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1. Abstract

Over past few years, there has been a dramatic in-
crease in studying physiological mechanisms of the activity
of various signaling low-molecular molecules that directly
or indirectly initiate adaptive changes in the cardiovascular
system cells (CVSC) to hypoxia. These molecules include
biologically active endogenous gases or gasotransmitters
(H2S, NO and CO) that influence on many cellular pro-
cesses, including mitochondrial biogenesis, oxidative phos-
phorylation, K+/Ca2+ exchange, contractility of cardiomy-
ocytes (CM) and vascular smooth muscle cells (VSMC) un-
der conditions of oxygen deficiency. The present review fo-
cuses on the mechanistic role of the gasotransmitters (NO,

H2S, CO) in cardioprotection. The structural components
of these mechanisms involve mitochondrial enzyme com-
plexes and redox signal proteins, K+ and Ca2+ channels,
andmitochondrial permeability transition pore (MPTP) that
have been considered as the final molecular targets ofmech-
anisms underlying antioxidant and mild mitochondrial un-
coupling effects, preconditioning, vasodilatation and adap-
tation to hypoxia. In this article, we have reviewed recent
findings on the gasotransmitters and proposed a unifying
model of mitochondrial mechanisms of cardioprotection.

http://doi.org/10.52586/S556
https://www.fbscience.com
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2. Introduction

Historically mitochondria have been considered as
molecular “power stations” that produce and store energy
in the form of the high-energy bonds of ATP. This energy
is used by cells to sustain their functions, including signal-
ing and adaptation to the effects of negative environmen-
tal factors. In the cardiovascular system (CVS), most ATP
molecules are generated by oxidative phosphorylation that
occurs in mitochondria and supports energy-consuming and
long-running biochemical processes underlyingmyocardial
automatism and muscle contraction. About two thirds of
the energy consumption by smooth muscle and endothe-
lial cells of blood vessels are covered by anaerobic glycol-
ysis, which makes these cells less vulnerable to oxygen de-
ficiency [1]. Nevertheless, mitochondria both of cardiomy-
ocytes (CM) and blood vessel cells (BVC) remain highly
sensitive to the impact of the negative environmental factors
and undergo metabolic adaptation in response to changes
in environmental conditions. When this adaptation is im-
paired, a progressive decline in the mitochondrial function
contributes to the development of CVS diseases [2]. On
the other hand, mitochondria house proteins of signal trans-
duction pathways that regulate activity and adaptation of
the CVS cells during hypoxia and development of hypoxia-
related chronic diseases.

Over past few years, there has been a dramatic in-
crease in studying physiological mechanisms of the activity
of various signaling molecules or messengers that directly
or indirectly initiate adaptive changes in the CVS cells to
hypoxia and ischemia/reperfusion. These messengers in-
clude biologically active endogenous gas molecules (NO,
H2S, CO) that affect many cellular processes, including
contractility of cardiomyocytes and vascular smooth mus-
cle cells (VSMCs) under conditions of oxygen deficiency
during ischemia and reperfusion [3].

The gas messengers are able to modulate mito-
chondrial function by targeting mainly the ATP-dependent
mitochondrial transport, electron transport chain (ETC),
and functions of ATP synthase, mitoKATP , and BKCa

channels since these mitochondrial structures are terminal
molecular targets for these gases during hypoxic precondi-
tioning and long-term adaptation (Fig. 1). Many aspects of
the protective effect of the gas molecules still remain poorly
understood.

An increased sensitivity to the opening of MPTP
has been known to result in mitochondrial dysfunction and
apoptosis in CVS diseases. Hence, there is an urgent need
for clarification of the gasotransmitters role in the mito-
chondrial mechanisms related to the regulation and forma-
tion of MPTP.

Understanding the role of gas transmitters in regu-
lation of the mitochondrial functions and cell signaling that
initiate protective mechanisms of the CVS cells may con-
tribute to the development of new antihypoxic drugs aimed

at preventing and treating a broad range of pathologies,
including ischemic cardiomyopathy and cardiac ischemia-
reperfusion injury.

