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1. ABSTRACT 

Atherosclerosis is one of the leading 

causes of death from cardiovascular disease 

(CVD) that primarily involves  mid size and large 

arteries. Atherosclerosis is associated with 

disruption of lipid metabolism and chronic 

inflammatory processes. One approach for 

treatment of atherosclerosis is by virtue of 

epigenetic control by noncoding RNAs (ncRNA) 

including miRNA, siRNA and lncRNA,  commonly 

employing miRNA antagonists and mimic 

compounds. Here, we review such usages as well 

as other approaches for correcting the molecular 

lesions of atherosclerosis including specific 

activation of atheroprotective miRNAs, as well as 

use of siRNAs and lcRNA to control aberrant lipid 

metabolism.  We also discuss some of these 

technologies that have already shown to be 

effective in clinical trials and are likely to enter the 

clinical arena. 

2. INTRODUCTION 

Cardiovascular diseases (CVDs) are the 

leading causes of death of 17.9 million people or 31% 

of all deaths worldwide  annually (1). Among these 

diseases, atherosclerosis ranks highest, being a 

chronic inflammatory disease of the middle and large 

arteries that results from disruption of lipid 

metabolism and functional disorders in the arterial 

wall (2). The disease is initiated in the intima by 

accumulation of low-density lipoproteins (LDL), and 

consequent activation of endothelial cells, and the 

recruitment of monocytes to the intima, where they 

differentiate into macrophages, intake of modified 

lipoproteins and formation of foam cells (3). 

Atherosclerotic plaque are characterized by a fibrous 

cap that covers a necrotic center, rich in lipids and 

bordering by white blood cells in the marginal zones 

(3). This results in conversion of the endothelial cells 
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and proteolytic degradation of the the extracellular 

matrix. Such unstable lesions can rupture and lead to 

myocardial infarction or stroke. 

The use of noncoding RNA (ncRNA) has 

emerged as a promising approach in the treatment of 

atherosclerosis (4). MicroRNAs (miRNAs) are small 

noncoding single-stranded molecules comprised of 19-

22 nucleotides that posttranscriptionally regulate gene 

expression (2-5). Another class of noncoding RNAs are 

interfering RNAs (siRNAs), small RNAs comprised of 

21-23 bp. These RNAs are double-stranded with one 

inactive sense strand matching the target mRNA and an 

antisense active strand (5). The mechanism of action of 

many miRNAs is similar to the action of siRNAs; 

however, the latter act exclusively on one gene (5). In 

this review, we discuss the new therapeutic approaches 

that lend themselves in correcting genetic regulation of 

transcription of key genes involved in the development 

of atherosclerosis through an epigenetic approach.  

3. LIPID METABOLISM IN 

ATHEROSCLEROSIS 

Atherosclerosis is a chronic disease 

characterized by the activation of innate and adaptive 

immunity (7). The main cause of the development of 

atherosclerosis is a disruption of lipid metabolism 

associated with dysfunction of apolipoprotein B 

(apoB) (6-7). The latter is a cofactor of enzymes, 

receptor ligands and lipid transporters that regulate 

lipoprotein metabolism and tissue uptake (8). 

Numerous studies have demonstrated the 

involvement of LDL, apoB, and very low-density 

lipoproteins (VLDL) and their residues in the 

formation of atherosclerosis (9-10). 

The key event in the initiation of 

atherosclerotic lesions is the retention and 

accumulation of cholesterol-rich apoB-containing 

lipoproteins in the intima of the arteries which as a 

consequence leads to the formation of 

atherosclerotic plaques (11). LDL and other apoB-

containing lipoproteins with a diameter of less than 

70 nm freely pass through the arterial intima (10). 

The physiological level of LDL cholesterol 

(LDL-C) is considered to be in the range of 0.5–1.0 

mmol/L (20–40 mg / dL) for LDL-C (10). Higher levels 

of LDL-C increase the chance of internal retention of 

LDL which is the initial event in initiation and 

progression of atherosclersis (8, 10). 

The terminology “cholesterol”, and “LDL 

cholesterol (LDL-C)” is often used interchangeably 

(13). Cholesterol is an important component of the 

cell membrane, the precursor of bile acids and steroid 

hormones. LDL particles make up an  approximately 

90% of the entire circulating apoB-containing fraction 

of lipoproteins in the fasting blood in most people (10, 

12). However, in clinical practice, plasma LDL is 

usually not measured directly but is measured by the 

concentration of its LDL cholesterol, an indicator of 

the total amount of cholesterol that is contained in 

LDL particles. Thus, the level of LDL in plasma has 

become an important parameter for assessing the 

risk of developing CVDs and in obtaining a 

therapeutic effect. 

3.1. Therapeutic approaches based on the 

use of miRNAs aimed at the disruption of 

lipid metabolism 

Today, there are many highly effective 

substances that reduce the level of LDL (13). 

Currently, new long-acting drugs are being 

developed to reduce lipid levels (13). Based on the 

importance of reducing LDL, the role of miRNA in the 

regulation of gene expression that leads to 

dysfunction of endothelial cells and the development 

of atherosclerosis is being actively pursued (14). 

Large-scale global studies have identified numerous 

miRNAs, which are important regulators of lipid 

metabolism (15). Given that microRNAs have the 

potential to regulate several genes and molecular 

pathways, there is a great interest to examine and 

identify atheroprotective miRNAs and discriminate 

these from those that are proatherogenic 

(Table 1)(16). 

The miRNAs of the RNA-induced silencing 

complex (RISC) can bind to a complementary 

sequence in the 3’ untranslated region of the target 

messenger RNAs (mRNA). This leads to 

posttranscriptional cleavage by endonucleases and 

degradation of the sequence complementary to the 

target mRNA (17). miRNA can also induce the 

deadenylation and decapping of mRNA (18). 
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Studies in mice have shown that 

overexpression of miR-30c inhibits microsomal 

triglyceride transfer protein by reducing VLDL 

production (Figure 1) (19). The accumulation of low-

density lipoprotein (LDL) leads to the activation of 

endothelial cells (19). The study of Sodi R. et al. 

