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1. ABSTRACT

The evolutionary development of a theoretical
approach to the protein folding problem, in our laboratory,
is traced. The theoretical foundations and the development
of a suitable empirical all-atom potential energy function
and a global optimization search are examined. Whereas
the all-atom approach has thus far succeeded for relatively
small molecules and for a-helical proteins containing up to
46 residues, it has been necessary to develop a hierarchical
approach to treat larger proteins. In the hierarchica
approach to single- and multiple-chain proteins, global
optimization is carried out for a simplified united residue
(UNRES) description of a polypeptide chain to locate the
region in which the global minimum lies. Conversion of the
UNRES structures in this region to all-atom structures is
followed by aloca search in this region. The performance
of this approach in successive CASP blind tests for
predicting protein structure by an ab initio physics-based
method is described. Finally, a recent attempt to compute a
folding pathway is discussed.

2. INTRODUCTION

Concern about the protein folding problem
essentially started with the famous experiment of Anfinsen
(1) who demonstrated that unfolded bovine pancrestic
ribonuclease A (RNase A), with its four disulfide bonds
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reduced, could be refolded spontaneously by oxidation of
al of its sulfhydryl groups to re-form the native,
biologically-active conformation. This experiment formed
the basis of the thermodynamic hypothesis, wherein the
native conformation is thought to be the
thermodynamically most stable one, i.e., the one with the
lowest free energy of the system (protein plus solvent).
This hypothesis implies that the amino acid sequence of the
protein contains al the information required for proper
folding, and has guided theoretical computational efforts to
compute the native conformation from a knowledge of only
the amino acid sequence.

There are really two protein folding problems.
The first is to compute the three-dimensional structure of
the native protein based only on the thermodynamic
hypothesis and the amino acid sequence. The second is to
compute the structural pathways and rates by which the
completely unfolded polypeptide chain proceeds to the
folded native conformation. Most of the research that
followed from Anfinsen's experiment has been concerned
with the first problem. In recent years, efforts have been
made to compute folding pathways. However, the question
of folding pathways has also been explored experimentally,
frequently using Bovine Pancreatic Trypsin Inhibitor
(BPTI) (2, 3) or RNase A (4) asthe protein for study.
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Figure 1. Verification of three predicted tyrosylsesaspartate
interactions (5) by the subsequently-determined x-ray
structure of RNase A.

There are experimental x-ray and NMR
approaches to determine three-dimensional structures of
proteins. There are aso a variety of spectroscopic and
kinetic methods to determine folding pathways. So, what is
the point of introducing the computationa approach? The
answer is clearly that the computational approach can
provide an understanding of how the physics of inter-
residue interactions leads to the final folded structure and to
the pathways to reach the native structure.

The computational work from our own
laboratory, which forms the basis of this article, had its
inception from our experimental studies of RNase A. With
physical chemical and spectroscopic studies, we obtained
several distance constraints (5) that must be satisfied by the
folded structure. These are shown in Figure 1 (6) and in
Figures 2-4. This motivated our development of
computational procedures (7-9) to identify the folded
structure, using these distance constraints and, ultimately,
to compute protein structure solely from the physics of the
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inter-residue interactions even without reliance on
experimentally-determined distance constraints.

We aso used RNase A to explore the folding
pathways of this protein experimentaly (4), and recently
began to approach this problem theoretically (10). This
article focuses on the theoretical approach.

3. INGREDIENTS OF THE COMPUTATIONAL
PROCEDURE

There are two basically different approaches to
compute protein structure, — a knowledge-based one and a
physics-based ab initio approach. The knowledge-based
approach makes use of information about protein structures
that have already been solved by x-ray or NMR methods,
such as secondary-structure prediction, homology
modeling, threading, or fragment coupling. The ab initio
approach, based on the physics of the inter-residue
interactions, makes no use of knowledge-based information
in the search for the thermodynamically most stable state.
Thus far, the knowledge-based approach has been more
successful than the ab initio one, but the latter is catching
up. More important, it is only the ab initio approach that
can provide an understanding of how physics governs the
folding pathways and the final structure.

The two essential ingredients of the
computational procedure are the force field and the search
procedure. The force field consists of the potentia energy
and entropy contributions (11-13). For proteins, various
empirical potential energy functions have been proposed,
eg., ECEPP (14-17), AMBER (18), CHARMM (19),
DISCOVER (20), including explicit (21, 22) and implicit
(23-28) treatment of the solvent. Two sources of entropy
are considered, viz., the conformational entropy [computed
from the matrix of second derivatives of the energy in a
harmonic approximation (11, 12)], and the free energy of
solvation when using implicit solvent models (23-28). For
explicit treatment of hydration, the potential energy is used
directly. The search procedure focuses on identifying the
global minimum of the potential energy (9). The overall
procedure is considered to be an ab initio one in the sense
that no knowledge-based information is used in the search
procedure, even though knowledge-based information is
sometimes used to obtain the potential energy. However,
more and more of the knowledge-based potential functions
are being replaced by quantum mechanical calculations on
model compounds (29-31). Most of the attention in this
article is focused on consideration of globa optimization
search procedures.

4. MAGNITUDE OF THE PROBLEM

Figure 5 is a representation of a portion of the
polypeptide chain. Our force field, ECEPP (Empirica
Conformational Energy Program for Peptides), keeps the
bond lengths and bond angles fixed, and varies only the
dihedral angles for rotation about backbone and side-chain
bonds (14-17). Because of the partial double bond character
of the C-N peptide bond, its rotation is very restricted,
leading to small variations about the cis and trans
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Figure 2. Spacefilling model of Tyr 25eesAsp 14
interaction of Figure 1.

Figure 3. Spacefilling model of Tyr 92eseAsp 38
interaction of Figure. 1.

Figure 4. Spacefilling model of Tyr 97eesAsp 83
interaction of Figure 1.

conformations, respectively. Other force fields, such as
AMBER (18) CHARMM (19), and DISCOVER (20) allow
for variations of bond lengths and bond angles (32). As

shown in Figure 5, there are three backbone dihedral angles
and an average of three side-chain dihedral angles, or a
total of six degrees of internal rotational freedom for each
amino acid residue. Therefore, there are 600 degrees of
freedom for a 100-residue polypeptide chain if the bond
lengths and bond angles are fixed. If the bond lengths and
bond angles are allowed to vary, there is alarge increase in
the number of degrees of freedom. It is thus clear that the
potential energy surface is a complex multi-dimensional
one on which, according to the thermodynamic hypothesis,
one must search for the lowest or globa minimum on this
surface. In separate articles (9, 33), we have summarized
the various global optimization approaches used in these
computations. In our laboratory, we have focused on
minimization and Monte Carlo procedures. We generaly
avoid molecular dynamic procedures for ab initio folding
with all-atom models because the required femtosecond
time step cannot reach the millisecond-to-second time scale
for the folding of most proteins with presently available
computer resources.