3. Energy-producing function of
mitochondria and H2S

The main function of mitochondria is to generate
energy in the form of ATP. The ATP is produced by sub-
strate phosphorylation (glycolysis) and mitochondrial aer-
obic respiration (oxidative phosphorylation). The oxidative
phosphorylation occurs in the inner mitochondrial mem-
brane (IMM) and uses the electrochemical proton gradi-
ent to generate ATP. The CVS cells rely on both glycoly-
sis and oxidative phosphorylation to sustain their function.
Herewith, the uniqueness of the mitochondria as energy-
producing organelles precisely defines the second pathway
of the ATP generation. In fact, this is a sequential trans-
formation of the chemical energy of the reducing NADH
equivalents into the electrochemical proton gradient across
the IMM that activates the membrane-bound ATP synthase
and results in the formation of the high-energy bonds of
ATP [1].

In light of contemporary insights about energy
producing mechanisms in cellular systems, the whole en-
ergy production process inmitochondria can be divided into
four main stages. The first two, conversion of substrates to
acetyl-CoA and its’ oxidation to NADH in the Krebs cy-
cle, occur in the mitochondrial matrix. The last two, elec-
tron transfer from NADH to oxygen through the respiratory
chain and formation of ATP by ATP synthase complex, oc-
cur in the internal membranes of mitochondrial cristae [1].
The electron transfers and ATP synthase activities are mem-
brane potential-dependent processes. Therefore, maintain-
ing a stable mitochondrial membrane potential (MMP) is
one of the vital conditions to support healthy mitochondrial
function and oxidative phosphorylation. A decrease or, op-
posite, excessive increase in the MMP that happen during
the development of CVS pathology serve as a pharmaco-
logical target for treatment of a various CVS diseases asso-
ciated with the mitochondrial dysfunction and circulatory
hypoxia.

Because of the high importance of generation and
maintenance of the MMP, the CVS cells (CM and VSMCs)
developed special mechanisms intended to support a proper
ETC functioning in hypoxic conditions. One of thesemech-
anisms include a rearrangement of the substrate region of
the respiratory chain by prioritizing FAD-dependent over
NAD-dependent substrates and transferring electrons to the
ETC complexes II–IV bypassing complex I. Activation of
the alternative metabolic pathways allows maintaining the
electron flow to the cytochrome c region without disrupt-
ing the electron transport function of complexes III, IV,
and V. This process is called succinate-oxidase pathway,
which is more effective energetically in hypoxic conditions.
Thereby, a decrease in the rate of oxidative transformations
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Fig. 1. Influence of gasotransmitters (H2S, CO, NO) on mitochondrial mechanisms of cardioprotection.

is compensated by this process, “also, a metabolic acidosis
as a consequence of hypoxia is eliminated and, as a result,
the resistance of the heart muscle to oxygen deficiency is
increased” [4]. Since the activation of complex II deter-
mines Ca2+ influx into mitochondria, the intramitochon-
drial Ca2+ pool increases during hypoxia when myocardial
contractility is reduced [5].

Over the past years, there has been a significant
increase in attention to the metabolic regulation of the ETC
complexes activity and finding endogenous substances that
can increase the activity of the complexes in hypoxia.
Surprisingly, hydrogen sulfide (H2S), a highly toxic gas
(LD100—1 mg/L), pertains to such regulators. The hydro-
gen sulfide acts directly on the central nervous system and
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can cause instant death at high concentrations with a sin-
gle inhalation. At the same time, H2S, an endogenous gas
molecule, is continuously produced in animals and humans
as a product of cysteine-containing amino acids breakdown
indicating that certain mechanisms of H2S intoxication, its
intracellular use and utilization have been developed during
evolution [6]. Many studies have been focused on mecha-
nisms underlying the effect of H2S at the organism and cel-
lular levels etc. [6–10]. In this context, we are interested
in studies related directly to the effect of H2S on mitochon-
drial targets and mechanisms of its’ physiological effect on
the CVS cells (CM and VSMCs).

It was originally demonstrated that hydrogen sul-
fide at high doses causes irreversible inhibition of cy-
tochrome oxidase that prompts the ETC dysfunction, un-
coupling oxidative phosphorylation, and subsequent cell
de-energization [7]. However, further studies revealed that
H2S at low concentrations vis-à-vis activates mitochondria
because it serves as an energetic mitochondrial substrate
[8]. In the mitochondria, H2S oxidation involves several
enzymes including sulfide-quinone oxidoreductase, persul-
fide dioxygenase and sulfite oxidase. During the oxidation,
protons released from H2S enter the ETC, and the remain-
ing oxidized forms, including free sulfur, become part of
the mitochondrial signaling system [11, 12].