(2017) showed a positive correlation between miR-

30c expression with total cholesterol and LDL in 

cases of hypercholesterolemia (20). miR-30c inhibits 

lipid synthesis in the liver by acting on 

lysophosphatidylglycerol acyltransferase-1 

(LPGAT1), an enzyme which is involved in the 

synthesis of phospholipids (21). Increased 

expression of miR-30c is a compensatory 

mechanism aimed at reducing lipid secretion in 

hypercholesterolemia (20). Thus, the increased 

expression of miR-30c can be used in the treatment 

of hyperlipidemia and atherosclerosis. 

miR-33 inhibits a cluster of genes that 

control cellular energy metabolism and cholesterol 

outflow from macrophages (Figure 1) (22). The 

miR-33 family consists of miR-33a and miR-33b 

encoded in introns of the genes, sterol regulatory 

element-binding proteins 1 (SREBP1) and sterol 

regulatory element-binding proteins 2 (SREBP2) 

(22). Both miR-33 isoforms have the same 

sequence, but in the 3’ region, there are 

differences of two nucleotides (23). The role of 

miR-33 in sterol metabolism was originally 

reported as a regulator of cholesterol transporter 

expression (ABCA1 and ABCG1) in hepatocytes 

and macrophages in mice (24, 25). ATP-binding 

cassette A 1 (ABCA1) is the main regulator of 

reverse cholesterol transport (26). ATP-binding 

cassette subfamily G member 1 (ABCG1) is 

involved in the transport of cholesterol and 

phospholipids in macrophages and can regulate 

cellular lipid homeostasis in other types of cells 

(27). 

Overexpression of miR-33 suppresses the 

expression of ABCA1 and ABCG1 genes in the liver 

and contributes to a decrease in the level of HDL in 

the blood plasma of mice (Figure 1) (24). However, a 

decrease in miR-33 expression using antisense 

oligonucleotides (ASO-33) leads to an increase in the 

expression of the ABCA1/ABCG1 genes and plasma 

HDL levels (24). In addition, the inhibition of miR-33 

increased mitochondrial respiration and ATP 

production by activating miR-33 target genes, such 

as peroxisome proliferator-activated receptor gamma 

coactivator 1-alpha (PGC1-α) and pyruvate 

dehydrogenase lipoamide kinase isozyme 4 (PDK4) 

(22). 

Currently, miRNA therapy more commonly 

employs compounds that act as miRNA antagonist 

(28) rather than miRNA mimics. The introduction of 

miR-33 antagonists coordinates a network of 

metabolic processes that increase ATP-dependent 

cholesterol outflow and contributes to 

antiatherogenic effects in macrophages, 

emphasizing a new therapeutic pathway to stimulate 

cholesterol outflow and to reduce atherosclerosis 

(28). 

An increase in circulating apoB-containing 

lipoproteins (VLDL and LDL) leads to infiltration and 

retention of these lipoproteins in the arterial wall, 

Table 1. The mechanism of action of non-coding RNA 

ncRNA Impact targets  Impact level  Therapeutic strategies based on ncRNA 

Downregulation Upregulation 

miRNA Regulate the expression of 

several genes 

Repression translation degradation of 

mRNA 

Anti miRNA:  Inhibition 

endogenous miRNA;  miR 

sponges;  Target site blocker;  

CRISPR 

Mimics miRNA; 

re-introduction 

of miRNA ORN 

siRNA Highly specific, 

complementary to the 

target gene 

Endonucleolytic cleavage of the 

target mRNA 

– – 

lncRNA Regulate the expression of 

several genes 

Regulation of gene expression from 

the start of transcription to protein 

translation 

Inhibition LNCRNA:  LNA-

GapmeR;  Short hairpin RNA; 

CRISPR 

– 

Note: ncRNA - non-coding RNA; ORN - synthetic oligoribonucleotides. 
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which is a critical event in the development of 

atherosclerosis (15). The microRNA, miR-122, is 

highly expressed in the liver and is involved in fatty 

acid metabolism (9). Inhibition of miR-122 expression 

contributes to lower plasma cholesterol and 

triglyceride levels in animals, and elevated miR-122 

levels have been reported in patients with 

nonalcoholic fatty liver disease, obesity, and type 2 

diabetes (29-30). MiR-122 influences lipid 

metabolism, making it a promising biomarker of 

cardiovascular and metabolic disorders. Statins 

reduce miR-122 levels in the blood circulation, while 

other types of drugs, such as platelet inhibitors, do 

not affect this expression (31). However, the 

molecular mechanisms and mRNA targets that 

mediate this effect remain unknown. Wang Y. et al. 

(2018) proved that serum miR-122 can be used as a 

biomarker for non-invasive diagnosis of 

atherosclerosis and assessment of the extent of 

atherosclerotic lesions in the arteries (32). 

miR-148a may control an extensive 

network of lipid metabolism regulators, including LDL 

(26). Inhibition of miR-148a increases the expression 

of LDLR (LDL) in the liver and decreases plasma 

LDL-C in mice (Figure 1) (26). MiR-148a is also 

expressed in adipose tissue and hematopoietic cells 

(33). Genome-wide association studies (GWAS) 

revealed that SNPs in the miR-148a locus are 

associated with obesity (34). 