5. APPLICATION OF SOME OF THE GLOBAL
OPTIMIZATION APPROACHES

5.1. Build-up
In the build-up procedure (34, 37), use is made of

the whole potential energy (f Y ) [Ramachandran (38)]

map of each residue. There are of the order of 10 loca
minima on each map. A dipeptide is then built from two
residues taking the 10 x 10 combinations of the loca
minima of each map as the initia points, for 100 energy
minimizations. The resulting minima pertain to dightly
perturbed conformations from the starting single residues
because of inter-residue interactions. The chain is thus built
up in this manner by adding the local minima from each
successive residue to the growing chain, followed by
energy minimization at each stage. As more and more
residues are added, increasing contributions from long-
range interactions come into play, and the set of long-range
interactions becomes complete when the last residue is
added to the chain. To save computation time, the very
high-energy conformations are discarded at various stages
of the build-up procedure.

The build-up procedure has been applied to a
variety of linear peptides, including the membrane-bound
portion of melittin (35) and the pentapeptide methionine
enkephalin (36). However, the global-minimum structure of
enkephalin, shown in Figure 6, was not attained until after
the development of the MCM procedure (see section 5.2)
and later procedures (see, e.g., section 5.4).

Another example of the application of the
build-up procedure is the cyclic decapeptide gramicidin S
(39). Because the molecule is cyclic, the restraint to close
the ring exactly (40), with the observed restraint of G
symmetry (41), was added to the build-up procedure. The
resulting minimum-energy structureis shown in Figure 7. It
was verified by a multi-dimensional NMR study by Mirau
and Bovey (42), who used the published coordinates (39) to
compute the NMR spectrum and stated, "we compare the
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Figure 5. Representation of a portion of the polypeptide
chain showing the backbone and side-chain dihedrd-angle
degrees of freedom to dter the conformation, keeping the bond
lengths and bond angles fixed as in the ECEPP force field.

Figure 6. Lowest-energy computed conformation of the
pentapeptide methionine-enkephalin, obtained with the
ECEPP force field.

G
Figure 7. Lowest-energy computed conformation of the
cyclic decapeptide gramicidin S.

Figure 8. Representation of the polytripeptide, Poly(Gly-
Pro-Pro) model of collagen.

experimental spectrum of gramicidin S with the theoretical
spectrum calculated from the atomic coordinates of the
energy-minimized structure of Scheraga and coworkers.
Close agreement is obtained for the backbone protons’.

As an additional example of the build-up
procedure, we cite its application to collagen-like
polytripeptides. In collagen, every third residue is glycine,
and the other two residues of the tripeptide are frequently
proline or hydroxyproline, asillustrated in Figure 8 for poly
(Gly-Pro-Pro). In the build-up procedure, the energies of
the dipeptides Gly-Pro, Pro-Pro, and Pro-Gly, and then the
tripeptide Gly-Pro-Pro, were calculated. Single chains were
then built from repeating tripeptides, and the resulting
chains were then packed in different symmetries for the
(experimentally-observed) three-chain character of the
complex. The resulting minimum-energy coiled-coil
structure (43) is shown in Figure 9. It agrees with the
limited parameters for the coiled-structure obtained from
fiber diffraction experiments on natural collagen by
Ramachandran and Kartha (44), Rich and Crick (45), and
Yonath and Traub (46). Subsequent single-crystal studies
of (Gly-Pro-Pro)yo carried out in Japan (47), Rutgers (48)
and Naples (49) agreed with each other within an rms
deviation of about 0.2-0.4 A, and the computed structure
agreed with all of these with an rms deviation of 0.5 A.

Not al polytripeptides containing glycine in each
triad form coiled-coil structures of the type shown in Figure
9. Some, such as poly(Gly-Ala-Pro), tend to form parallel-
chain structures (50). Our calculations on these other
synthetic poly(tripeptides) (50-52) and also on a natural
collagen sequence (53) agree with the observed structures.

Judged by the agreement between experimental
and calculated structures, in the above examples, the force
field and search procedures are reasonably accurate.

5.2. Monte Carlo-with-Minimization (MCM)

Metropolis Monte Carlo (54) is a poor approach
for global optimization of polypeptide chains. It generates a
Markov chain which solves the ergodicity problem only
with an infinite amount of computer time. However, if
Metropolis Monte Carlo is coupled with energy
minimization (55, 56), the procedure is more efficient. The
algorithm (55) involves the following steps:

1. Select a conformation at random and minimize its
ECEPP energy. This leads to a local minimum which is
generally not the global minimum.

2. Select any hackbone or side-chain dihedral angle at
random. In a subsequent version of the procedure (56),
more than one dihedral angle is selected.

3. Make random changes in the selected dihedral angles
over the whole range (-180° to +180°).

4. Minimize the energy of the new conformation.

5. Compare Eey to Eiq by means of the Metropolis
criterion to decide whether to accept E ey

6. Iterate.

In Figure 10, the numbers 1 to 17 on the (f Y )
maps of the five residues of methionine enkephalin
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Figure 9. Lowest-energy computed conformation of (Gly-
Pro-Pro)o.
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Figure 10. The numbers 1-17 on the five (f Y ) maps
represent 17 random starting conformations of the residues
of methionine enkephalin in the MCM procedure. All 17
independent runs converged to the same globa minimum,
indicated by the zeros on each map, which is the same as
the structure shown in Figure 6.

[ |

Figure 11. Variation of f, ? to align the peptide-bond
dipole.
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correspond to 17 randomly selected starting conformations.
All 17 runs converged (56) to the conformation indicated
by the zeros on each map, and this conformation is
identical to that of Figure 6. Thus, several different global
optimization procedures (MCM and those cited below) led
to the same global minimum with, of course, the same
(ECEPP) potential function.

