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morbidities, medications, transfusions, an 
altered microbiome and breast milk feeds may 
influence the vasculature in various ways. Better 
understanding of these mediators and their role 
in regulation of intestinal microcirculation and 
pathogenesis of NEC will assist in identifying 
strategies in prevention and management of 
this devastating illness.

2. INTRODUCTION

The neonatal intestinal vasculature 
undergoes significant changes after birth as it 
transitions into an organ of nutrient absorption. 
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1. ABSTRACT

The etio-pathogenesis of necrotizing 
enterocolitis (NEC) is complex and 
multifactorial. Decades of research have not 
identified a definite etiology. Prematurity, 
enteral feeding, intestinal hypoxia/ischemia, 
inflammation and an abnormal microbiome 
are potential risk factors for developing this 
multisystem illness. Lack of specific diagnostic 
and prognostic markers adds to the challenges 
faced in managing NEC. Vascular mediators 
such as Nitric oxide (NO), catecholamines and 
endothelin (ET) regulate neonatal intestinal 
vascular resistance and may influence 
the pathophysiology of NEC. Neonatal 
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It is regulated by a fine balance between 
vasodilator and vasoconstrictor forces. NO is 
the main vasodilator and endothelin-1(ET-1) 
the main vasoconstrictor maintaining neonatal 
intestinal vascular tone (1, 2). Any condition 
altering this balance has the potential to cause 
intestinal ischemia and injury. In this review, we 
will discuss the ontogeny of intestinal vascular 
regulation, the role of vascular mediators in 
NEC and factors that influence them. We will 
also discuss the beneficial effects of breast milk 
and potential future therapies for NEC that are 
currently being investigated.

3. NEONATAL INTESTINAL VASCULATURE, 
VASCULAR RESISTANCE AND CHANGES AT 
BIRTH

In the fetus, the gastrointestinal tract is 
relatively dormant. Postnatally, it goes through 
a period of prolific growth and becomes a site 
of intense metabolic and anabolic activity. 
There is considerable lengthening of the small 
intestine from 125 cm at 20 weeks gestation to 
275 cm at term and 380 cm at one year (3). 
Functionally, the intestines assume complete 
responsibility for assimilation of water and 
nutrients. The high oxygen demand required 
for these processes is met by maintaining 
high blood flow and oxygen delivery to the 
gut. The superior mesenteric artery (SMA) 
supplies blood to parts of the intestine derived 
from midgut (distal duodenum, jejunum, ileum, 
cecum and appendix, ascending colon, and 
proximal portion of transverse colon). Since 
the majority of intestinal blood flow relies on 
this single vessel, changes in SMA blood flow 
patterns may have significant physiological 
effects on the bowel.

Intestinal vascular resistance is high in 
fetal life and decreases postnatally (4, 5). This 
could be related to postnatal adaptation as well 
as the effect of enteral feeds (Table 1). 2-10 d 
old fed lambs have a higher intestinal blood 
flow and oxygen uptake as compared to fetal 
lambs (6). Ultrasound Doppler studies of the 
SMA in the perinatal period (fetal-30week, 2h, 
24h and 72h) in healthy term infants show a 

similar pattern of increased intestinal perfusion, 
potentially to meet the increased metabolic 
demands of the bowel due to the onset of enteral 
feeding (7). Postnatal intestinal microcirculation 
in 3 d old swine is characterized by lower 
resting vascular resistance compared to that of 
older subjects (8). As the vascular resistance 
is inversely proportional to the vessel radius 
to the 4th power, small vasoconstrictive or 
vasodilatory changes can cause large changes 
in vascular resistance and blood flow (2, 9).

3.1. Regulation of intestinal vasculature
The regulation of gastrointestinal 

blood flow involves both intrinsic and extrinsic 
mechanisms acting at the tissue level (10). The 
myogenic component of intrinsic vasoregulation 
is the innate ability of the vascular smooth 
muscle to constrict in response to a stimulus. 
Regulation of tissue oxygenation based on 
metabolic demand constitutes the metabolic 
component which is mediated primarily by pre 
capillary sphincters and factors influencing 
arteriolar resistance. Reduction in arterial 
oxygen content decreases blood flow to the 
intestines and increases flow to brain and heart 
in fetal lambs through the “diving reflex”(11). 
The mechanism underlying such regulation 
at the level of the microcirculation is not well 
understood. Intestinal circulation in neonatal 
3d old swine fails to autoregulate in response 
to reduced perfusion pressure (12). Reducing 
the flow rate in isolated perfused gut loops from 
3d old swine for a sustained period causes an 
increase in vascular resistance (13). These 
findings suggest that reduced oxygen content 
and reduced perfusion pressure paradoxically 
further reduce blood flow to the intestines 
increasing the risk for ischemia.