In humans, miR-128 is encoded in the 

intron of the R3H domain containing 1 gene 

(R3HDM1) on chromosome 2 and is coexpressed 

 
 

Figure 1. MicroRNAs effect on cellular mechanisms of atherosclerosis. Activation   ; Suppression  ┤; Upregulation  ; Downregulation  , 

TG - triglycerides; LDL - low-density lipoprotein; ABCA1 - ATP-binding cassette A 1; ABCG1 - ATP-binding cassette subfamily G member 1; 

LPGAT1 - lysophosphatidylglycerol acyltransferase-1; MTP - Microsomal triglyceride transfer protein; AGPAT – 1-acylglycerol-3-phosphate-

O-acyltransferase; DGAT1 - Diacylglycerol O-acyltransferase 1; PGC-1α - peroxisome proliferator-activated receptor gamma coactivator 1-

alpha; SLC25A25 - Solute Carrier Family 25 Member 25; NRF1 - nuclear respiratory factor; TFAM: transcription factor A, mitochondrial; 

OxoLDL - oxidized low-density lipoprotein; ApoB - apolipoprotein B. 
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with its host gene in many tissues (33). Some authors 

have shown that miR-128-1 plays a key role in the 

regulation of lipid cholesterol and energy 

homeostasis of both the proapoptotic molecule and 

as the regulator of cholesterol homeostasis (35). 

Activation of miR-128-2 reduces cholesterol efflux by 

inhibiting the activity of the ABCA1, ABCG1 and 

retinoid X receptor alpha (RXRα) genes in human cell 

lines (35). 

miR-148a and miR-128-1 control 

lipoprotein metabolism in the blood by directly 

targeting the 3’ UTR of the LDL receptors and ABCA1 

genes (Figure 1) (33). Antagonists of miR-128-1 also 

improve the clearance of glucose and increase the 

sensitivity of the liver to insulin. In addition to 

regulating lipoprotein metabolism, miR-128-1 

regulates ABCA1 expression in macrophages and 

improves cholesterol outflow from them (33). These 

studies demonstrate that antagonism of miR-148 and 

miR-128-1 may be a promising therapeutic approach 

for the treatment of dyslipidemia, obesity, and CVDs. 

Atherogenic components of the lipid and 

proteome appear to play a role in atherogenesis. The 

role of macrophages in lipid metabolism which 

includes: cholesterol absorption, esterification and 

outflow, offers the opportunity to disrupt and hence to 

prevention of formation of "foam cells" (36). Oxidized 

or otherwise altered LDL accumulates in the 

subendothelial space and is absorbed by 

macrophages, forming foamy cells, which lead to the 

development of fatty subendothelial arterial bands of 

precursors of atheroma (37). Small, dense LDL 

particles are more susceptible to oxidation and 

accumulate more easily due to prolonged 

postprandial hypertriglyceridemia and low HDL 

cholesterol, resulting in an inflammatory reaction that 

is atherogenenic in nature, which forms the basis of 

so-called “response-to-injury” model of 

atherosclerosis. 

miR-148a, along with its participation in 

lipid metabolism, together with DNA 

methyltransferase 1 (DNMT1), regulates the 

expression of genes involved in the pathogenesis of 

atherosclerosis (39). DNMT1 is a target gene for miR-

148a / 152. Overexpression of miR-148a / 152 leads 

to suppression of the expression of DNMT1, and 

suppression of miR-148a / 152 contributes to 

increased expression of DNMT1 (39). Mutual 

regulation between miR-148a / 152 and DNMT1 in 

foam cells probably plays a critical role in the 

pathogenesis of atherosclerosis. 

Thus, metabolism of lipoproteins is an 

important therapeutic target in the treatment of 

atherosclerosis. Increasing the expression of miR-

30c and inhibiting the expression of a host of other 

miRNA namely, miR-33, miR-122, miR-128-1, miR-

128-2 and miR-148 have all been proposed as 

therapeutic appraoches for disorders of lipid 

metabolism and atherosclerosis (Figure 1). Currently, 

several patents on the use of miR-33 inhibitors 

(US8859519B2) (40) and mir-27b and mir-148a 

(WO2014201301A1) (41) mir-128 

(WO2012097261A2) (42) for the treatment of 

dyslipidemia have been filed. There are also ongoing 

preclinical trials for the treatment of atherosclerosis 

based on targeting miRNAs such as anti-miR-148a, 

anti-miR-122, anti-miR-33, anti-miR-92a, anti-miR-

33, and anti-miR155 (43). 

3.1.1. Technologies for miRNA delivery 

There are two main approaches for using 

miRNAs as targets. They include use of antisense 

oligonucleotides (ASOs), and inhibitors, miR 

sponges, target site blockers (TSB)), and miRNA 

mimics. 

miRNA mimics are RNA molecules that 

mimic endogenous molecules and help enhance their 

function. The goal of this approach is to reintroduce 

miRNA, that their expression has been decreased in 

a  pathological process. MiRNAs are delivered to 

cells via nanoparticles, encapsulation in liposomes, 

or miRNA expression vectors (44). 

Antagonists of miRNAs are used to inhibit 

endogenous miRNAs that demonstrate an enhanced 

function in a pathological context (Table 1). These 

treatments are similar to methods that utilize siRNA. 

The miRNA antagonists bind to mature miRNA 

targets with strong affinity, forming a duplex that is 

ultimately destroyed. Since miRNAs regulate the 

expression of several genes, inhibition of miRNAs 

may have side effects. Target site blockers are 
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antisense oligonucleotides designed to bind to a 3' 

UTR region which are complementary to miRNAs. In 

view of the development of methods and chemical 

modifications that can stably inhibit miRNAs and 

optimize their delivery, the utilization of miRNAs has 

increased in recent years. These techniques block 

nucleic acids (LNA), peptide nucleic acids (PNA), 

phosphorothioate groups (phosphorothioate 

oligonucleotide), miRNA sponges and nanoparticles 

(45, 46). 

The base constituting the LNA is a nucleic 

acid analog in which the ribose ring is chemically 

modified by the introduction of a methylene bridge. 