The conformation in Figure 6, however, does not
agree with either of two polymorphic crystal structures (57,
58), undoubtedly because these two crystal structures
involve intermolecular hydrogen bonds that were not
present in the calculations for the single molecule.
Therefore, the global-optimization calculations were
repeated for three crystal structures, the two observed ones
and structures obtained by packing the conformation of
Figure 6 in different symmetries (59). The results showed
that crystals of the conformation of Figure 6 had higher
energy than either of the two minimized experimenta
structures. However, if the single-molecule conformations
in the observed crystal structures are deprived of their
intermolecular hydrogen bonds, then the conformation of
Figure 6 is indeed lower in energy than either of the
conformations in the observed crystal structures. Other
global optimization procedures (60-63) also led to the
structure of Figure 6, which may therefore be regarded as
the global minimum structure of the isolated molecule for
the given (ECEPP) potential.

5.3. Self-consistent electric field (SCEF) method

The SCEF method is based on the assumption
that the dipole within each peptide group should be
optimally aigned in its local electric field (64). This
assumption has recently been validated (65). The electric
field can be computed at every peptide group for any
conformation of the polypeptide chain. From an
examination of the aignments of all such dipoles, the
worst-aligned is selected and optimaly re-aligned by

variation of the neighboring valuesof f and ? (see Figure

11). This procedure regenerated the native structure of an
a-helix from a disrupted structure (64), indicating that the
orientation of the backbone (peptide-group) dipoles in the
local electric field can be used to determine the regions of
the polypeptide that are candidates for improvement during
conformational searches.

5.4. Electrogtatically-driven Monte Carlo (EDMC)
method

Additional efficiency is gained by combining
MCM with the SCEF method in the so-caled EDMC
method (61, 66). The EDMC method was applied to severa
small peptides with good results (67, 68). In its initial
application (66), the EDMC method was able to fold a 19-
residue chain of poly(L-alanine) into a full a-helix starting
from random and arbitrary initial conformations. The
procedure even converted an initial left-handed a-helix to
its lower-energy right-handed form, surmounting the
intervening energy barrier (see Figure 12). It was originaly
thought to be applicable to chains no longer than 20
residues. However, with the acquisition of a Beowulf-type
cluster, illustrated in Figure 13, it has been possible to
extend the EDMC method, thus far, to a chain of 46
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Figure 12. Stereo plots of a set of conformations of
poly(L-alanine) encountered on a conformational
pathway during an EDMC folding simulation from a
left-handed a-helix (a), through intermediate stages
(b, ¢, d), to aright-handed a-helix (€).
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Figure 13. Vaious views of a Beowulf-type cluster of
computers.
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Figure 14. Ribbon diagrams of (a) a random starting
conformation of protein A, (b) the native fold obtained by
NMR, (c) the lowest-energy structure obtained with the
SRFOPT solvation model, and (d) the lowest-energy
structure obtained with the OONS solvation model.

residues, the B domain of staphylococcal protein A (69).
The EDMC method scales well on Beowulf-type clusters
even with slow communication between nodes (70).

Protein A is larger than the 36-residue a-helical
protein from the villin headpiece, for which all-atom
simulations, starting from an extended structure, were
previously carried out (71, 72). Those simulations were
carried out with explicit solvent, which increases the
computing time considerably compared to the time required
for the implicit solvent models used in our simulations (69).

Calculations on protein A were carried out with
ECEPP/3 (17) and the EDMC procedure (68), together with
two implicit hydration models, OONS (24) and SRFOPT
(26), starting from four different random conformations,
one of which isillustrated schematically in Figure 14 (69).
Three of the four runs converged to the same native-like
fold illustrated in Figure 14 for each of the two hydration
models, the fourth converged to the mirror-image
conformation. A structure even closer to the native one is
illustrated in Figure 15 (69), but its energy was 17 kcal/mol
higher than the lowest-energy structure identified in the
conformational search.

The distribution of energies obtained with each of
the hydration models (69) is illustrated in Figure 16. It can
be seen that the generated ensemble covers a wide range of
RMSD's but a narrower range of energies around the
lowest-energy value. This result represents one of the main
difficulties in identifying the native-like structure. On the
other hand, this means that the total energy, as a scoring
function, must be extremely precise in order to distinguish
the correct folded structure from wrong ones. This
constitutes a challenge for improving existing force fields
or for developing new potential functions. In addition, the
small energy gap between basins containing quite different
folds represents a challenge for search methods. We have
subsequently applied the EDMC method to the villin
headpiece (73) with results of similar quality. However,
computations at pH 3.7 and 7.0 for the ten native-like
structures satisfying the NMR-derived constraints indicate
asubstantial change in the charge distribution for each type
of amino-acid residue with the change of pH. In particular,
at pH 3.7 at which the NMR experiments were carried out,
the lowest-energy conformation found during the
conformational search satisfies ~70% of both the distance-
and the dihedral-angle constraints, and possesses the
characteristic packing of three phenylalanine residues that
constitute the main part of the hydrophobic core of the
molecule. The results of these computations indicate that an
accurate description of the electrostatic interactions appears
to be crucia for protein stability and consequently for an
accurate prediction of the native state. It is not yet clear
what the largest size protein is that can be treated by this
all-atom EDMC procedure. Nevertheless, it is encouraging
that an al-atom representation of the chain, and global
optimization of the corresponding potential energy, can
identify the native-like fold without resorting to
knowledge-based information in the search procedure.
Pending the results of ongoing computations with the
EDMC procedure, we are currently using the hierarchical
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Figure 15. Ribbon diagram of the superposition of the
native fold and the conformation with the lowest C* RMSD
from the native fold, obtained with the SRFOPT solvation
model. The energy of this conformation is 17 kcal/mol
above that of the lowest-energy conformation.
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Figure 16. C* RMSD vs the total energy, computed with
the SRFOPT and OONS solvation models. The lowest
energies belong to the lowest-energy structures shown in
Figure 14. The mirror-image structure, computed with the
OONS solvation model, was obtained as the lowest-energy
structure in one of four runs, but its energy is higher by 1.4
kcal/moal than that of the lowest energy structure.
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procedure introduced in Section 6 to treat proteins containing
of the order of 100 residueswith both aand 3folds.

5.5. Diffusion equation method (DEM)

A multiple-minima problem arises in the complex
multi-dimensional potential energy surfaces, and various
procedures, were developed (some of which are discussed
above) for globa optimization. A different approach has
been taken by trying to smooth the energy surface and
eliminate unwanted, higher-energy minima, leaving a
descendant of the globa minimum. As shown elsewhere
(74), the DEM can accomplish this smoothing by solving
the multi-dimensional diffusion equation

DF=9F/1it @)

to find the global minimum of a function f(x), with the
boundary condition

F(x,00=f(x) @

where x is the vector of Cartesian coordinates, F is the
deformed function, ? is the Laplacian operator, and t is
time (redly a deformation variable, rather than time,
because thisis not a time-dependent problem).