Analysis of findings on the cytoprotective effect
of H2S on CM and VSMCs has shown that H2S protective
effect is based on its ability to “quench” free radical pro-
cesses in the mitochondria, reduce production of ROS and
intracellular injury caused by oxidative stress. This notion
has been supported by an antagonism of the emerging inter-
actions between H2S and the mitochondrial ROS inducer
— homocysteine, which is also a product of metabolism
and conversion of S-containing amino acids [13]. Exces-
sive blood homocysteine content [more than 16 microM/L]
can lead to the development of a severe CVS pathology as-
sociated with membranes of CM and VSMCs impairment
due to oxidative stress [14].

In the experimental studies, the intraperitoneal ad-
ministration of the saturated H2S aqueous solution led to
a decrease in the total concentration of blood plasma ho-
mocysteine and lipid peroxidation processes both in blood
plasma and myocardium. Moreover, administration of H2S
reduced production of superoxide anion and H2O2 and re-
covered activities of the mitochondrial enzymes, includ-
ing succinate dehydrogenase, cytochrome oxidase and mi-
tochondrial superoxide dismutase, whose functions are im-
paired during homocysteinemia [13].

Interestingly, both in vivo and vitro experiments
have revealed that H2S targets a marker of endoplasmic
stress, glucose-regulated protein p78, which is expressed
during homocysteinemia and other diseases characterized
by impaired energy metabolism [13]. Thus, the protective
effect of H2S on CVS occurs via regulation of the ETC
enzyme activity as well as metabolic and redox-dependent

pathways which components are signaling and regulatory
thiol-containing proteins [8, 15–17].

Other targets of the H2S protective effect on CVS
cells include ATP-dependent K+ channels that mediate the
cardioprotective effects of preconditioning (Fig. 1) [18].
Previously, we described structure and regulatory mech-
anisms of these channels in MCM with the participation
of the hypoxia-inducible factor-1alpha (HIF-1alpha) [19].
The current review elaboratesmechanisms that are involved
into activation of KATP channels with the participation of
H2S generated during hypoxia [20] (Table 1, Ref. [14–
17, 20–60]).

Previous physiological studies have demonstrated
that H2S donors, 4-carboxyphenyl isothiocyanate (4CPI)
and sodium hydrosulfide (NaHS), significantly improve a
number of functional and biochemical characteristics of
cardiac muscle contractility after ischemia [21, 22]. Pre-
treatment of rats with 5-hydroxydecanoate (5-HD), a selec-
tive blocker of mitoKATP channels, abolished the 4CPI cy-
toprotective effects [22]. These findings laid in the basis for
further biochemical and molecular studies aimed at under-
standing cellular mechanisms underlying protective effect
of H2S on the CVS. It has been found that endogenous hy-
drogen sulfide affects theKATP channels activity in smooth
muscle cells of blood vessels. The intensity of K+ cur-
rents of incoming rectification increased after exposure to
H2S, and decreased after exposure to inhibitors, cystathio-
nine gamma-lyase (CSE) and cystathionine beta-synthase
(CBS) [22]. Molecular studies have demonstrated that the
S-sulfhydration of cysteine residue 43 (Cys43) of regula-
tory Kir6.1 subunit (Kir is the output rectification channel)
plays a key role in the H2S-mediated activation of mito-
chondrial KATP channels [61]. Herewith, the enhancement
in the activity of KATP channels was accompanied with an
increase of the conjugation of PIP2 with the corresponding
Kir6.1 sites that stabilized the channel in the open state and
led to an increase in the amplitude of the K+ current [61]. It
has been recently shown that H2S changes activity of other
isoforms of Kir subunits (Kir2 and Kir3) of KATP channels
[62] that may also contribute to cardioprotection [63, 64].

