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1. ABSTRACT

Human genome project unveiled that 
only 1.5.-2.0.% of the genome is protein coding. 
ENCODE and related studies showed that most 
part of the genome transcribed into RNAs, and most 
of them do not code for a functional proteins, hence 
the name non-coding RNAs (ncRNAs). ncRNAs 
are small ncRNAs (less than 200 nucleotides) and 
long ncRNAs (longer than 200 nucleotides up to 10 
kb). They act as a direct link between highly ordered 
chromosome structures, gene expression and serve as 
a bridge between genome and chromatin modification 
complexes as guides, scaffolds, and decoys. Highly 
regulated hematopoietic differentiation is required for 
formation of all types of blood cells. Among a variety 
of lncRNAs only few hematopoitic lncRNAs have 
been studied extensivelyand most of them are not 
functionally characterized. The role of these lncRNAs 
remains partially undetermined but their involvement in 
the regulation of various genes and protein synthesis 
has been proved even in hematopoiesis. So, the 
present review is a mere effort to highlight the role of 
lncRNAs involved in the development and regulation of 
hematopoiesis.

2. INTRODUCTION

Human genome project revealed the fact that 
human genome composed only of 1.5.–2.0.% protein-
coding genes. Bulk of genome which was thought 
as junk is now believed to be transcribed actively. 
Collaborative effort like ENCODE project and other 
studies revealed that 76% to 90% of the genome is 
actively transcribed into RNAs (1–3). As most of these 
RNA transcripts astonishingly do not meant for the 
formation of a functional protein that’s why these are 
generally designated as noncoding RNAs (ncRNAs) 
(4–6). During the past few years it has become evident 

that most of this DNA is not pervasive transcriptional 
noise. Recent advances in application of various new 
approaches like genome-wide gene expression screen, 
Transcription analysis, designed LncRNA array, 
transgenic expression, region-targeted association 
assay and conventional linkage screen, RIP-RNA 
sequencing, genomewide association studies, gene 
knockdown/ knockout and careful examination like 
advancement in sequencing technologies revealed 
that these are indeed functional molecules which 
play a major biological role in physiology, health and 
disease, predominantly in tissue carcinoma as well as 
in metastasis (7–9).

MicroRNAs (miRNAs), one of the most 
extensively studied class of noncoding RNAs (ncRNAs) 
for their oncogenic and tumor suppressive activity 
and are concerned with various cancer processes 
(10–14). Interestingly miRNAs represents a mere part 
among enormous variety of newly identified ncRNA 
species. Other important types of ncRNAs include 
small interfering RNA (siRNA), small nucleolar RNAs 
(snoRNAs), PIWI-interacting RNAs (piRNAs), large 
intergenic noncoding RNAs (lincRNAs), transcribed 
ultraconserved regions (t-UCRs), and some other 
species (7). ncRNAs are conventionally divided on 
the basis of their transcript size into two classes i.e. 
small ncRNAs and long ncRNAs (lncRNAs) (15;16). 
The ncRNAs less than 200 nucleotides in length are 
referred as Small ncRNAs which includes siRNAs, 
miRNAs, piRNAs, and transcription initiation RNAs 
(tiRNAs) which has recently been reported (17;18). 
snoRNAs are of intermediate size comprising from 60 
to 300 bps. Except these mammalian also possess 
another type of ncRNAs (endogenous cellular RNAs) 
that are translationally mute and are longer than 200 
nucleotides which are referred as lncRNAs and are 
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very heterogeneous group of RNA molecules (19–23) 
(Figure 1).

Regulation of gene expression by lncRNAs 
through non-classical mechanisms is known for the 
last few decades i.e. the discovery of Xist (mediator 
of X-chromosome inactivation) in 1991 (24). The 
discovery of this lncRNA along with a few others was 
thought as sporadic until the large-scale transcriptome 
sequencing changed the whole scenario by identifying 
thousands more (25).

LncRNAs varies in their size range between 
200 nucleotides and up to 10 kilobases which 
expressed at lower levels than the mRNAs meant for 
proteins, can be cytoplasmic or nuclear and which can 
be polyadenylated or not. Many of these lncRNA genes 
not only transcribed from conventional promoters 
and spliced as well as are associated with cell-type-
specific nuclear factors just like protein-coding genes 
(26). While others appears to be arise from enhancers 
either these are polyadenylated or nonpolyadenylated 
(27). It is therefore, estimated that thousands of these 
lncRNAs are encoded and expressing exactly like 
tissue-specific patterns in human genome.

LncRNAs were found to play an integral role 
in regulation of expression of various genes at different 
levels i.e. transcription and post transcriptional 
processing as well as chromatin modification (7;28). 
A vast variety of these RNAs significantly expressed 
during various important cellular processes like 
pathogenesis or tumorigenesis, embryonic stem cell 
differentiation etc. (29) as well as regulate variety of 
biological processes, including cancer metastasis, 
developmental process, response to stress and cell 
cycle regulation (30;31) (Figure 2).