Figure 17 provides an example of a one
dimensional problem to illustrate the behavior of the DEM.
This one-dimensional function contains two minima, and
solution of the one-dimensiona diffusion equation at
various values of t eliminates the higher-energy, unwanted
second minimum at some time { = 0.25. However, the
position of the minimum at t, = 0.25 has shifted from the
position of the minimum at t = 0. Therefore, the global
minimum at t = 0 is recovered by reversing the procedure.
The minimum on the t, surface is not the minimum on the t
= 0.15 surface; however, the former is close to the latter.
Therefore, starting with the minimum on the ty surface, and
minimizing the function on the t = 0.15 surface, the
minimum on the t = 0.15 surface is obtained. By continuing
the procedure of aternating solving the diffusion equation
at lower t's with energy minimization, the function can be
tracked back to the globa minimum of the original
function.

This procedure has worked on many complex
mathematical functions (74) and on selected clusters of
argon particles (75) that interact with a Leonard-Jones
potential. The latter is one component of ECEPP. An
example of three argon clusters is illustrated in Figure 18.
The structure of the 55-particle cluster, with 159 degrees of
freedom was found in ~400 sec on an IBM 3090 computer
(75). A subsequent variant of the DEM, a self-consistent
Basin-to-Deformed-Basin Mapping (SCBDBM) method
(76, 77), using distance scaling (78), extended the search to
a 100-particle argon cluster, requiring about 3.5 hours with
10 processors of an IBM SP2 supercomputer, and was
applied successfully to all clusters smaller than 100 atoms.

Thefirst application of the DEM to a peptide was
made for the terminaly-blocked alanine residue (79),

erroneously called a"dipeptide’. 1ts ECEPP (f ,y ) mapis
shown in Figure 19. The globa minimum is at point C,
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Figure 19. ECEPP (f Y ) map of terminally-blocked alanine at t = 0. Point C is the position of the global minimum.
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Figure 20. Deformed potential surface for terminally-
blocked alanine at a particular time. The position of the
unique minimum isindicated by M. There is a maximum at

f ~15°,2~-15°, and saddle pointsat f ~ 10°, ? ~ 165°
andatf ~-165°, ?2~-10°.

Figure 21. Deformed potential surface for terminally-
blocked aanine at an intermediate time during the time
reversal. The unique minimum of the higher-time map of
Figure 20 has moved to the intermediate position | but (even
though other minima may appear) there is no problem in
distinguishing | from the position of the global minimum of the
origind ECEPP function, i.e. a t = 0. The contours in the
lower right-hand corner correspond to amaximum.

which corresponds to the G hydrogen-bonded structure;
other higher-energy minima are also shown. Figure 20
illustrates an appropriately deformed surface after a
suitable value of t (79). It contains only one minimum (at
point M). The central region of the map is a maximum, and
the other regions on the borders are saddle points. The
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reversal was carried out in 100 small steps at decreasing
values of t. One of the intermediate maps is shown in
Figure 21. The minimum at point M in Figure 20 has
moved to the intermediate point | in Figure 21, but not yet
to the globa minimum a point C of Figure 19.
Continuation of the reversing procedure to t = 0 led to the
identical map of Figure 19, and the trgjectory of movement
of point M of Figure 20 to point C of Figure 19 is
illustrated in Figure 22; the original map of Figure 19 was
recovered in thisreversal tot = 0.

Attemptsto apply the DEM to longer peptidesled to
convergence problems which were overcome in the context of
another globa optimization problem, viz.,, the ab initio
prediction of crystal structures, i.e., without using knowledge-
based information such as the space group. The SCBDBM
method (76, 77) was developed for this purpose; it essentidly
uses successve cycles of deformation and reversd. The
SCBDBM method has dso been applied to united-residue
poly(L-aanine) chains with a length of up to 100 amino acid
residues, and to locate low-energy conformations of the 10-55
fragment of the B-domain of staphyloccal protein A. An
alternative approach, a Conformational Family Monte Carlo
(CFMC) method (80), developed for global optimization of
proteins, was also applied for calculations of crystal structures.
The CFMC method maintains a database of low-energy
conformations which are clustered into families. The
conformations in this database are improved iteratively by a
Metropolis-type Monte Carlo procedure together with energy
minimization, in which the search is biased toward the regions
of the lowest-energy families. By using the families instead of
single conformations, CFMC coarse-grains the conformational
gpace and exploitsinformation about nearby low-energy states.
CFMC has been applied to protein A and achieves the same
performance as the CSA method discussed in section 6.2. The
method is now used for the globa optimization of crystal
structures.

Deformation methods such as the DEM, however
mathematically elegant, thus far appear to be numerically
less efficient than stochastic methods such as MCM and
EDMC. The deformation methods require more
computational time than the stochastic methods to reach
comparably low energies.

5.6. Global optimization of crystal structures

Motivated by the need to circumvent the
problems that appeared in the DEM, the SCBDBM and
CFMC methods were developed, and also applied to the
prediction of crystal structures. This is another of many
applications of global optimization in physics, and this
section is adiversion to illustrate how our methodology can
treat another problem of physical interest. It is especially
challenging in light of statements in the literature (81, 82)
that the global optimization problem has not yet been
solved for predicting crystal structures, although these
statements have been tempered by recent cautious
optimism (83). As with our approach to protein-structure
calculations, we use an ab initio approach, without using
knowledge of the space group i.e, to predict both the
arrangement of the molecules in the crystal and also the
|attice constants.
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Figure 22. Trajectory of the globa minimum for
terminally-blocked alanine ast? 0. Point M corresponds to
the unique minimum in Figure 20, and point C corresponds
to the global minimum of the original map (Figure 19) at t
=0.

Figure 23. Computed structure for hexasulfur found by the
DEM, superposed on the experimental structure.

The first application was made to a nonpolar crystal of $
molecules (84) in which only a Lennard-Jones potential is
involved in the intermolecular interactions. The computed
structure is shown in Figure 23, in which the coincidence of
the computed and experimental molecular positions, as well
as the lattice vectors, are reproduced quite well.