Experiments with isolated mitochondria from rat
hearts revealed that the 4CPI hydrogen sulfide donor caused
a decrease in MMP and weakened the activity of caspase-9.
This effect was canceled by 5-hydroxydecanoate, a selec-
tive blocker of mitoKATP channels [16]. These findings
served as the forerunner for the biochemical and molec-
ular studies aimed at unraveling the cellular mechanisms
underlying the H2S effect on cardioprotection and CVS.
The endogenous H2S has been found to have impact on
the activity of KATP channels in the smooth muscle and
endothelial cells of blood vessels, where the intensity of
the K+ currents of incoming rectification enhanced by H2S
and decreased by cystathionine gamma-lyase and cystathio-
nine beta-synthase [22]. Unfortunately, there are no elec-
trophysiological data confirming involvement of H2S into
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Table 1. Protective role of hydrogen sulfide, nitric oxide and carbon monoxide in cardiovascular system.

Main molecular targets in CVS Effects on cells of CVS Clinical significance and prospects for pharmacological use References

Hydrogen sulfide (H2S)

ETC enzymes Activation and increase of ATP synthesis Adaptive response in vessels during hypoxia [23, 26]

Homocysteine Restoring the level of CSE activities Protection the myocardium from oxidative and ER stress induced by HHcy [14, 15, 17]

Nrf2 Decreasing in generation of ROS Reducing the risk of hypertension and myocardial infarction [21–23]

NLRP3 inflammasome Inhibiting both nuclear translocation of NF-kappaB and NLRP3 inflamma-
some activation

Inhibition the vicious cycle of oxidative stress and inflammation in hyper-
tension

[45, 46]

KATP Increasing ofMMP,decreasing of mitochondrial Ca2+ overload and opening
of the MPTP; decreasing in caspase 9 activity

Protection of cells from ischemic and reperfusion damages. Control the ven-
tilatory responses to hypoxia

[16, 20, 24, 25, 203]

Glu-receptors Activation of NTS neurons Ventilatory and cardiovascular control [20]

BKCa Transient receptor potential vanilloid 4 (TRPV4) channel-mediated Ca2+

influx
Promoting K+ influx in VSMC. Vasodilatation [47]

ER stress-related proteins The decrease of activity caspase 1/2, expression of glucose-regulated protein
78 (GRP78) and C/EBP homologous protein (CHOP)

Suppressing of ER stress. Reducing of cytotoxicity [48, 49]

Nitric oxide (NO)

mitoKATP Attenuation of mitochondrial respiration caused by complex I substrates The decrease of ROS production. Protection from IRI [23, 27, 37, 56, 212]

Nitric oxide—releasing
molecules (NO-RMs)

Stimulation of NO/cyclic guanosine 5’ monophosphate (cGMP) pathway Regulation of vascular contractility [57–59]

HIF-1alpha Activation of HIF-1alpha and subsequent expressionof glycolysis genes,
GLUT family (glucose transporter) genes, EPO and VEGF/R genes. Mod-
ulating redox signaling.omega-Alkynyl arachidonic aciddiminished HIF-
1alpha binding to the HRE sequence in iNOS promoter

Reducing the inflammatory response in hypertension. Antioxidant effects.
Vascular reconstruction and angiogenesis. Reducing infarct size

[27–29]

SIRT1 Suppressing of NF-kappaB signaling via eNOS expression Amelioration of myocardial ischemia/reperfusion injury [30]

BH4 Remoting ischemic preconditioning by limiting cardiac eNOS uncoupling Mitigation of myocardial IR injury. Reducing infarct size [31]

PKC iNOS mediated activation of PKC and mitoKATP channel opening Increasing of cardiac tolerance to ischemia and reperfusion [32, 60]

CaM CaM facilitates a conformational shift in NOS allowing for efficient electron
transfer

Mitigation of myocardial IR injury [33]

ETC enzymes Inhibition of mitochondrial respiration Protection of cells from ischemic and reperfusion damages [34–36]
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Table 1. Continued.

Main molecular targets in CVS Effects on cells of CVS Clinical significance and prospects for pharmacological use References

Carbon monoxide (CO)

mitoKATP Regulation of mitochondrial respiration and membrane potential Protective response of cardiac muscle to oxidative stress. Vasodilatation [23, 212]

mitoBKCa The increase in the oxygen consumption rate in endothelial cells. Inhibi-
tion of glycolysis (extracellular acidification rate, and a decrease in ATP-
turnoverenhanced non-mitochondrial respiration).