This chemical modification provides the molecule 

with a greater thermodynamic stability and prevents 

its destruction by nucleases, enhancing its affinity for 

its target (47). The effective method for suppressing 

miRNA functions is accomplished by the so-called 

“miRNA sponges”. This method directly “adsorbs” 

miRNAs so that miRNA molecules can not further 

bind to their natural mRNA targets. (45). This 

technology improves the understanding of the 

functions of miRNAs and has the potential to be used 

clinically for the treatment of remedying the 

dysregulation of miRNAs in atherosclerosis. 

The oligonucleotides for systemic use are 

introduced intravenously or by subcutaneous 

injection. After systemic administration, single-

stranded phosphorothioate-modified antisense 

oligonucleotides are rapidly transferred from the 

blood to the tissues. The uptake of oligonucleotides 

by cells is predominantly mediated by endocytosis. 

Thus, improvements of use of  miRNAs greatly 

hinges upon development of methods that stably 

inhibit miRNAs and optimizing their delivery. 

3.2. Therapeutic approaches based on the 

use of siRNAs aimed at the disruption of 

lipid metabolism 

Use of siRNAs as therapeutic agents is 

much ahead of the technology in using miRNAs (48). 

In contrast to miRNAs that target several related 

genes, siRNAs are highly specific as they target a 

single gene. siRNAs in the protein complex are 

responsible for the specific cleavage of the target 

RNA because they are completely complementary to 

these target sequences (Table 1) (46). miRNAs are 

encoded by their own genes and are cut out from the 

hairpin formed by the precursor. siRNAs are not 

coded by genes, rather they represent fragments of 

longer RNA (49). 

There are two fundamentally different 

strategies for the treatment of atherosclerosis using 

miRNA: increasing miRNA levels by overexpressing 

them using synthetic oligoribonucleotides (ORN) or 

via targeted inhibition of miRNA using single-chain 

antisense oligonucleotides (anti-miRs) (50). Inclisiran 

is a chemically synthesized siRNA molecule that 

insures sustained specific silencing of the RNA 

transcription factor of proprotein convertase 

subtilisin/kexin type 9 (PCSK9) in hepatocytes. 

PCSK9 contributes to the degradation of the LDL 

receptor to control plasma LDL cholesterol levels 

(51). Thus, PCSK9 causes a steady decrease in the 

level of low-density lipoprotein cholesterol (LDL) in 

patients who are at a high risk for developing CVDs 

(52). It appears that  Inclisiran can be safely and 

efficiently be used for lowering LDL cholesterol (52). 

Profiles of circulating miRNA in patients 

that are at various stages of atherosclerosis have 

been indexed at ClinicalTrials.gov (NCT03855891) 

(53). The effectivenss of several siRNA-based drugs 

have proven effective as promising treatments for 

CVDs have passed clinical trials (54). Clinical trials 

are currently underway to evaluate the effectiveness 

and safety of Inclisiran (ORION-4, NCT03705234 

(52); ORION-10, NCT03399370) (55). 

3.2.1. Technologies for siRNA delivery 

Therapeutic approaches based on the use 

of siRNA include the introduction of synthetic siRNA 

into target cells to induce RNA interference (RNAi), 

thereby inhibiting and silencing the expression of 

specific messenger RNA (mRNA) (56). Although 

siRNA and microRNA have similar physico-chemical 

properties, they markedly differ in respect of their 

regulation property.  siRNA, leads to the 

endonucleolytic cleavage of the mRNA while 

microRNA, repress translation and caused mRNA 

degradation (56). 

At present, the most common method of 

delivery for these RNAs is to use lipid-based 
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nanocarriers of siRNA or  miRNAthat traverse cell 

membrane (57-58). Another potential therapeutic 

approach is to block miRNA using siRNA and to 

suppress the synthesis of many proteins (56). 

The method of delivery of miRNAs requires 

further research, because although these are small 

molecules, they are still too large to penetrate the 

plasma membrane on their own. Thus, the success 

of new therapies using small RNAs all depends on 

the development of efficient mechanisms tha allow 

delivery of these molecules to target cells. In addition, 

while circulating in the bloodstream, these molecules 

are unstable and are rapidly destroyed. 

Despite a great promise, such strategies 

impose disadvantages, and may be associated with 

side effects. For example, the use of some miRNAs 

can cause dyslipidemia, obesity, liver steatosis, or 

hepatocellular carcinoma pointing to the fact that 

further research is needed to develop ways to 

prevent such complications.  

4. INFLAMMATION AS A MAJOR RISK 

FACTOR FOR ATHEROSCLEROSIS 

Epidemiological studies have shown that 

chronic stress plays an important role in the 

development of atherosclerosis, yet all the risk 

factors for the disease have yet to be fully 

characterized (59). Chronic stress has a significant 

effect on the accumulation of macrophages in the 

intima and in acceleration of damage to the vascular 

endothelial cells. (59). In addition, chronic oxidative 

stress is an independent risk factor for the 

development of atherosclerosis and intimal 

functioning. Foam cells perform proatherogenic 

functions and increase the activity of enzymes that 

destroy the matrix. This increases the likelihood of 

plaque rupture and occlusion of blood vessels (1). 

In a mouse model of atherosclerosis, miR-

155 was expressed in plasma and macrophages. 

Inhibition of miR-155 in mice significantly reduced 

lipid accumulation in macrophages and reduced the 

size of the atherosclerotic plaques (60). The 

increased expression of miR-98 also inhibited the 

formation of foam cells (61). Search for new targets 

aimed at a heterogeneous population of foam cells 

may provide novel therapeutic approaches. 

The formation of neointimal injuries is one 

of the causes of atherosclerosis that is regulated by 

miR-21. Consistent with this, suppression of miR-21 

expression contributed to a reduction in neointima 

formation in the rat carotid artery after angioplasty 

(62). It has been shown that shear stress induces 

miR-21 which, in turn, modulates apoptosis and 

eNOS activity (63). miR-21 directly impacts NF1B 

and CDC25A,  a cyclin-dependent kinase regulator of 

cell proliferation and apoptosis. Stress also induces 

miR-21 in vascular smooth muscle cells in rats and 

activation of miR-21 has been shown to inhibit 

apoptosis and proliferation of vascular smooth 

muscle cells, which contributes to the thickening of 

neointima in vivo (64).  