Application to a crystal of a benzene molecule
with a partia-charge representation, but without a
permanent dipole moment, required use of the Ewald
summation to treat the electrostatic contribution (84), and
led to the structure in Figure 24, where the familiar edge-
to-face arrangement of the molecules is seen. Further
calculations were carried out for crystals of polar molecules
with permanent dipole moments (85), with results shownin
Figure 25.
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Participation in two recent blind tests on crystal
structure prediction (86, 87), organized by the Cambridge
Crystallographic Data Centre, provided a good test for our
global search method and showed that it is efficient enough
to predict crystals of rigid and flexible molecules if
accurate potentials are used. When applied to crystals, the
global search methods provide information about their
potential energy surface, and therefore, can be used as a
tool for evaluating potentials (85). The information they
provide enabled us to develop a new global-optimization-
based method for parameter optimization (88, 89).

While al the results of crystal caculations
showed small deviations between experimental and
calculated structures, global optimization of the potential
energy can reduce these deviations by improving the
parameters of the potential function to force it to lead to
better agreement between computed and experimenta
structures. This global optimization-based approach is now
being used to obtain an improved al-atom potentia
function (89-91).

6. HIERARCHICAL APPROACH TO PREDICT
STRUCTURES OF LARGE PROTEIN MOLECULES

As pointed out in section 5.4, it is not yet clear
whether the al-atom EDMC procedure can be applied,
within a reasonable amount of computing time, to larger
protein molecules containing of the order of 100-200
residues. Therefore, a hierarchical approach was developed
to treat this problem (92-100), and hopefully overcome the
suggestion that the ab initio prediction of protein structure
may not be feasible in the foreseeable future (101-103).

In the hierarchical approach, globa optimization
is carried out by using a Conformational Space Annealing
(CSA) method (104, 105) with a united-residue (UNRES)
representation of the protein chain (94-96). This is the key
stage of the hierarchical algorithm. It is designed to locate
the region of the global minimum rapidly and efficiently.
The lowest-energy structures obtained from the UNRES
representation in this stage are then converted to the all-
atom representation (106, 107), and alocal search is carried
out in the restricted region located with the UNRES/CSA
approach. This is accomplished with the EDMC method
and the ECEPP/3 force field (17), together with the
SRFOPT hydration model (26). Initialy, the backbone of
the chain is constrained to the structure obtained by
UNRES and CSA, but the constraints are gradually reduced
as the calculations proceed.

6.1. The UNRES model

The UNRES mode (94-96) is illustrated in
Figure 26. It consists of a virtua-bond chain, i.e, a
sequence of a-carbons (small empty circles) and united
peptide groups (indicated by shaded circles) and united side
chains (indicated by the shaded ellipsoids, whose size
depends on the nature of the amino acid residue). The a
carbons are not centers of interaction, but merely serve to
locate the backbone. The centers of interaction are the
shaded circles and shaded ellipsoids, with a united-residue
potential given by equation 3,
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Figure 26. The UNRES model of polypeptide chains. The interaction sites are side-chain centroids of different sizes (SC) and the
peptide-bond centers (p) indicated by shaded circles, whereas the a-carbon atoms (small empty circles) are introduced only to assist
in defining the geometry. The virtual C*-C? bonds have a fixed length of 3.8 A, corresponding to a trans peptide group; the virtual-
bond (?) and dihedral (?) angles are variable. Each side chain is attached to the corresponding a-carbon with a fixed “bond length”,
bscl , variable “bond angle”, &, formed by SC; and the bisector of the angle defined by c2 |, c?, and cz ,, and with a variable

“dihedral angle’, (3, of counter-clockwise rotation about the c,.C, G, frame.
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Figure 27. Schematic representation of the multi-
dimensional space with all black and background points
representing local minimain the CSA procedure.
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Figure 28. Schematic representation of intermediate stage
of the CSA procedure, in which the black circles are
coalescing here into four clusters.
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Figure 29. Schematic representation of the final stage of
the CSA procedure.

3307

. Faic % oy R s e e )

'-I.E" LR z leg, gt |+ Foyt=tprl=! 'l
where the successive terms represent side chain-side chain,
side chain-peptide, peptide-peptide, torsional, bond-angle
bending, side-chain angles a and R, and multi-body
(correlation) interactions, respectively. The w's are the
relative weights of each term. The correlation terms arise
from a cumulant expansion (97, 108) of the Restricted Free
Energy (RFE) function (or potential of mean force) of the
simplified chain obtained from the al-atom (e.g., ECEPP)
energy surface by integrating out the secondary degrees of
freedom. The variables to change conformation are the
angles (?; ) between virtual bonds, the torsional angle (?)
for rotation about the virtua bonds, and the position angle
(&) and rotational angle (%) of the side chains.

6.2. The CSA method

Figure 27 is a schematic representation of a
multi-dimensional conformational space with its black
circles and background points representing local energy
minima. The CSA method (104, 105) is based essentially
on a build-up and a genetic algorithm to force the 50-100
black circles to coadesce to the region of the globa
minimum. Figures 28 and 29 are schematic representations
of this coalescence at various stages of the CSA procedure.
Figure 29 represents a possible final stage of the procedure,
illustrating three clusters of minima, with the globa
minimum presumably lying in one of these clusters.

Recently (109), we enhanced the power of the
CSA method by introducing genetic operators that copy
regular secondary-structure elements (e.g., R-hairpins, a
helices, etc.) between conformations. It should be noted
that these structural elements are those that are detected in
the conformations found during the search and are not
taken from structural databases. Additional enhancements
include the treatment of disulfide bonds (110).

All UNRES minimum-energy conformations in
the final clusters of Figure 29 are converted to the all-atom
representation (106, 107), and the global optimization
search is continued from these starting conformations with
the EDMC procedure (68), asindicated above.