Extrinsic vasoregulation has a neural 
and a humoral component. The neural 
component is mediated by the sympathetic 
nervous system and the humoral component 
by circulating vasoactive substances (10). 
Available experimental evidence suggests that 
under resting conditions, mucosal perfusion 
is mainly regulated by the vasodilators (NO 
and prostacyclin - PGI2), vasoconstrictors 
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(endothelin) and by the sympathetic nervous 
system (14, 15) (Figure 1). A dynamic balance 
between vasoconstrictor and vasodilator 
forces exists in the intestinal vasculature. 
Vasoconstriction is mediated primarily by ET-1 
and vasodilation by NO. In the newborn, this 
balance heavily favors vasodilation secondary 
to the copious production of endothelium-
derived NO. Endothelial dysfunction occurring 
as a result of various factors alters this balance 
thus favoring ET-1-mediated vasoconstriction 
leading to ischemia and tissue injury (1).

3.2. Vasodilators - NO
NO is produced by the enzyme nitric oxide 

synthase which has three isoforms- Endothelial 
nitric oxide synthase (eNOS), inducible nitric 
oxide synthase (iNOS) and neuronal nitric oxide 
synthase (nNOS). eNOS and iNOS play a more 
significant role in maintaining NO in mesenteric 
vasculature. iNOS is upregulated in certain 
conditions including inflammation and produces 
high levels of NO which may contribute to the 
deleterious effects of NO products such as 
peroxynitrite. These effects will be discussed 
later in this review. eNOS is constitutively 
expressed in the intestinal vasculature and is 
responsible for the low background levels of NO. 
This eNOS mediated NO production is thought 
to contribute to maintenance of vascular tone 
through the cyclic guanosine monophosphate 
(cGMP) pathway.

eNOS-derived NO is the most potent 
vasodilator stimulus present in the newborn 
intestine(16). NO produced in the endothelium 
diffuses to adjacent vascular smooth muscle 
cells, where it binds to the heme moiety of 
soluble guanylate cyclase (sGC), activating 
sGC to produce cGMP(1)(Figure 1). Most 
studies evaluating the role of endothelium 
derived NO have been performed in sheep 
and swine. Endogenous NO has been shown 
to be a significant contributor to the modulation 
of vascular tone in the GI circulation of mid 
as well as late-gestation fetal lambs (17, 18) 
http://www.nature.com/pr/journal/v44/n3/full/
pr19982237a.html - bib6. Postnatally, this role 
of nitric oxide is age dependent, being more 
prominent in 3 d old as compared to 35d old 
piglets (9). Though abundant eNOS mRNA 
is present in fetal and postnatal mesenteric 
arteries (19), eNOS protein peaks at term 
gestation and remains high in postnatal ovine 
mesenteric arteries, exhibiting a distinct 
ontogeny (20).

Several factors may upregulate this 
mechanism. Flow regulated vasodilation  in 
the intestinal circulation is mediated by 
eNOS derived NO and is more prominent in 
the immediate postnatal period (21). Enteral 
feeds can induce a post prandial hyperemia 
in splanchnic circulation, the exact etiology of 
which is not well understood. Doppler ultrasound 

Table 1. Factors that affect intestinal blood flow
Increase intestinal blood flow Decrease intestinal blood flow References

Intrinsic factors

• Nitric oxide • Endothelin‑1 1

• Prostacyclin • Sympathetic stimulation 14, 15

• Heparin binding epidermal growth factor HB‑EGF 26

Extrinsic factors

• Enteral feeding including trophic feeds • Hypoxemia 22, 29, 30

• Hypovolemia 14

• Patent ductus arteriosus 102

• Polycythemia 126

• Medications: indomethacin, caffeine 103, 105, 127

• Red blood cell transfusions 83
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studies of the mesenteric vessels in preterm 
infants have shown a post prandial increase 
in mesenteric flow after the first feed  (22). 
Reber et al noted increased eNOS protein 
in mesenteric arteries of 1-d-old fed piglets 
compared with fetal and 1-d-old unfed piglets, 
suggesting that there may be an upregulation 
of this enzyme after enteral feeds (19). Other 
factors that may affect eNOS expression and 
activity are proinflammatory cytokines, such as 
tumor necrosis factor (TNF) (23), interleukin-
1(IL-1)(24) and toll like receptor 4 (TLR 4) 
(25). Heparin-binding epidermal growth factor-
like growth factor (HB-EGF) is a member of 
the epidermal growth factor family that has 
been studied in NEC. HB-EGF also stimulates 

eNOS protein production and NO release from 
cells (26).