5. EPIGENETIC REGULATION IN THE 

TREATMENT OF ATHEROSCLEROSIS 

In the last decade, increasing evidence has 

helped to characterize the role of abnormal 

epigenetic modulation in the development of 

cardiovascular diseases. The traditional view that 

chronic inflammatory and lipid disorders are the main 

immediate causes of atherosclerosis has graduallty 

shifted to consider this disease to be due to 

epigenetic changes. For this reason, epigenetic 

modifications, such as DNA methylation and post-

translational modifications of histones, are now 

accepted as promising approcahes for the treatment 

of many diseases including atherosclerosis 

(Figure 2). Patients with cardiovascular diseases 

show differential DNA methylation and acetylation 

profiles in tissues and cells including aortic lesions, 

vascular endothelium, and monocytes (65), 

suggesting that alteration of histone methylation or 

acetylation can be effectively used for the regulation 

of epigenetic processes that lead to the disease 

(Figure 2). Posttranslational modifications regulate 

gene expression by remodeling og chromatin 

structure from a tightly packed condensed state 

(heterochromatin) to an open conformational state 

(euchromatin), which allows nuclear transcription 

factors or DNA-binding proteins to access DNA and 

thus change gene expression (Figure 2) (66). These 

modifications include DNA methylation (Me) and 

acetylation (Ac) of histone tails. DNA 
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methyltransferase (DNMT) by adding methyl groups 

to the C5 position of cytosine in CpG dinucleotides in 

the regulatory regions of genes, leads to the 

formation of heterochromatin, which suppresses 

transcription, preventing the binding of transcriptional 

complexes to the promoters of genes (66-67). 

Studies have shown that atherosclerosis is 

associated with both hypomethylation and 

hypermethylation of DNA that consequently affect 

genes and pathways that regulate the normal 

function of the endothelium and smooth muscle cells 

(66-67). 

DNMT1 has been implicated in the 

progression of atherosclerosis and for this reason 

attempts have been made to inhibit atherosclearosis 

by modulation of this target enzyme (68). 

Hydralazine, a nonnucleoside inhibitor of DNMT, with 

demethylation and proinflammatory properties has 

been approved by the Food and Drug Administration 

(FDA) as an antihypertensive drug (69). 

Administration of hydralazine suppressed 

angiotensin II inducible fibrosis (Ang II) and 

decreased infiltration of Mac-2+ inflammatory cells 

and reduced expression of proinflammatory 

cytokines, such as IL-1β and IL-6 (69). Another 

candiate for the treatment of atherscloerosis is, a 

nonnucleoside inhibitor that directly binds to the 

active site of DNMT1 and inhibits its activity (70). Due 

to its low toxicity, RG108 might be useful in 

atherosclerosis (71). RG108 also shows an inhibitory 

effect on DNA methyltransferase 3a (DNMT3A), 

which has been implicated in the coronary heart 

disease (72). In addition to these synthetic inhibitors 

of DNMT, natural, food-derived inhibitors of DNA 

methylation have been studied (Figure 2) (73). 

Among these, resveratrol has a wide range of 

functions, including cardioprotective, 

atheroprotective, and vascular protective activity and 

for this reason resveratrol is useful for prevention of 

various cardiovascular and metabolic diseases (74-

76).  

Histone methyltransferases (HMTs), 

histone deacetylases (HDACs) and histone 

acetyltransferases (HATs) affect gene expression, 

depending on the site and number of modifications 

(Figure 2) (65). Histone acetyltransferase (HAT) and 

 
 

Figure 2. Epigenetic regulation in the treatment of atherosclerosis. lncRNA - long non-coding RNA; Ac - acetylation; Bet - bromodomain and 

extraterminal protein; Pol II - Polymerase II; HMT - histone methyltransferases; HDAC - histone deacetylase; DNMT: - DNA methyltransferase; 

HATs - histone acetyltransferases. 
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histone deacetylase (HDAC) are the main enzymes 

that play an important role in determining the state of 

histone acetylation (77). The acetylation and 

methylation of histones have been incriminated both 

in the induction of inflammation and the development 

of CVDs (77). For these reasons, treatment of 

atherosclerosis are aimed only at modifying histones 

without altering the genetic code in the cells. Several 

HDAC inhibitors that are currently being used in the 

clinic for treatment inhibit various HDACs (I, II, and IV 

bind to Zn2+-containing domains, and III binds to 

NAD+-dependent enzymes) (78). Dihydrocoumarin, 

naftopyranone, 2-hydroxynaphalehyde and other 

sirtuin inhibitors belong to the class III inhibitors (79). 

Bromodomain and extra terminal (BET) 

proteins regulate the transcription of lipoproteins and 

regulate some inflammatory pathways which are 

involved in induction of atherosclerosis (80). RVX 

208 (apabetalon) is a new and unique BET protein 

inhibitor for the treatment of atherosclerosis. RVX 

208 is an oral inhibitor of the BET protein with some 

anti-inflammatory properties, which increases the 

transcription of apo A-I, the major HDL receptor (81). 

RVX 208 also helps to delay the onset of type 2 

diabetes (81). RVX 208 increases the production of 

apo AI in the liver and intestines, thereby increasing 

the level of apo AI in the plasma (81).  RVX 208 

transports more free cholesterol and phospholipids 

from peripheral cells and assists in the maturation of 

HDL (82). Subsequently HDL cholesterol esters are 

transported to the liver promoting reverse cholesterol 

transport. RVX 208 enhances this reverse 

cholesterol transport and inhibits inflammatory 

pathways that are associated with atherosclerosis 

(65). However, phase I and phase II trials showed 

that the action of this inhibitor is short-lived. In 

addition, there is as yet no evidence that this inhibitor 

protects against the development of cardiovascular 

pathologies (81). A phase III trial should establish the 

relative risk reduction in major adverse cardiac 

events (MACEs) including myocardial infarction (MI) 

and stroke (Resverlogix Corp).  