6.3. Initial tests of the UNRES/CSA procedure

Figures 30-32 illustrate the results of initial tests
of the hierarchical procedure (111) on proteins of known
structure. The search with protein A led to a structure (red)
with a3.8 A RMSD from the experimental structure (blue).
A mirror-image, higher-energy conformation (yellow) was
also found. Figure 30 shows a scatter plot of ¢ RMSD
from the native structure vs. energy for intermediate
conformations from the CSA simulation of protein A. It can
be seen that more than one conformational family exists. A
detailed analysis shows that the set can be divided into two
families, one of which contains native-like structures and
the other contains the mirror image of the experimental
structure. With these initia results, the procedure was
considered to be sufficiently robust for us to participate in
the CASP3 (Critical Assessment of Protein Structure
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Figure 30. An intermediate stage of the CSA procedure
applied to protein A. At a later stage, the red circles
disappear, and two groups of minima represented by the
blue crosses remain. The upper group is found to contain
mirror images of the lower group.
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Figure 31. Superposition of the C* traces of three
structures of protein A. All residues of the blue and red
structures were superposed, but only the first two helices of
the blue and yellow structures were superposed. The yellow
structure is the mirror image fold of the blue/red structures.
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Figure 32. Superposition of the C* trace of the calculated
lowest-energy structure of apo calbindin D9K (red) on its
NMR 1CLB structure (blue). The calculated structure is the
mirror image of the native fold. Residues 22-75 were used
for the superposition.
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Prediction) blind prediction exercise in 1998. Subsections
6.4-6.7 illustrate the progressive improvement in UNRES
and in the search procedure during our participation in
successive CASP exercises.

6.4. CASP3results

To provide a basis for interpreting the use of
RMSD as a scoring function to evaluate the quality of a
prediction, we cite the paper of Reva et al. (112) who asked
the question, "What is the probability of a chance
prediction of aprotein structure at an RMSD of 6 A?' They
concluded that "the probability of obtaining a 6 A RMSD
by chance is so remote that, when such structures are
obtained from a prediction agorithm, they should be
considered successful."

In addition to the two initial tests of Figures 31
and 32, for proteins consisting of 46 and 75 residues,
respectively, the results of two blind tests in CASP3 are
illustrated for HDEA (Figure 33, 61 residues) and MarA
(Figure 34, a 61-residue portion of the whole protein (113).
The native structure of HDEA is a five-helix bundle with a
long loop between the third (H-3) and the fourth (H-4)
helix structures (Figure 33). Our computed model differs
from the native structure by the packing of the 27-residue
N-terminal portion. The N-termina fragment, which
contains helix H-2, is rotated by approximately 180°,
resulting in an overall RMSD of 9.0A. However, helices H-
3 to H-5, a 61-residue portion, exhibits an RMSD of 4.24,
and the superposed 27-residue N-terminal portion exhibits
an RMSD of 2.9A.

The CASP rules alow for the submission of five
predicted structures (ranked by energy) for each target, i.e.,
amino acid sequence. The results of Figures 33 and 34 are
two of 22 models submitted for seven targets. The CPU
time with 64 IBM SP2 processors for this whole exercise
was 1 hour for 37 amino acid residues to ~5 days for 140
amino acid residues. The computational problem is thus
tractable with this amount of CPU time, pertaining to this
older supercomputer, for proteins of this size range; newer
supercomputers have greatly enhanced the efficiency of
these computations.

It is of interest to point out that Mar A isa DNA-
binding protein whose structure was determined from a
complex of Mar A with a DNA chain (114). This
information was not provided by the CASP3 organizers.
Therefore, the calculations, carried out for the protein in the
absence of the DNA, led to the collapse of the two domains
which would bind to separate grooves of the DNA if the
latter were present. However, a reasonable (6.0 A) RMSD
was obtained for one of the 61-residue domains, which is
53% of the whole protein.

In the evaluation of the ab initio results of
CASP3, the judges (115) reported that "for protein HDEA
(target 61)...the most impressive prediction was that of
Scheragds group using...ab initio methods.... Their
method uses no information from sequence alignments,
secondary structure prediction, or threading.”
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Figure 33. Top. Superposition of the crystal (red) and predicted (yellow) structures of HDEA. The C' atoms of the fragment
included between residues D25 and 185 were superposed. Helices 3, 4 and 5 are indicated as H-3, H-4 and H-5, respectively.
Bottom. Superposition of the crystal (red) and predicted (yellow) structures of the 27-residue fragment (W16 to K42) of HDEA.

Helices 2 and 3 are indicated as H-2 and H-3, respectively.

A for 61 residues

u, residues Y-64)

Figure 34. Superposition of the crystal (red) and predicted (yellow) structures of the Mar A N-terminal domain. The C* atoms of
residues D9 to A69 were superposed. Helices 1, 2, 3 and 4 are indicated as H-1, H-2, H-3 and H-4, respectively.

Figures 33 and 34 represent predictions for a
helical-type proteins. At the time of CASP3, our agorithm
could not predict 3-structures, as illustrated on the left-hand
side of the Figure 35 for betanova, whose structure was
computed with the CASP3 UNRES force field. Therefore,
to be able to predict 3 as well as a structures, the UNRES
force field was improved in preparation for CASP4 in 2000
(see subsection 6.5). The structure of betanova, computed
with the improved (CASP4) UNRES force field is shown

3309

on the right-hand side of Figure 35, superimposed on the
experimental (116) structure.

6.5. CASP4 results

The terms of the cumulant expansion have been
evaluated analytically (97). Instead of showing complicated
mathematical expressions for these terms, we represent
them pictorially in Figure 36. The circles represent local
interactions within a residue, and the vertical dashed lines
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Figure 35. Betanova structures (green) computed with CASP3 (left) and CASPA4 (right) versions of UNRES. The experimental

structure is superposed on the computed structure (right).
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Figure 36. Graphical representations of the analytical forms of the terms of the cumulant expansion up to 6" order. Solid lines
correspond to peptide groups involved in a correlation. Dashed lines correspond to backbone-electrostatic or hydrogen-bonding
interactions, and circles correspond to backbone-local interactions.

represent electrostatic or hydrogen-bonding interactions
between peptide groups. As seen, for example, in the 4"
order term at the lower left-hand corner of Figure 36, it
consists of four interacting (correlated) elements. If two
such hydrogen bonds are formed, extra stability is
provided, beyond the sum of two such (separate) hydrogen
bonds. This analytical cooperative term was also obtained
heuristically by Skolnick and coworkers (117).

In CASP3, only the terms of the left-hand column
were used. However, in preparation for CASP4, dl of the
terms, up to 6™ order, were used. It can be seen that the 6"
order term in the lower right-hand corner of Figure 36
represents a feature that could lead to an anti-parallel two-
stranded 3-structure. Likewise, the extended structure in the
middle at the bottom of the middle column of Figure 36
should also facilitate the formation of [-structure. With the
Z-score re-optimization of the weights in equation 3,
described in subsection 6.6, the results of Figure 37 were
obtained for two combined tests on the a and 3 structures.
The improved UNRES force field then led to the results
shown in Figure 38 for a test protein with an a and a 3
segment.
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The computed structure of the cyclic target 102
of CASP4 (118) is shown in Figure 39. The ends of the
chain were found to be close to each other without
imposing a loop-closing potential. The fina structure of
Figure 39 is a cyclic one, after a final energy minimization
that did include a loop-closing potential. It is of interest to
examine the RMSD for fragments of the structure of Figure
39. As can be seen in Figure 40, shorter fragments were
obtained with a lower RMSD than the 4.2A found for the
complete 70-residue chain.