3.3. Vasoconstrictors- Endothelin and 
catecholamines

ET-1 is thought to be the primary 
constrictor stimulus in the intestinal circulation (27) 
and implicated in intestinal vascular dysfunction 
and tissue injury. While it exerts its action 
through receptors A and B (ETRA and ETRB), 
it has been shown that the force of ETRA-
induced vasoconstriction exceeds that of ETRB-
generated vasodilation  (1). Local, constitutive 
production of ET-1 helps in establishing basal 
vascular tone in terminal mesenteric arteries 
from 1 to 5 day old swine via activation of both 

Figure 1. Regulation of the intestinal vasculature. There is a dynamic balance between vasodilators and vasoconstrictors maintaining 
vascular tone and resistance. Vasodilation is mediated primarily by eNOS derived Nitric Oxide (NO) and prostacyclins. Several factors 
present in breast milk promote eNOS mediated vasodilation including platelet activating factor acetyl hydrolase (PAF-AH), heparin binding 
epidermal growth factor (HB-EGF) and tetrahydrobiopterin (BH4). The downstream pathway of vasodilation via NO includes activation of 
soluble guanyl cyclase (sGC) and cyclic guanosine monophosphate (cGMP). Cyclooxygenase (COX) and prostacyclin synthase (PGIS) 
are key enzymes involved in production of prostacyclins(PGI2) which activate the cyclic adenosine monophosphate (cAMP) pathway to 
produce vasodilation. Phosphodiesterase enzymes 3 and 5 (PDE3 and PDE5) degrade cAMP and cGMP respectively. Endothelin 1(ET‑1), 
acting through ET-A receptors and catecholamines acting on the adrenergic receptors act as the primary vasoconstrictors. In addition, 
reactive oxygen species produced as a result of various metabolic pathways may combine with NO to produce peroxynitrite and cause 
vasoconstriction. ET-B receptors promote vasodilation through the production of NO, however the vasoconstrictive action through ET-A 
exceeds the vasodilatory effect through ET-B causing ET-1 to have a net vasoconstrictive effect.



Vascular mediators in necrotizing enterocolitis

	 13� © 1996-2019

ETRA and ETRB receptors  (27, 28). ET-1 
production can be stimulated by decreased 
blood flow, hypoxia and various inflammatory 
cytokines (29, 30).

ET-1 has an age-dependent effect 
within postnatal intestine, being more prominent 
in 3 d old as compared to 35 d old swine.(27) 
Researchers have demonstrated a profound 
reduction of intestinal perfusion and subsequent 
tissue damage following intra-arterial infusion 
of ET-1 (31, 32). Moreover, ET-1 participates in 
the generation of sustained intestinal ischemia 
and subsequent tissue damage following a 
single episode of ischemia-reperfusion (33).

Other vasoconstrictor mediators in 
newborn intestine include angiotensin (ANG) 
and catecholamines like norepinephrine (NE). 
Catecholamines exert their vasoconstrictive 
effects on circulation via alpha adrenergic 
receptors. Alpha adrenergic receptor 1A 
(ADRA1A) appears to be the predominant 
receptor in mesenteric circulation in rat, dog 
and humans (34-36). Sustained reduction 
of blood flow in newborn swine intestine 
decreases constitutive NO production and 
subsequently enhances the contractile 
efficacy of vasoconstrictors ANG II, NE and 
ET-1 (13). In our studies on ontogeny of ovine 
mesenteric vasculature, we have shown 
that mesenteric arterial constriction to NE 
peaks at 134 d corresponding to late preterm 
gestation (Figure  2). In addition, ADRA1A 
mRNA and protein increased significantly at 
134d and decreased postnatally, suggesting 
that mesenteric vasoconstrictive forces 
predominate in late-preterm gestation (20).