5.1. Treatment of atherosclerosis based on 

the use of long noncoding RNA (lncRNAs)  

Long noncoding RNAs (lncRNAs), which 

regulate gene expression from transcription to 

protein translation are considered to be of high 

therapeutic potential (83-84). Recent studies have 

indicated that miRNAs, along with lncRNAs, are 

involved in both DNA methylation and various histone 

modifications (85). Noncoding microRNAs and 

various types of lncRNAs, form complex molecular 

networks within the cell, and closely interact with 

each other to regulate the processes of cellular 

homeostasis (86). LncRNAs coordinate many 

epigenetic regulatory processes, including the 

chromatin dynamics, DNA methylation, mRNA 

stability and noncoding RNAs (Figure 2- 3) (85). In 

particular, nuclear lncRNAs mainly act on 

transcription, and control the epigenetic state of 

certain genes, participate in transcriptional 

regulation, alternative splicing, and form subnuclear 

compartments (85,87). On the other hand, the 

cytoplasmic lncRNAs modulate post-transcriptional 

gene expression (85). Cyclic forms of lncRNA which 

have been shown to exist in various organisms that 

interact with miRNAs. (88). lncRNAs are classified 

according to the region of the genome from which 

they are synthesized. It has been proposed to classify 

lncRNAs as intergenic, intragenic and those that 

overlap with genes (89). Cyclic RNAs are not 

susceptible to exonucleases and can more effectively 

perform the role of endogenous competitive RNA 

(90-91). These transcripts compete with mRNAs for 

microRNA binding and reduce the detrimental effect 

of miRNA on transcriptional and post-transcriptional 

regulation of gene expression (86). lncRNAs with the 

help of proteins, regulate gene expression in the cis 

or trans position of the gene (93-94). lncRNAs direct 

chromatin-modifying proteins, which can activate or, 

in the case of tritorax, to suppress the gene 

expression ny epigenetic modification of histones or 

DNA (95). The interaction between lncRNAs and 

miRNAs encompasses miRNA-triggered lncRNA 

decay, lncRNAs acting as miRNA sponges/decoys, 

lncRNAs as competitors of miRNAs for mRNAs of 

target genes and finally lncRNAs that lead to 

generation of miRNAs (96) (Figure 2). Thus, miRNAs 

and lncRNAs, acting alone or together, control the 

gene expression through various posttranscriptional 

mechanisms, thus contributing to a reliable regulation 

of expressed proteins. 

The CHROME (cholesterol homeostasis 

regulator of miRNA expression) is a lncRNA that 
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regulates systemic cholesterol homeostasis in the 

liver and macrophages by inhibiting miRNAs such as 

miR-33 (Figure 3) (97). The knockdown of CHROME 

in human hepatocytes and macrophages increases 

the miR-27b, miR-33a, miR-33b and miR-128 levels. 

As a result, the expression of their overlapping target 

gene networks and their associated biological 

functions are reduced. In particular, cells without 

CHROME showed a reduced expression of ABCA1, 

which regulates cholesterol outflow and the formation 

of nascent HDL particles. Thus, CHROME is one of 

the key noncoding RNAs that control cholesterol 

homeostasis in humans, and it can have protective 

properties against atherosclerosis (97). 

The lncRNA MeXis is an enhancer of the 

ABCA1 gene which interacts with liver receptors 

(LXRs) (Figure 3). LXR receptors are activated by 

sterol transcription factors related to the nuclear 

receptor superfamily (98). These factors also play an 

important role in the pathology of atherosclerosis as 

key gene regulators which are involved in cholesterol 

transport (99). MeXis interacts with and controls the 

binding of the transcription co-activator promoter 

DDX17. Thus, a knockout of MeXis resulted in 

impaired cholesterol outflow and accelerated 

atherosclerosis in mice (100). 

MeXis enhances the transcription of the 

ABCA1 gene in an LXR-dependent manner. LXRs 

regulate the expression of genes involved in 

macrophage responses to cholesterol and 

inflammation (101). LXR activation supports reverse 

cholesterol transport by induction of a number of 

genes, including Abca1, which encodes the plasma 

membrane transporter ABCA1. This ATP-dependent 

transport is critical for the formation of high-density 

lipoprotein (HDL) (102). In mice with a knockout of 

 
 

Figure 3. Long non-coding RNAs and their targets that regulate various processes of atherosclerosis. Activation   ; Suppression  ┤; 

Upregulation  ; Downregulation  , TG - triglycerides; LXR - liver receptors; ApoC2 -  apolipoprotein C2; CYP8B1 - cytochrome P450 family 

8 subfamily B, polypeptide 1; ABCA1 - ATP-binding cassette A; HDL - high-density lipoprotein. 
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the MeXis gene, the level of ABCA1 was reduced. In 

mouse bone marrow cells, the inhibition of MeXis 

altered the chromosome architecture at the ABCA1 

locus, impaired cellular responses to cholesterol 

overload, and accelerated atherosclerosis. Thus, 

MeXis regulates the expression of ABCA1 through 

LXR (100). An impact on the LXR-MeXis-Abca1 axis 

can enhance the reverse transport of cholesterol in 

macrophages. Exposure to MeXis is a potential 

therapeutic targeting strategy for the regulation of 

macrophage cholesterol efflux. 

LSTR (hepatic triglyceride regulator) 

regulates the clearance of plasma triglyceride by 

apolipoprotein C2 (APOC2) and lipoprotein lipase. 