Figure 41 shows a superposition of a computed
68-residue fragment of target 98, with an RMSD of 5.9A
from the native structure. Figure 42 shows that the new
CASP4 UNRES potential can now lead to a good structure
for an al-R protein with an RMSD of 6.5A. The R-sheets,
as well as the connecting non-regular structured loop, are
reproduced fairly well.

6.6. CASP5 results

To assess the possihility of a correlation between
the torsions around successive virtual bonds, ab initio
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Figure 37. Results of Z-score optimization of the weights
in equation 3 of the UNRES potential used in CASP4.

Full sequence desipn | (FSI-1} of alpha beta morf

Figure 38. Test of the CASPA4 force field on an &3 protein.
The computed structure (red) is superposed on a family of
NMR structures (green).
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Figure 39. Computed structure (red) of CASP4 target 102
superposed on the experimental structure (blue).

guantum mechanical calculations were carried out on
terminally-blocked glycine, aanine, and proline residues,
and the respective torsional potentials were subsequently
determined by numerical integration (29). It was found that
there is an enhanced stabilization arising from such a
correlation. Hence, a  double-torsiona term,
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é_ Utord (gi ,gi+1) shown in equation 4, was added to the
[

UNRES potential.
< N PR, i TR, ~ I

A PR VBN -l P TR, e

(AR T o

4)

The weights and also the other parameters of the
energy terms of the cumulant expansion in equation 4 were
re-computed by a gap (equation 5) and Z-score (equation 6)
optimization.
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where E; is the energy of the i" conformation, nat and

non-nat denote the set of native-like and non-native
structures, respectively, and Nz and Nponng ae the
numbers of conformations in the set of native-like and non-
native structures, respectively.

Whereas previously the non-native structures
were collected together in a group, it was found to lead to
better results in the re-optimization of UNRES to separate
the non-native structures into several levels as shown in
Figure 43 (100). Level zero contains an ensemble of
unstructured species, and level 1 contains an ensemble of
species each of which contains one native element of
secondary structure. Proceeding to the bottom level, each
level contains successively more native regular structures,
with the native packing of these regular structures
increasing with movement toward the bottom level.

With this revised UNRES force field, the results
shown in Figures 44 and 45 were obtained. Both targets
shown in these Figures were classified as new folds.
UNRES was able to predict a 70-residue segment of the C-
terminal domain of target 149 [an (a + R) protein]. Due to
imperfections in the UNRES force field used in the CASP5
test, and also to speed up the search, we used secondary-
structure information available from the public domain
servers during the search. For target 129 (an a-helical
protein), we were able to predict a 79-residue fragment,
without using any knowledge-based information in the
search.

6.7. Preparation for CASP6

In preparation for CASP6, the hierarchical Z-
score approach of Figure 43 was modified and applied to a
combined set of four proteins with representatives from
different structural classes (119-121). The training proteins
were 1E0G [(a + R); 48 residues], 1EOL (3; 28 residues),
1GAB (& 47 residues) and 1IGD [(a + R); 61 residues].
The force field was tested on a set of 66 proteins containing
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Figure 40. Evaluation of the performance on CASPA4 target 102 as a function of fragment length.
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Figure 42. Superposition of calculated structure (blue) on the experimental structure (red) for a 57-residue fragment, beginning at
residue 66.
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Figure 43. Schematic illustration of the energy levels of the 1FSD protein for optimizing the UNRES potential function. The
energies of the conformations are required to decrease with their increasing “native likeness’. The highest energy level (level 0)
is occupied by structures with either no or non-native secondary structure. The next level (level 1) is occupied by the structures
with one native secondary structure element (the N-terminal -hairpin or the C-terminal a-helix; the native-like structure
fragments are indicated by thicker lines). Yet alower energy level (level 2) has structures with both a-helix and R-hairpin but no
or incorrect packing of these two substructures and/or a shifted turn in the -hairpin. Finaly, the native-like structures, with a
helix and 3-hairpin packed correctly, occupy the lowest energy level (level 3).
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Figure 45. Prediction of the structure of residues 222-291 of CASP5 target 149.
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Retro-(iCN4
leucine zipper
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Figure 46. Lowest-energy structure of the rotationally
symmetric retro-GCN4 leucine zipper (gray) superposed on
the x-ray structure (black); C*-coordinate RMSD = 2.34 A.

Synthetic
domain-
swapped
dimer

Figure 47. Lowest-energy structure calculated with
rotational symmetry (gray) superposed on the experimental
structure (black) for the synthetic domain-swapped dimer;
C?coordinate RMSD = 5.65 A.

28 to 147 residues and various structural types [26 a, 15
and 25 (a + R)]. The average length of the segment
predicted within 6 A RMSD was 54 residues for a, 34
residues for 3, and 42 residues for (a + 1) proteins, which
constituted 67%, 45%, and 55%, respectively, of the chain
length. The longest predicted segments were 96 residues
for a, 49 residues for B, and 55 residues for (a + R)
proteins. These results are a considerable step forward
compared to our earlier attempts to optimize the UNRES
force field.
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7. APPLICATION
PROTEINS

TO MULTIPLE CHAIN

The computations in section 6 were carried out
for single-chain proteins. In order to apply the agorithm to
multiple-chain proteins, the UNRES force field and CSA
procedure were extended to treat proteins containing
severa chains (122, 123). Ideally, it should be possible to
carry out the computations without knowing the number of
chains in the protein or the symmetry relation between the
chains. However, thus far, we have applied the procedure to
proteins in which the number of chains is known, and they
are related by rotational symmetry. Without this symmetry
constraint, it has not yet been possible to achieve good
results. However, work is in progress to try to remove the
necessity of imposing a symmetry constraint.

With rotational symmetry imposed, the
calculations were carried for the four-chain retro-GCN4
leucine zipper (122) shown in Figure 46 (with an RMSD of
2.34 A) and for the two-chain synthetic domain-swapped
dimer (122) shown in Figure 47 (with an RMSD of 5.65
A). The calculated structures of the separated monomers of
these two proteins (122), shown in Figures 48 and 49,
respectively, do not resemble the structures of these
monomers in the respective multiple-chain complexes.