4. VASCULAR CONTRIBUTION TO 
ETIOLOGY OF NEC

Abnormalities of intestinal circulation 
have been observed in NEC. High SMA 
vascular resistance is noted in preterm babies 
who later developed NEC (37). Coagulation 
necrosis, which is characteristic of ischemic 
injury, was noted in tissue samples of infants 
with NEC (38). Ischemia and reperfusion 

injury (I/R) has long been postulated as one 
of the etiological factors in NEC with preterm 
neonates being more susceptible to multiple 
episodes of low flow states, hypotension and 
hypoxia. Animal models of NEC have utilized 
hypoxia/reoxygenation to experimentally 
induce NEC (39). However, risk factors like 
intrapartum asphyxia, patent ductus arteriosus 
and umbilical artery catheters are associated 
with equal frequency in preterm infants with and 
without NEC (40). This has led to the current 
presumption that though hypoxia and ischemia 
are unlikely to be the primary initiating event 
in preterm infant, the regulation of intestinal 
circulation, especially the microcirculation, 
does play a role in NEC pathogenesis.

However, in term infants, a vascular 
etiology is often identified. Congenital left sided 
heart disease, gastrointestinal abnormalities, 
hypoxic ischemic injury as well as polycythemia 
are various risk factors in term infants that 
are associated with the development of this 
process (41). Imbalance in the vasoconstrictor 
vasodilator balance may contribute to this 
disease process. Nowicki et al show that 
while eNOS expression is maintained, eNOS 
activity and NO production are decreased in 
mesenteric arterioles isolated from infants with 
NEC(16). Animal models of NEC have yielded 
useful information in the role of NO pathway 
in this condition. NOS blockade decreases 
intestinal microcirculatory blood flow in a rat 
model of NEC (42). In human preterm infants 
with NEC, increased tissue concentration of 
ET-1 and increased arteriolar vasoconstriction 
is noted in intestinal samples with evidence 
of NEC as compared to those from relatively 
healthy intestine in the same specimen (43). 
Blockade of ETRA receptors reversed these 
effects.

4.1. Age at onset of NEC and correlation 
with ontogeny of mesenteric vasculature

Several studies have noted an inverse 
relation with gestational age with the most 
premature infants having the highest risk 
of developing NEC (44, 45). NEC is rare in 
term infants, but when it occurs, it presents 
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in the first week of life. NEC is common in 
extremely premature infants but presents after 
a few weeks of postnatal life. The median 
postmenstrual age at NEC presentation is 
usually around 31-34 weeks (44-46). Some 
studies have suggested that a unique factor 
predisposes preterm infants to develop NEC at 
this postmenstrual age (1). We have previously 
shown that ovine mesenteric vasoconstriction 
mediated by endothelin and catecholamines 
predominates in late-preterm gestation followed 
by a conversion to vasodilatory influences, 
mediated by NO, near the time of full-term 

birth (20)(Figure 2). Distinct ontogenic patterns 
in vascular reactivity have been noted in 
chick embryo where maturation of vasodilator 
mechanisms preceded that of vasoconstrictor 
mechanisms (47).

5. NON-VASODILATORY EFFECTS OF NO IN 
NEC

While NO derived from vascular 
endothelium (mainly through eNOS) promotes 
vasodilation and is protective against NEC, NO 
derived from other sources – mainly iNOS may 

Figure 2. Ontogeny of mesenteric arterial contractility. Distinct ontogenic patterns are noted in mesenteric arterial constriction and relaxation 
patterns in ovine fetal and postnatal mesenteric arteries. The vasoconstrictive ability of mesenteric arteries in response to ET-1 and 
Norepinephrine (NE) peaks at 134d (late preterm) gestation and decreases postnatally after enteral feeds. In contrast, the mesenteric 
arteries of fetal lambs achieve maximal relaxation after birth and enteral feeds. 134d gestation equated to late preterm gestation in humans is 
characterized by maximal constriction and least relaxation responses. (Adapted from Nair et al, Fetal and postnatal ovine mesenteric vascular 
reactivity. Pediatr Res. 2016;79(4):575-582).
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play a role in the pathogenesis of NEC. These 
effects are mediated through intestinal oxygen 
consumption and/or disruption of the epithelial 
barrier permitting invasion by an abnormal 
microbiome.