Mild uncoupling of mitochondrial respiration in endothelial cells induces
adaptive response in vessels during hypoxia

[50]

TASK-3 Regulation of mitochondrial respiration and membrane potential Vasodilatation andreducing of cardiac hypertrophy [23, 51]

Сarbon monoxide-
releasing molecules
(CO-RMs)

Stimulation of cGMP andNa/H exchange. Activation of BKCa through NO
via the NOS and through the PKG, PKA, and S-nitrosylation pathways.

Regulation of vascular contractility; attenuation of coronary vasoconstric-
tion and significantly reducing of acute hypertension

[38, 40, 43, 44, 52, 211]

Ntf2 Stimulation of HO-1 and subsequent expression of HSP32, sGC, p38MAP;
the decrease of NFkappaB expression

Heme oxygenase suppresses markers of heart failure and ameliorates car-
diomyopathy. Facilitating tissue regeneration/repair and the formation of
new blood vessels

[39, 41, 42, 53, 212]

T-type Cav Inhibition of T-type Cav via induction of HO-1 Control of cellproliferation (for example in hypertrophic cardiomyopathy
and atherosclerosis)

[54, 210]

L-type CaV Inhibition of pore-forming subunit CaV cardiac L-type Ca2+ channels Protection of cells from ischemic and reperfusion damages [55, 210]
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the direct regulation of mitoKATP channels. However,
there are studies that support indirect participation of H2S,
when using hydrogen sulfide donors, in the regulation of
mitoKATP channels and muscle cells of the CVS. Studies
conducted by Shimanskaia et al. [21] showed that the in-
traperitoneal injection of sodium hydrosulfide (NaHS, 7.4
mg/kg) slightly reduced heart rate and intensity of the my-
ocardial contractile function without the increase of left
ventricle pressure in isolated rat hearts. A small increase
in coronary blood flow indicated the vasorelaxation effect
of NaHS. At the same time, the hearts that had previously
been injected with sodium hydrosulfide were more resistant
to the additional volume load compared to control animals.
When the left ventricle was stretched, the development of a
more powerful contraction force and easier relaxation dur-
ing the diastole was observed that supported an improve-
ment of the heart functional reserves [21].

Results of physiological experiments supporting
the cardioprotective effect of H2S at small doses were con-
firmed by biochemical studies that demonstrated an in-
crease in the mitochondrial resistance in the presence of
this gas transmitter [16]. Moreover, H2S decreased “mi-
tochondrial factors” and metabolites released from mito-
chondria during Ca2+-induced MPTP opening in the coro-
nary system, thus proving a high degree of mitochondrial
membranes’ integrity during reperfusion and the protective
effect of H2S against MPTP [21]. To confirm the protec-
tive effect of the hydrogen sulfide donor on MCM, the au-
thors conducted an experiment to evaluate Ca2+-induced
swelling of cardiac mitochondria resulting from the MPTP
opening. They demonstrated a dose-dependent reduction
in the mitochondrial swelling by 31–77% when the mi-
tochondria were pre-treated with physiological concentra-
tions (1–10 microM) of NaHS. This confirmed the regu-
latory role of endogenous H2S in the processes of mito-
chondrial transport and its protective effect against MPTP.
Preincubation of isolated mitochondria with 100 microM
5-hydroxydecanoate resulted in reduction of the protective
effect of the H2S donor that pointed out the involvement
of mitoKATP channels in the H2S-dependent regulation of
the MCMmembranes permeability and inhibition of MPTP
opening in cardiac mitochondria [21]. The authors sug-
gested that, under these circumstances, the protective effect
of H2Smolecules could be associated with the protection of
thiol groups of mitochondrial proteins, particularly, adenine
nucleotide translocase.

In addition, the protective effect of H2S on the
CVS cells could be explained by its modulatory effect on
mitochondrial high conductance Ca2+-dependent K+ chan-
nels (mitoBKCa). However, there is no scientific evidence
supporting this assumption [23, 65, 66].