8. CALCULATIONSOF FOLDING PATHWAYS

As pointed out in the Introduction (section 2), a
second type of protein folding problem is the computation
of the structural pathways by which the completely
unfolded polypeptide chain proceeds to the folded native
conformation. The problem is illustrated schematicaly in
Figure 50 for an average folding pathway between a
representative ensemblei of a completely unfolded protein
(with no native contacts or native hydrogen bonds) and the
final folded structure f, obtained by x-ray or NMR
experiments. In this approach, structure f is not predicted,
but has to be known in advance.

We have considered several theoretical
approaches to determine folding pathways (10, 124-126).
One of these makes use of the stochastic difference
equation method of Elber et al. (126), and has been applied
with a full-atom treatment to protein A which is shown in
Figure 51. This method provides the sequence of formation
of intermediate structures between i and f of Figure 50, but
not the kinetics, there being no computation of the time
scale for folding. This boundary value problem may be
contrasted with an initial-value formulation in which one
starts with the initial unfolded protein and uses molecular
dynamics to compute the folding trajectory. The stochastic
difference equation method avoids the problem that
molecular dynamics requires femtosecond steps, and would
consume an enormous amount of computer time to reach,
say, amicrosecond level, whereas most proteins (except for
some very fast folders) fold in the millisecond-to-second
time scale.

The method requires that the action S, as in
equation 7 and 8,
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Figure 48. Lowest-energy calculated isolated monomer structure for the retro-GCN4 |eucine zipper.

Svnthetic domain-
swapped dimer
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Figure 49. Lowest-energy calculated isolated monomer structure for the synthetic domain-swapped dimer.
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Figure 50. Schematic representation of a folding pathway between given initial (i) and final (f) states. The f state is the known x-
ray or NMR structure. Thei state is an ensemble of unfolded polypeptide structures.
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Helix 1
Helix 3

Helix 2

Figure 51. Native structure of protein A emphasizing the
three helices whose folding order is computed in the
pathway from i to f of Figure 50.
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Figure 52. The fractions of amino acids in the helica
conformation (probability) for each of the three helices of
protein A. The fraction is followed as a function of the
trajectory length measured in Angstroms. The results are
averaged over 130 folding trgjectories. Helix 3 forms
somewhat earlier than helices 1 and 2 in accordance with
suggestive conclusions from experiments (127, 128).
However, the difference between the rates of formation of
helices 1 and 2 on the one hand, and helix 3 on the other, is
not large.
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which is approximated by
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remain stationary along the length | of the pathway from i
to f, where E is the total energy, U is the potential energy,
and Y, and VY; are coordinates of the initial unfolded protein
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and of the final folded protein, respectively. To achieve a
pathway with a stationary action, the function T of
Equation 9 must be optimized.

T M G 8 (0,0 )

|8u|1+15 Y i

©)

with

<DI>=(1/N)§ D, . (10)

where the parameter ? is the strength of a penalty function

that keeps all of the length elements, DI i i+1, €qual to the
average length given by eq. 10, and equal to each other.

In treating protein A (10), an initial ensemble of
130 representatives of the unfolded protein were generated,
and 130 separate trgjectories to reach the fina folded
structure were computed, and an average was evaluated
over al those trajectories. None of the 130 initia
conformations had any native contacts or native hydrogen
bonds.

The progress along the trgjectories is shown in
Figure 52, with separate curves for each of the three helices
of protein A. It can be seen that helix 3 appearsto fold first,
followed by helix 1 and then by helix 2. To obtain a more
detailed view of the folding pathways, the trgjectory is
divided into five equal segments, a-e, in Figure 53. It can
be seen that, contrary to the current view that there is an
initial  hydrophobic collapse, followed by a sow
rearrangement to form the native structure, panel a shows
that there is a wide distribution of radii of gyration with
very few native hydrogen bonds formed in the initia stage.
Panel b, representing the second 20% of the tragjectory,
shows that only one or two additional (native) hydrogen
bonds form but that there is still the wide distribution of
radii of gyration. Only in panel ¢ do we start to see a
concomitant drop in the distribution of radii of gyration and
adight increase in the formation of native hydrogen bonds.
This behavior continues into panels d and e in which the
final radius of gyration and full complement of native
hydrogen bonds appears. The same behavior is illustrated
in Figure 54 in which it is seen that, in panel a, there are
very few native contacts or native hydrogen bonds.

Future calculations of this type are planned for
proteins for which experimental pathways are known. This
will provide a direct experimental test of the theoretically
calculated folding pathways.

9. CONCLUSIONS AND PERSPECTIVES

The results presented here, especially those of
Figure 14, obtained from computations with an all-atom
force field, demonstrate that the potential function and
search procedure contain the essential ingredients to predict
the folded structure from the amino acid sequence.
Likewise, the results of Figures 53 and 54 suggest that the
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Figure 53. Two-dimensional “free energy profiles’ are shown as a function of the radius of gyration and the number of hydrogen
bonds at different sequential length slices (a-€) of the trajectory. The five snapshots in length are averaged over 130 trajectories
and over the corresponding fifth of the trajectory length (e.g., the quantities in b are averaged over the second fifth). Sequential
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Figure 54. Two-dimensiona “free energy profiles’ are
shown as a function of the number of hydrogen bonds and
the number of native contacts for different length slices of
the trajectory. The averages are over 130 trgjectories and
over the corresponding fifth of the trgjectory length.
Sequential contour lines are separated by 1 kcal/mol. The
relatively slow progress of the folding process along two
reaction coordinates in the early phases and the significant
pick-up in speed in the last length segment should be noted.

available physics is sufficient to determine folding
pathways. Presumably, refinements of the potentia
function and search procedures will lead to better
agreement between theory and experiment. The foregoing
statements apply so far only to proteins of the size of the
46-residue protein A.
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At present, to extend the methodol ogy to proteins
in the 100-200 amino acid residue size range, we rely on
the hierarchical approach with the UNRES and CSA search
procedures, illustrated in Figures 26 and 27-29,
respectively. Even this approach requires refinement of the
UNRES potential and CSA search procedure. Such
improvements are currently under investigation. It is not
yet clear whether the all-atom force field will be applicable
to proteins in the 100-200 residue size range.
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