Recent studies have proved that lncRNAs 
are involved in the progression of various human 
diseases and also in the regulation of multiple 
developmental processes (31;32). These lncRNAs 
shows specific sequence information but have 
structural plasticity as well. They are specifically 
involved in the regulation of gene expression and 
function through variety of mechanisms because of 
their ability to interact directly to RNA and DNA via 
base pairing while to proteins by specific structural 
motifs. LncRNAs act as a direct link between 
highly ordered chromosome structures and gene 
expression and act as a bridge between genome 
and chromatin modification complexes acting like 
guides, scaffolds, and decoys (33). Variety of them 
alters the chromatin state and expression of genes by 
employing chromatin complexes specifically required 
for activation or repression of genome modification. 
Others performing post-transcriptional regulation 
and some other chromatin-templated processes 
remain in nuclear or cytoplasmic territories (34) 
(Figure 3).

3. LncRNAs IN HEMATOPOIESIS

A very carefully and tightly regulated 
hematopoietic differentiation is necessary to form 
all types of blood cells viz, RBCs, WBCs as well as 
thromobocytes throughout the life. Hematopoiesis at 
the time of embryonic development initiates in yolk sac 
followed by development in placenta and afterwards 
in some major arteries of body, fetal liver and finally 
in the bone marrow (35;36). Although a variety of 
lncRNAs have been discovered which were found to be 
involved in various biological activities but only some of 
hematopoietic lncRNAs have been studied extensively. 
During terminal erythropoiesis, the expression of a mouse 

Figure 1. Non-coding RNAs and their classification. Different types of non-coding RNAs on the basis of their size and their mechanism of action.
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nuclear lncRNA, LincRNA-EPS is upregulated while the 
expression of a pro-apoptotic gene, Pycard is repressed. 
Similarly, in erythroblasts RNAi knockdown of LincRNA-
EPS leads to de-repression of Pycard that in turn results 
in apoptosis. In contrast to it, LincRNA-EPS protects the 
erythroblasts from apoptosis if over-expressed in vitro, 
during erythropoietin deprivation (37). A hematopoietic 
lncRNA EGO was identified to be involved in the 
regulation of eosinophil granule protein expression, and 
expression of another lncRNA named as HOTAIRM1 
(HOXA cluster), was reported to be upregulated during 
myeloid development as well as involved in stimulation 

of various HOXA and myeloid differentiation genes (38). 
A number of abstracts presented in Annual Meeting of 
American Society of Hematology held in 2012 reported 
the identification and categorization of lncRNAs in 
various cells i.e. erythroblasts, hematopoietic stem 
cells, megakaryocytes and myeloid cells. So, it can be 
speculated that in the next coming few years various 
important biological functions will be emerged from 
some of these lncRNAs.

A large number of lncRNAs have been 
identified which are involved in the development of blood 

Figure 2. Variety of biological activities regulated by lncRNAs. LncRNAs regulate various biological processes i.e. embryonic stem cell differentiation, 
pathogenesis, cell cycle regulation, cancer metastasis etc.
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cells, however most of them are still not characterized 
functionally. One of the earliest lncRNAs was the 
Eosinophil Granule Ontogeny lncRNA EGO (39). EGO 
was first time identified from CD34 hematopoietic 
progenitor cells differentiating into eosinophils, where 
they regulate eosinophil granule protein expression 
to not only stimulate the differentiation as well as 
maturation of cell function at transcription level however, 
its exact method of action is not fully understood and 
described yet (39). Later on it leads to the discovery 
of an “antisense to PU.1”; a lncRNA, which was found 
antisense and to negatively regulating the expression of 
master hematopoietic transcriptional factor PU.1 as well 
(40). Normal expression of PU.1 is necessary for normal 
hematopoietic development and inhibition of uncontrolled 
division of WBCs (leukemia). It was speculated by the 
author of this model that this lncRNA “antisense to 
PU.1,” would negatively regulate PU.1 mRNA translation 
by checking the PU.1 expression levels from being very 
high. In fact, this model provides the first insight of how 
antisense lncRNA acts in the inhibition of translation 
in cytoplasm even though the exact mechanism not 
characterized and understood fully.

FANTOM and ENCODE, international 
research consortia, when reported the first lncRNA, 
and later on various high-throughput technologies 
utilized to measure lncRNAs expression gave a boom 

to the identification of lncRNAs from different cell types 
i.e. blood cells. Microarray analysis identified one 
of these lncRNAs, HOTAIRM1, during granulocytic 
differentiation of APL cell lines mediated by all-trans 
retinoid acid (ATRA) (41). This important lncRNA is 
transcribed from the HOXA cluster whose knockdown 
results in altered expression of various HOXA genes 
(key regulators of both normal and malfunctioned 
hematopoiesis. This lncRNA not only modulates 
the expression of granulocytic differentiation genes 
(41;42) as well as its knockdown leads to delayed 
ATRA-induced granulocytic differentiation but its 
exact molecular mechanism is still unknown (42). 
Hu et al., (2011) identify “Erythroid ProSurvival 
lincRNA” (lincRNA-EPS) among 400 different 
lncRNAs involved in mouse erythroid differentiation 
using RNA-sequencing (37). This transcript is of 
worth consideration because of its involvement in the 
repression of Picard (pro-apoptotic gene) resulting in 
the inhibition of mature erythrocytes apoptosis as well 
as in terminal differentiation of erythrocytes, but the 
exact mechanism is still unknown (37). Similarly, 132 
novel lncRNAs were identified with restricted erythroid 
expression by RNA-seq in murine erythropoiesis in a 
second high-throughput study, and most of these are 
regulated by key erythroid transcription factors (43). 
Erythroid maturation was severely impaired upon 
the knockdown of only 12 of these lncRNAs, this 