5.1. Role of NO in intestinal oxygen 
consumption in NEC

NO has a direct effect on cellular 
respiration-it reversibly inactivates 
cytochrome c within the mitochondrial electron 
transport chain (48). Nowicki et al have shown 
that iNOS-derived NO suppressed intestinal 
oxygen consumption in intestine resected 
for NEC (49). Thus, suppression of intestinal 
oxygen consumption is yet one more means 
whereby iNOS-derived NO contributes to the 
pathogenesis of NEC.

5.2. NO, intestinal barrier function and the 
microbiome

The pathogenesis of NEC involves 
disruption of the intestinal epithelial barrier, 
due to a combination of local and systemic 
insults (50). NO is thought to play an important 
role in the intestinal barrier failure seen in NEC. 
In high concentrations it reacts with superoxide 
to form its reactive nitrogen derivative 
peroxynitrite. NO and peroxynitrite may affect 
gut barrier permeability by inducing enterocyte 
apoptosis and necrosis(50), or by altering tight 
junctions or gap junctions that normally play 
a key role in maintaining epithelial monolayer 
integrity(51). NO and metabolites may also 
inhibit the epithelial restitution processes, both 
enterocyte proliferation and migration (52). 
While iNOS plays a major role in NO production 
here, factors that govern iNOS upregulation 
in the intestine are not well understood. 
Increased iNOS expression has been noted in 
intestinal epithelial cells in surgically resected 
tissue samples of NEC (53). In a rat model of 
NEC, induced by formula feeding, upregulation 
of iNOS mRNA, enterocyte apoptosis, and 
decreased IL-12 production in the intestinal 
epithelium was noted (54). High levels of NO 
can lead to increased bacterial translocation 
by  their detrimental effects on the gut 
barrier (51).

The role of the intestinal microbiome 
in the pathogenesis of NEC is still being 
investigated. NEC does not occur in germ free 
animals (55, 56), however, a definite pathogenic 
relationship with specific organisms is not 
seen. It is possible that dysbiosis or altered 
microbiome plays a role, interacting with an 
already immature intestine to contribute to 
NEC. The intestinal microbiome and bacterial 
colonization begins to get established in the 
perinatal period. Organisms that colonize the 
intestines and their components can induce 
production of NO mediated by iNOS. Infection 
with Cronobacterium or E. sakazakii induced 
NEC in a newborn rat model by inducing 
enterocyte apoptosis (57). Furthermore, this 
organism in rat intestinal epithelial cells (IEC‑6) 
induced significant production of nitric oxide 
(NO). This elevated production of NO due to 
increased expression of iNOS was responsible 
for apoptosis of IEC-6 cells (58). Better 
understanding of the role of NO and iNOS 
induction are necessary for developing iNOS-
targeted NEC therapies (52).

6. ROLE OF INFLAMMATORY MEDIATORS IN 
INFLUENCING VASCULATURE IN NEC

The final common pathway of NEC 
involves production of inflammatory mediators 
induced by ischemia, infectious agents, or 
mucosal irritants which recruit inflammatory 
cells and further contribute to tissue injury (59). 
Some mediators that have been recognized for 
their role in NEC pathogenesis include TNF, 
interleukins (IL-1, IL-6, IL-8, IL-10, IL-12, and 
IL-18) and platelet activating factor (PAF) (60). 
Preterm infants with NEC show high levels 
of these cytokines. There is some correlation 
between levels of cytokines and extent or 
severity of disease (61, 62) (63).

Some cytokines play a protective role. 
IL-10 is present in preterm breast milk and a 
paucity of IL-10 in human milk was found in 
mothers whose infants developed NEC(64). The 
mechanism of action is not known. However, 
intraperitoneal administration of IL-10 has been 
shown to decrease the severity of intestinal 
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injury and the level of NO synthesized by 
inhibiting iNOS expression in an IL10 knockout 
rodent NEC model (65).

Inflammatory mediators also seem to 
influence vascular tone by interacting with the 
vasoconstrictors and vasodilators mentioned 
earlier in this review. PAF, synthesized by many 
inflammatory cells and bacteria, can cause 
intestinal necrosis in animals (66). This agent 
can increase transcription of the vasoconstrictor 
ET-1 receptor which in turn can further 
activate PAF (67). Human infants with NEC 
have increased levels of PAF and decreased 
expression of PAF acetylhydrolase (PAF-AH), 
which is the enzyme responsible for degrading 
PAF (68). Human milk contains PAF-AH but this 
compound is absent in infant formula. Enteral 
administration of the recombinant PAF-AH 
enzyme markedly reduced the incidence of 
NEC in a rat model of the disease (69).