Blocking of lncLSTR could reduce triglyceride 

levels in a mouse model with hyperlipidemia 

(Figure 3)  (103). lncLSTR regulates the TDP-

43/FXR/apoC2-dependent pathway to maintain 

systemic lipid homeostasis. 

The ANRIL noncoding RNA is a key 

molecule of atherogenesis, located at the Chr9p21 

locus. ANRIL affects several cell types related to 

the development of cardiovascular diseases (104). 

ANRIL in a cis position leads to high levels of linear 

ANRIL but reduces the annular level of ANRIL 

(104). The balance of the linear and circular RNA 

ANRIL, defined by the Chr9p21 genotype, 

regulates the molecular pathways and cellular 

functions involved in atherogenesis (104). ANRIL 

reduces the viability and proliferation of smooth 

muscle cells and activates inflammation and 

apoptosis in endothelial cells (105-106). In 

addition to acting in the cis-conformation, ANRIL 

acts in the trans-conformation (through Alu 

elements) to regulate other genes that are involved 

in proatherogenic pathways (Figure 3) (107). 

A commonly expressed and 

evolutionarily conserved lncRNA, MALAT1, is less 

actively expressed in atherosclerotic plaques 

(108). Reduced expression of MALAT1 in 

hematopoietic cells contributes to the development 

of atherosclerosis and inflammation in mice in vivo 

(109). ApoE-/- heterozygous mice with MALAT1 

deficiency, exhibited an increased level of 

inflammation and showed susceptibility to the 

development of atherosclerosis (110). The 

knockdown of MALAT1 in vascular smooth muscle 

cells (VSMCs) and endothelial cells (ECs) led to 

cell cycle arrest and the reduction in cell 

proliferation (Figure 3)  (111). In addition, the 

silencing of Malat1 with LNA-GapmeR inhibited the 

proliferation and formation of primary endothelial 

cells (SMMECs) in vitro (112). The mechanism of 

action resulting in the inhibition of proliferation is 

associated with MALAT1 binding to the VEGFR2 

gene (113). Taken together, these results suggest 

that MALAT1 may play a critical role in the 

development of angiogenesis (113).  

lincRNA-p21 is reduced in patients with 

coronary heart disease and in mice with 

atherosclerosis (114). lincRNA-p21 regulates the 

p53-dependent proliferation and apoptosis of 

smooth muscle cells (114).  

Endothelial nitric oxide synthase (eNOS) is 

an important element of endothelial homeostasis and 

vascular function (115). Transcription of eNOS is 

regulated by two key transcription factors namely 

Krüppel-like factors 2 (KLF2) and 4 (KLF4) (116). 

Whereas the lncRNA LEENE enhances expression 

of  eNOS, its inhibition at the level of transcription 

suppresses eNOS, while the overexpression of 

LEENE increases the level of eNOS and its 

bioavailability of NO (117). In addition to the 

regulation of eNOS, LEENE can interact with 

genomic loci that encode certain sets of genes (118). 

These genes are involved in multiple pathways, 

which are critical to endothelial homeostasis, for 

example, cell adhesion and VEGF signaling (118).  

Identifying the functions of lncRNAs in 

atherosclerosis may be the key to revealing the 

mechanisms that contribute to the development of 

this pathology. Together, the available evidence 

suggests that increasing the levels of CHROME, 

MeXis, Malat1, lincRNA-p21, or LEENE and 

inhibiting the activity of LSTR or ANRIL can be used 

in the treatment of disorders of lipid metabolism and 

atherosclerosis (Figure 3). Further studies are 

required to show whether lncRNAs act synergistically 

and whether they play redundant and/or 

compensatory roles with other un-regulated lncRNAs 

and/or mRNAs associated with the development of 

atherosclerosis. 
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The most common mechanism of 

epigenetic regulation is methylation directed at long 

non-coding RNA (lncRNA). Thus, methylation of 

histones or DNA in the CpG sequences using 

methyltransferase 3, histone H3, lysine 9, 

methyltransferase, and polycomb repressive 

complex 2 (PRC2) lead to the stable repression of 

genes (119). The manipulation of lncRNAs is based 

on the introduction of oligonucleotides by injection or 

inhibition of expression of lncRNA (120). Currently, 

there are two pre-clinical models that suppress 

lncRNA expression. One approach is based on 

RNAi-based methods, such as siRNA and LNA-

GapmeR antisense oligonucleotides (ASO), which 

induce RNAase dependent cleavage (121). Another 

approach is based on the RNAi method, using siRNA 

and a short hairpin RNA (shRNA) which are delivered 

via a viral vector, and target lncRNA, which are 

primarily localized in the cytoplasm (122). GapmeR 

can be used for core-localized lncRNA because it 

induces degradation with RNase-H and is RISC-

independent (123). GapmeR can be used to 

modulate the expression of lncRNA in vivo. The LNA-

GapmeR-mediated silence of MALAT1 in the 

endothelial cells of skeletal muscle effectively 

reduces the formation, migration, and proliferation of 

endothelial cells (87). Genome editing with 

CRISPR/Cas9 which acts as “molecular scissors” is 

a new tool for modulating gene expression 

associated with ncRNA, including the manipulation of 

lncRNA (123-124). CRISPR inhibition (CRISPRi) 

suppresses the expression of miR-21 and lncRNAs, 

including GAS5, H19, MALAT1, NEAT1, TERC, XIST 

(126), UCA1, and lncRNA-21A (125). Thus, in the 

context of atherosclerosis, genetic manipulation of 

lncRNAs via antisense oligonucleotides or 

CRISPR/Cas9 can be used to remove or 

activate/repress the expression of lncRNA as an 

effective  therapeutic approach towards the treatment 

of cardiovascular diseases. 