Figure 3. Mechanism of gene regulation by lncRNAs. (a) lncRNAs leads to downregulation of gene expression by guiding chromatin modifying enzymes 
to promoter of genes. (b1) lncRNAs may bind to transcription factors in nucleus to repress transcription. (b2) lncRNAs may bind to the transcription factors 
present in cytoplasm. (c) lncRNAs may directly approach mRNA in cytoplasm to prevent translation resulting in gene repression.
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model was a clear reflective of important regulatory 
functions of these lncRNAs during erythropoiesis. 
One of them was found to act as an enhancer RNA 
(eRNA) that is necessary for major anion transporter 
across erythrocyte membrane and is necessary 
for transcriptional activation is transcribed from an 
enhancer region of the BAND3 gene (43). Paralkar 
VR et al., (2014) conducted a similar study involving 
megakaryocytes, erythroblasts, megakaryocyte-
erythroid precursors as well as human erythroblasts 
(44). This study reported the identification of a number 
of cell specific lncRNAs, many of which were found to 
be regulated by GATA1 and TAL1 (key hematopoietic 
transcription factors). They reported by knock down of 
murine lncRNAs, 21 of which were most abundant, the 
involvement of 7 out of 21 of these were absolutely 
required for erythroid terminal differentiation despite 
the lack of conservation.

Moreover, in an independent study Alvarez-
Dominguez et al., reported four of the functional 
lncRNAs. Astonishingly, most of these lncRNAs were 
not found conserved in human RBCs. Their decreased 
conservation may be explained by considering the 
fact that the tertiary structure of these lncRNAs is 
much more important than their primary sequence 
as compared to protein-coding RNAs. In fact, most 
of these lncRNAs provides a platform where various 
macromolecular complexes are assembled (45;46). 
Lnc-DC was identified during the profiling of lncRNA 
expression involved in the process of differentiation of 
monocytes into dendritic cells (DCs) (47). This Lnc-DC 
(a cytoplasmic lncRNA) plays an important role in the 
DCs differentiation because it activates transcription 
factor STAT3 involved in the differentiation of DCs. 
Lnc-DC specifically maintains active phosphorylated 
form of STAT3 and prevents its dephosphorylation, 
by binding directly to it, carried out by Src homology 
region 2 domain-containing phosphatase-1 (SHP-1). 
Significant contributions and involvement of lncRNAs 
in the development as well as function of adaptive 
immune cells have been reported in recent data. 29 
different lymphocytes specific lncRNAs were identified 
through Microarray analysis of purified CD8+ T-cells 
from human and mouse. Interestingly, expression of 81 
lncRNAs was modulated during lymphocyte activation, 
while 21 out of them in memory T-cell differentiation 
and 4 during both transitions. A more comprehensive 
study was carried out on lncRNAs expression at various 
developmental and differentiation stages utilizing 42 
different types of T-cell using RNA-seq (48). 1,524 
different genomic regions were highlighted during 
this ample study that were involved in lncRNAs and 
were reported much more specific for developmental 
stage and lineage compared to protein coding RNAs. 
A variety of transcription factors of T-cells i.e. STAT4, 
STAT6, T-bet and GATA-3 are reported to regulate 
the specific expression of a variety of these identified 
lincRNAs from different T-cells lineages. Indeed, many 

of these lncRNAs are found in adjoining regions to the 
genes specifically involved T-cell function by encoding 
proteins. One of these is LincR-Ccr2–5’AS which was 
found specifically involved in the migration of T-cells 
through a mechanism still not known, by controlling the 
expression of a variety of chemokine receptors.

Recently, another comprehensive study 
has been performed by RNA-seq on human T- and 
B-lymphocytes at different stages of differentiation 
for lncRNA profiling that leads to the identification of 
more than 500 previously unknown lncRNAs (49). 
One out of these lncRNAs, linc-MAF4, is involved 
in regulation of the expression of MAF through 
recruitment of chromatin modifiers because it is a key 
transcription factor for T-cell function. Involvement 
of lncRNAs in regulation of inflammatory and innate 
immune responses has been previously described in 
detail (50). So, it is clear from the above given account 
that lncRNAs play key role in the development and 
differentiation of various cell lineages.

4. SUMMARY AND PRESPECTIVES

A new level of regulation has been added 
recently with the discovery of a novel class of 
regulatory non-coding RNAs. There is no doubt in the 
fact that the role of these lncRNAs remains partially 
undetermined but their involvement in the regulation of 
various genes and protein synthesis has been proved 
even in hematopoiesis. But still there is a need of 
further studies to reveal their specific roles to use them 
as therapeutics in near future.
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