7. REACTIVE OXYGEN SPECIES AND NEC

Oxidative stress is defined as an 
imbalance between production of oxidative 
reactive species and antioxidant defenses. 
Premature infants, in general, have poor 
antioxidant defenses since the physiologic 
increase in antioxidant capacity occurs at the 
end of gestation (70). Oxidative stress (71) and 
reactive oxidative species like superoxide have 
been implicated in NEC pathogenesis. This 
may involve components of the NO, NADPH 
oxidase (72) and xanthine oxidase pathway. 
Certain conditions including tetrahydrobiopterin 
deficiency can cause uncoupling of eNOS, 
resulting in a switch from producing NO 
to superoxide (73). In neonatal rat pups, 
intestinal ischemia is associated with this NOS 
dependent uncoupling mechanism causing 
over-production of reactive oxygen species and 
impaired vasodilation (74). In addition, stress 
induces iNOS causing high concentrations of 
NO in the intestinal microcirculation (74, 75). 
This NO may react with available superoxide 
to produce peroxynitrite, another oxidant 
agent that causes further cellular and tissue 
damage(76). Magnesium and copper deficiency 

impair antioxidant defense through decreased 
synthesis of glutathione and reduced activity 
of Cu/Zn superoxide dismutase (77). Recently 
there is some evidence to suggest that 
maternal magnesium sulfate reduces cytokine 
IL-6 and TNF-α production in neonates, 
suggesting potential as therapy in various 
neonatal inflammatory conditions (78). The 
role of antioxidants like all-trans-retinoic acid 
(ATRA)  (79) and N-acetylcysteine (NAC)(80) 
in treating NEC is being investigated in animal 
models. Enteral glutamine and/or arginine 
(precursors of NO) supplementation have 
shown favorable effects on oxidative stress 
parameters in neonatal rat intestine (81).

8. NO IN TRANSFUSION ASSOCIATED GUT 
INJURY

Over the last few years, several 
studies noted an association between packed 
red blood cell (PRBC) transfusions and the 
development of NEC (82-84). “TRAGI” or 
transfusion associated gut injury, the term 
proposed by Blau et al (83), was thought to be 
due to a failure of the postprandial increase in 
mesenteric blood flow following a transfusion.

Blood products affect arterial reactivity 
and intestinal motility (85). Beneficial effects 
of transfusion include hypoxic vasodilation, 
proposed to be due to the action of NO 
through S-Nitrosylation of hemoglobin 
(SNO-Hb). Within red blood cells (RBCs), Hb 
is S-nitrosylated during the respiratory cycle 
and thereby conveys NO bioactivity that may 
be dispensed to regulate local blood flow in 
the physiologic response known as hypoxic 
vasodilation. Hb thus both delivers oxygen 
directly and delivers vasoactivity to potentially 
optimize tissue perfusion in concert with local 
metabolic demand. It has been shown recently 
that storage of blood depletes S-nitrosylated 
Hb(86), accompanied by reduced ability of 
RBCs to induce vasodilation. This “storage 
lesion” appears to account in significant part 
for the impaired ability of banked RBCs to 
deliver oxygen. The mechanisms involved 
include reduced RBC deformability, increased 
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red blood cell adhesion and aggregation, 
prothrombotic tendency and nitric oxide 
deficiency(87). Renitrosylation can correct this 
impairment and thus may offer a means to 
ameliorate the disruptions in tissue perfusion 
produced by transfusion(86). PRBC transfusion 
in enterally fed preterm lambs promotes 
mesenteric vasoconstriction and impairs 
vasorelaxation by reducing mesenteric arterial 
eNOS (88). In addition, recently, investigators 
have found that PRBC have the potential to 
release high quantities of the endogenous 
NOS inhibitors ADMA and LNMMA (89). RBC 
transfusion can also significantly increase post-
transfusion plasma free Hb levels and plasma 
NO consumption in the recipient (90).