6. DRUG DELIVERY USING 

NANOPARTICLES  

Despite significant progress in creating 

systems that model atherosclerosis, accurately 

testing potential epigenetic inhibitors for the 

treatment of atherosclerosis requires developing 

more robust systems. Delivery of compounds to the 

site of injury remains a problem that can be solved by 

the development of nanoparticles. The effectiveness 

of nano drugs has been shown in the prevention, 

diagnosis, and treatment of various diseases, 

including atherosclerosis. Nanoparticles already are 

being used as visualization tools to detect vulnerable 

atherosclerotic plaques and similar theranostic 

strategies have already demonstrated the potential 

for identifying diseases such as cancer and 

neurodegenerative disorders using a variety of 

imaging methods, including optical imaging, 

magnetic resonance imaging (MRI), ultrasound and 

photoacoustics, computed tomography (CT), and 

nuclear imaging based on single-photon and positron 

emission tomography (127). Molecular markers 

namely VCAM-1, ICAM-1, P-selectin, E-selectin, and 

αvβ3-integrin over-expressed on activated 

endothelium are the main targets for targeted 

treatment with nanoparticles (128). High-density 

lipoproteins (HDLs) are responsible for modulating 

inflammation, and are involved in the reverse 

transport of cholesterol, therefore, these are also 

potential targets. Intimal macrophages are critical 

cells in the development of atherosclerosis and can 

absorb nanoparticles by phagocytosis, so they are 

potential targets for nanoparticles too (129). It should 

be noted that the use of nanosystems significantly 

reduces the risk of side effects. Targeted drug 

delivery to atherosclerotic foci and plaques will be a 

much more effective method than classical treatment 

methods.  

Nanoscale drug delivery systems are 

obtained using various organic, inorganic, lipid, and 

polymeric biomaterials. Numerous studies have 

shown that the structural and physico-chemical 

characteristics of nanoparticles can affect their 

performance in vitro and in vivo. The large surface to 

volume ratio facilitates the design of multi-functional 

nanoparticles, i.e., the shape and surface charge of 

the nanoparticles which are shown to affect the 

penetration of nanoparticles through the blood-brain 

barrier, biodistribution in organs, and cellular 

absorption. Nanoparticles are classified based on 

various properties including their morphology or 

source. For example, based on their morphology 

these are divided into nanospheres, nanotubes, and 

dendrimers and linear, block, and graft grafted 

structures (grafts). Nanoparticles can also be 
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categorized, based on their source  namely natural, 

synthetic, hybrid, or metallic sources. 

The unique characteristics of 

nanomaterials (for example, shape, size, and 

charge) make them promising tools for both 

diagnostics and therapeutic approaches, but today 

there are still many limitations and shortcomings 

that has hampered their clinical. Currently, out of 

51 FDA-approved nano-medicines and 77 

products undergoing testing, only few have been 

identified as potential therapy for atherosclerosis. 

Among these are  

1. Tricor (Lupine Atlantis, 2004) with 

nanocrystalline fenofibrate 

2. Rapamune sirolimus 

immunosuppressant (Wyeth 

Pharmaceuticals, 2000) 

3. plasmon immunosuppressant 

sirolimus (2000) 

4. plasmonic immunosuppressant 

sirolimus (2000) 

5. plasmon-containing 

immunosuppressant sirolimus 

Rapamune (plastophage) 

In addition, atherosclerosis is being 

treated with stem cells (NCT01270139), as well as 

MRI with iron and enhanced ferumoxitol for the 

assessment of myocardial infarction 

(NCT01995799, NCT01323296), including 

Feridex/Endorem superparamagnetic imagers 

(superparamagnetic ferric oxide of nanocephanol) 

dextran-coated (SPION) (AMAG Pharmaceuticals, 

1996, 2008) and GastroMARK; Lumirem (SPION, 

coated with silicone; AMAG Pharmaceuticals, 

2001, 2009) (130-131). However, still 98.83% of 

these approaches are still in a pre-clinical stage 

(132). 

Removal of nanoparticles from body has 

been a major concern since nanoparticles 

accumulate in the reticuloendothelial system 

(RES), due to their polydispersity and/or the 

complex reproducibility of their preparation, or 

because of the difficulty of their scaling and high 

production costs, especially when particles are 

multifunctional in nature (133).  

7. SUMMARY AND PERSPECTIVE 

CVD is one of the key causes of mortality, 

and to date, there are many methods of correcting 

specific aspects of this disease. Epigenetic-based 

atherosclerosis hypotheses have improved the 

understanding of the molecular mechanisms of 

atherosclerosis, which has been traditionally 

regarded as a chronic inflammatory and lipid 

disorder, with genetic codes being a key determinant. 

Therapy based on miRNA is a new area for research 

with a significant promise. Studies in mice, primates, 

and early human trials all have clearly demonstrated 

the potential of using miRNAs as valuable 

therapeutic agents. In the treatment of 

atherosclerosis, a number of non-coding RNAs such 

as miRNA, siRNA, and lncRNA, have been identified, 

to contribute to the pathogenesis of the disease. 

Presently, some features of the regulation 

of gene expression using ncRNAs have been 

investigated, but their enormous therapeutic potential 

is already coming to focus. Noncoding RNAs are 

involved in many epigenetic regulatory processes of 

atherosclerosis. Long non-coding RNAs possess 

therapeutic potential by coordinating many 

epigenetic regulatory processes, including chromatin 

dynamics, DNA methylation, and the stability of 

mRNA and other non-coding RNAs.  

However, there are several unsolved 

problems regarding the safe and effective delivery 

methods for epigenetic modifiers, their long-term 

effectiveness, as well as  side effects that might 

emerge upon long-term. It is also currently still not 

entirely clear how to achieve the desired specificity of 

miRNAs which are aimed at a specific metabolic 

pathway. Given the relatively short period of time 

since the discovery of miRNAs, progress seems to be 

sufficient to justify an optimism regarding the 

development of new therapeutic agents based on 

targeting miRNAs. 
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