extension
of 79 amino-acids that is not found in other serpins (163,
164). Random nec mutants were prepared by treating the
flies with chemical mutagens and X-rays (166). Fourteen
‘lack of function” nec mutants were obtained and
sequencing of the nec gene identified a range of mutations
including both stop codons and single amino acid
substitutions. Of particular interest were the Glu421Lys and
Gly466Ser mutations that were found on 2 occasions.
These mutants are analogous to the naturally occurring Z
allele of oy-antitrypsin (Glu342Lys) and a mutant of
antithrombin  (Gly424Arg) respectively that  both
spontaneously form polymers in association with loss of
inhibitory function and human disease. Moreover we were
able to demonstrate the formation of Nec polymers within
the fly. Thus the fly may be useful as a model of serpin
polymerisation that causes a ‘loss of function’ phenotype
167).

8. PREVENTION OF POLYMER FORMATION

There is now strong evidence that polymers of
oy-antitrypsin, and indeed of mutants of all other serpins
that are associated with disease, form by an aberrant
linkage between the reactive centre loop of one molecule
and B-sheet A of another (14, 62-64, 67, 168, 169). This
has allowed the development of new strategies to attenuate
polymerisation and so treat the associated disease. Three
strategies have been pursued to date: (i) chemical
chaperones to stabilise the unstable mutant serpin, (ii)
filling a surface cavity to block the conformational
transition underlying polymer formation and (iii) the use of
reactive loop peptides that compete for binding to B-sheet
A.

8.1. Chemical chaperones to stabilise serpins and block
polymerisation

Chemical chaperones can stabilise intermediates
on the folding pathway. Osmolytes such as betaine,
trimethyamine oxide and sarcosine all stabilise o-
antitrypsin against polymer formation (170). However the
chaperone trimethyamine oxide had no effect on the
secretion of Z o,-antitrypsin in cell culture (87) as it
favoured the conversion of unfolded Z o,-antitrypsin to
polymers (171). In contrast, glycerol increased the
secretion of Z a,-antitrypsin from cell lines (87) most
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likely as it binds to, and stabilises, -sheet A (89). 4-
phenylbutyrate (4-PBA) also increased the secretion of Z
a-antitrypsin from cell lines and transgenic mice (87).
This agent has been used for several years to treat
children with urea cycle disorders and more recently 4-
PBA has been shown to increase the expression of mutant
(CJF508) cystic fibrosis transmembrane regulator protein
in vitro (172) and in vivo (173). These encouraging
findings have led to a pilot study that is currently ongoing
to evaluate the potential of 4-PBA to promote the
secretion of oj-antitrypsin in patients with o-antitrypsin
deficiency. Finally a recent study has shown that the
chaperone a-crystallin can block the polymerisation of
o-antichymotrypsin, which is nucleation dependent, but
not that of oy-antitrypsin which is not dependent on
nucleation (130). Thus strategies to reduce nucleation
may be effective in preventing polymerisation of some
serpins.

8.2. Filling a surface hydrophobic pocket to block
polymerisation

A second strategy comes from the identification
of a hydrophobic pocket in o;-antitrypsin that is bounded
by strand 2A and helices D and E (17, 174). The cavity is
patent in the native protein but is filled as B-sheet A accepts
an exogenous reactive loop peptide during polymerisation
(17). The introduction of either Thr114Phe or Glyl17Phe
on strand 2 of P-sheet A within this cavity significantly
raised the melting temperature of o -antitrypsin and
retarded polymer formation. Conversely, Leul00Phe on
helix D accelerated polymer formation but this effect was
abrogated by the addition of Thr114Phe. None of these
mutations affected the inhibitory activity of oj-antitrypsin.
The importance of these observations was underscored by
the finding that the Thr114Phe mutation reduced polymer
formation and increased the secretion of Z o, -antitrypsin
from a Xenopus oocyte expression system. Moreover
cysteine mutants within the hydrophobic pocket were able
to bind a range of fluorophores illustrating the accessibility
of the cavity to external agents. These data demonstrate the
importance of this cavity as a site for rational drug design
to ameliorate polymerisation and treat the associated
conformational disease (175). However this approach may
not be applicable to all serpins as amphipathic
organoligands can bind to this region of PAI-1 to induce
polymer formation (151, 152, 176).

8.3. Peptides with homology to the reactive centre loop
can compete for binding to P-sheet A and block
polymerisation

We have shown previously that the
polymerisation of Z o;-antitrypsin can be blocked by
annealing of reactive loop peptides to B-sheet A (64, 68).
Such peptides were 11-13 residues in length and could
bind to other members of the serpin superfamily (68,
177). This was most clearly demonstrated by the finding
that reactive loop peptide of antithrombin inserted more
readily to [B-sheet A of a,-antitrypsin and vice versa
(178). These peptides, although useful in establishing the
mechanism of polymerisation, are too long and too
promiscuous to be suitable for rational drug design. More
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recently, the recognition that the Z mutation forces a,-
antitrypsin into a conformation similar to M* (see Figure
1b) has allowed the design of a 6-mer peptide that
specifically anneals to the lower part of B-sheet A and
blocks polymerisation (76, 179). This peptide was
specific to Z oy-antitrypsin and did not anneal
significantly to other serpins (such as antithrombin, o;-
antichymotrypsin and PAI-1) with a similar tertiary
structure. Indeed, smaller trimer peptides have been
developed that will also anneal to a patent -sheet A of
antithrombin in vitro (89). The aim now is to convert
these peptides into small molecule inhibitors that can be
used to block aberrant polymerisation in vivo.

9. CONCLUSION

The molecular basis of the serpinopathies has
now been elucidated with biochemical, cellular and
structural studies. The current goals are to determine the
cellular response to polymeric serpins and to develop
therapeutic strategies to block polymerisation in vivo.
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