We have evaluated the changes in 
oxygen extraction and SMA blood flow in 
preterm lambs (134 d gestation; term ~ 147 d) 
with anemia induced by partial exchange 
transfusion (91). Preterm lambs with normal 
hematocrit had 21.8.7±6.6.5 ml/kg/min of SMA 
flow and an oxygen extraction ratio (OER) 
percentage of 9.3.7±1.5. Enteral feed with ewe’s 
colostrum increased SMA flow and increased 
oxygen delivery to the intestines (Figure 3). The 
OER stayed the same. Lambs with anemia had 
a higher SMA flow at baseline to compensate 
for lower oxygen content in the blood. Following 
colostrum feed, SMA blood flow did not further 
increase but the oxygen demand was met by 
increased oxygen extraction (Figure 3). Thus, 
the increased oxygen demand in response 
to enteral feeding is met by increasing blood 
flow and/or oxygen extraction. Transfusion of 
PRBC (7 days old) was followed by an enteral 
feed. A prior transfusion prevented postprandial 
increase in intestinal blood flow and oxygen 
extraction. In the presence of severe anemia 
and low oxygen delivery to the intestine, we 
speculate that transfusion followed by feeds 
increases oxygen demand above oxygen 
supply leading to ischemia.

More recently, the consensus on the 
etiopathogenesis of transfusion associated 
NEC is that the state of chronic anemia 
contributes significantly to this condition (92). 

In a large multicenter study in very low birth 
weight (VLBW) infants, severe anemia, but 
not RBC transfusion, was associated with an 
increased risk of NEC (93). Krimmel et al (94) 
looked at doppler SMA flow velocities and 
noted that if bolus feedings were preceded 
by blood transfusions, only anemic neonates 
weighing <1250 grams failed to develop a 
postprandial rise in mesenteric artery blood 
flow velocity. Lower hemoglobin levels may 
cause gut injury though interactions between 
hypoxemia, enteric blood flow and feeding. A 
trial evaluating optimal threshold for transfusion 
of preterm infants (TOP) is currently recruiting 
patients and will assess the incidence of 
NEC in higher and lower hemtocrit threshold 
groups of preterm infants (Clinical trials no 
NCT01702805).

9. INFLUENCE OF COMMON NEONATAL 
MORBIDITIES IN THE EXTREMELY 
PREMATURE INFANT ON MESENTERIC 
VASCULAR REGULATION AND NEC

9.1. Hypotension and dopamine
VLBW infants are prone to several 

morbidities as a result of their gestational age 
and immature adaptation abilities. Physiological 
instability, mechanical ventilation, increased 
hemodynamic support or extensive neonatal 
resuscitation and hypotension are reported as 
additional risk factors for NEC (95). In addition, 
the use of vasopressors in the first week of 
life has been shown to be associated with 
mortality in infants who subsequently developed 
NEC(96). This likely signifies the extent of 
their hemodynamic instability and hypotension 
which contributed to the disease process. 
One of the most common medications used to 
manage hypotension is dopamine. However this 
medication itself may cause significant effects on 
intestinal vasculature. Dopamine caused smooth 
muscle contraction in mesenteric arterioles and 
precapillary sphincters of anesthetized dogs, 
producing intestinal ischemia and hypoxia (97). 
While doppler studies in preterm infants have 
shown that dopamine increased mesenteric 
blood flow velocity and decreased mesenteric 
vascular resistance (98), dopamine-induced 
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increases in SMA blood flow have been 
associated with decreases in oxygen extraction 
and mucosal blood flow (99, 100).

9.2. Patent ductus arteriosus and 
indomethacin

A patent ductus arteriosus (PDA) 
can be a risk factor for NEC (101),(102). Due 
to the systemic steal phenomenon, there is 
potentially decreased mesenteric perfusion 
in a hemodynamically significant PDA, 
predisposing the infant to intestinal ischemia. 
Preterm infants with PDA have been reported to 
have low mesenteric blood flow velocity (103). 
Indomethacin, ibuprofen and more recently 
acetaminophen are medications commonly 
used in the NICU to treat hemodynamically 
significant PDAs. Indomethacin, a 
cyclooxygenase (COX) inhibitor, independently 
reduces intestinal blood flow (104, 105) and 

has been associated with increased incidence 
of NEC in VLBW infants (106, 107). However 
other large studies like the Trial of Indomethacin 
Prophylaxis in Preterm Infants (TIPP) did not 
find a significant increase in the risk of NEC with 
indomethacin as prophylaxis for intraventricular 
hemorrhage or PDA (108) and it still continues 
to be used to treat this condition. Ibuprofen 
does not decrease mesenteric blood flow (105) 
and may a better pharmacologic choice to treat 
a PDA without increasing the risk of NEC (109).

10. THERAPIES IN PREVENTION AND 
MANAGEMENT OF NEC THAT INFLUENCE 
THE VASCULATURE

10.1. Breast milk and ingredients
Breast milk is known to be protective 

in NEC (110, 111). Besides immunological 
factors like secretory IgA and anti-inflammatory 

Figure 3. Mesenteric arterial flow (A) and oxygen extraction (B) are affected by enteral feeds and transfusions in preterm lambs. After 
enteral feeds, SMA flow rises significantly in normal preterm lambs (black solid line) without any significant change in oxygen extraction ratio. 
Transfusion with pRBC (black dashed line) blunts this postprandial rise in flow. Anemic preterm lambs (grey solid line) have a higher baseline 
SMA flow which does not show any significant change after enteral feeds. Instead, oxygen extraction rises after feed to meet tissue metabolic 
needs. Transfusion with pRBC in these lambs (grey dashed line) does not change the SMA flow but significantly decreases oxygen extraction 
as well. (Adapted from Nair et al, Transfusion Decreases Intestinal Oxygen Extraction in Anemic Preterm Lambs After Feeds Pediatric 
Academic Societies Abstracts, 1705.8. 2014) Figure key: Black solid line- normal preterm lambs, black dashed line- normal preterm lambs 
transfused with pRBC, grey solid line- anemic preterm lambs, grey dashed line- anemic preterm lambs transfused with pRBC.
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cytokines that are present in breast milk, 
there are several other compounds such as 
erythropoietin and oligosaccharides that have 
been studied in relation to NEC. Breastfeeding 
also influences the composition of infant’s 
gut microbiota(112). EGF found in breast 
milk, has been noted to protect intestinal 
epithelium against injury (113). Administration 
of exogenous HB-EGF in rodents protects 
the intestines from experimental NEC (114). 
Tetrahydropterin (BH4) present in breast milk is 
a required cofactor for eNOS coupling and NO 
generation and has been shown to enhance 
mesenteric blood flow (115). Exposure 
to BH4 reduces newborn rat mesenteric 
arterial vascular tone  (116). Higher biopterin 
concentrations have been observed in human 
breast milk, when compared with infant 
formula  (116). This may potentially be one of 
the factors that explain the protective effects of 
breast milk over formula use in NEC patients.

10.2. Arginine supplementation
NO is synthetized from the 

conditionally essential amino acid L-arginine by 
NO synthases (117). Researchers found that 
continuous intravenous infusion with L-arginine 
markedly reduced intestinal injury in a neonatal 
pig model of NEC (118). Premature infants 
with NEC were noted to have decreased 
plasma arginine concentrations at the time 
of diagnosis  (119). The role of L-arginine 
supplementation has been explored in small 
studies and shows some promise in reducing 
the incidence of NEC (120, 121). However, 
larger studies are required to assess its efficacy 
in preventing NEC in VLBW preterm neonates 
before widespread use can be recommended.

10.3. Inhaled NO
Inhaled NO exerts beneficial effects on 

ischemia/reperfusion injury in extra pulmonary 
organs in animal (122) as well as human 
studies (123, 124). Administration of inhaled 
NO has been shown to reduce the size of 
infarct following stroke in rodent models (125). 
A similar approach to NEC has been proposed 
and is being currently investigated in preterm 
infants (Clinical trials # NCT02851472).

11. SUMMARY AND PERSPECTIVE

Similar to the lung, the fetal intestine 
is a relatively dormant organ whose nutritive 
function is performed by the placenta. Just as 
breathing air results in pulmonary vasodilation, 
enteral feeding reduces intestinal vascular 
resistance. The intestinal oxygen demand 
increases with enteral feeding and inability to 
meet this demand due to stressors such as 
severe anemia, prematurity and transfusions 
causing a predominant vasoconstrictor stimulus 
may lead to disruption of the epithelial barrier. 
Finally, the complex interaction between 
intestinal microbiome, epithelial barrier and 
vasodilators such as NO may play a role in the 
pathogenesis of NEC. Understanding these 
interactions may enable us to come up with 
newer, innovative, preventive and therapeutic 
strategies against NEC.
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