So far, H2S has been known to regulate channels
similar to BKCa located in the plasma membranes of dif-
ferent types of electrically excitable cells. This supports in-
volvement of H2S into the electrically controlled transport

mechanisms that occur directly in the mitochondrial mem-
branes [24, 25, 66, 67]. Studies of H2S donors’ effect on
BKCa channels have revealed that exposure of pituitary tu-
mor cells GH3 to NaHS increased the opening time average
of single BKCa channels [67]. This effect was dependent of
the NaHS concentration andmembrane potential but not the
intracellular concentration of Ca2+ (Ca2+)i. In addition,
the increase in the activity of BKCa channels by released
H2S was temporary and reversible due to a decrease in the
number of oxidized sulfhydryl groups on the cytoplasmic
side of the channel-forming protein subunit and its’ phos-
phorylation degree [24].

Thus, the recent studies have demonstrated the
protective effect of small (physiological) doses of H2S on
the CVS cells that accounts for its’ action on mitochon-
drial ETC enzymes, thiol groups of signaling and regulatory
proteins as well as on KATP and BKCa channels [23, 26].
Based on this, H2Smight be considered as an important sig-
naling and regulatory molecule that has a protective effect
on the CVS cells under physiological and pathological con-
ditions such as hypoxia, ischemic heart disease (IHD) and
ischemia/reperfusion.

4. The role of nitric oxide and mitochondrial
nitric oxide synthase in cardioprotection
during hypoxia and ischemia/reperfusion

More recently, considerable research has been de-
voted to the role of nitric oxide (NO) in the development
of adaptation to various pathological conditions, including
ischemic heart disease and ischemia/reperfusion [68–72].
It has been shown that NO causes relaxation of vascula-
ture, participates in protection of the myocardium against
reperfusion injuries, and regulates apoptosis and prolifer-
ation of vascular smooth muscle cells [27, 71, 73]. Under
physiological conditions, NO reacts with oxygen molecules
and forms intermediate compounds, known as reactive ni-
trogen species (RNS). Formation of NO and RNS in cells is
controlled by hormones, neurotransmitters, cytokines, and
growth factors. With regard to the latter, NO and its deriva-
tives act as secondary paracrine factors that transmit a signal
from NO-producing cells to neighboring cells [28]. Intra-
cellular NO and RNS receptors, which include Src protein-
tyrosine kinases, Ras family proteins, cytochrome oxidase,
and soluble guanylate cyclase (sGC), are mainly proteins
containing heme, active SH- and iron-sulfur groups. They
are localized both on the surface of the plasma membrane
and in the internal compartments of cells. Most of the
NO receptors are key components of intracellular signal-
ing systems that regulate transcription factors AP-1, HIF-1,
NF-kappaB, FoxO and the expression of their subordinate
genes [28, 29, 74]. A feature that distinguishes NO from
other high molecular weight signaling molecules is that the
change in the redox potential of the cells switches the redox-
dependent NO receptor and modifies the action of NO. De-
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pending on the ROS level in cells, NO activates different
redox-dependent signaling systems (Fig. 1). This is impor-
tant in induction and suppression of the cellular protective
responses to hypoxia [27] (Table 1).

In the CVS, NO is derived from a spectrum of
molecular structures integrated into a nitroxidergic sys-
tem (NOES) that includes neuronal (neurons) and ex-
traneuronal (endothelium, cardiomyocytes, macrophages,
platelets, SMC, glia, etc.) cells [75]. NO in the NOES
is produced from L-arginine by three isoforms of NO
synthases: neuronal (nNOS), endothelial (eNOS) and
macrophage (mNOS) also known as NO synthase I, II, and
III, respectively. The endothelial and neuronal NOS belong
to a group of constitutive NOS (cNOS). The macrophagal
NO synthase belongs to a group of inducible NOS (iNOS).
The constitutive isoforms of NO synthase can generate NO
in response to background receptor stimulation of the me-
chanical, neuronal, or humoral nature. The inducible en-
zyme isoforms are usually formed in response to exces-
sive activation of cells by cytokines. To date, there is evi-
dence of the existence of the inducible isoforms of NOS-I
and NOS-II [71]. These isoforms are widely represented in
various types of cells including blood vessel epithelial and
smooth muscle cells, CM, and skeletal muscle myocytes.
They are activated under stress condition, hypoxia, and var-
ious pathologies [30, 31, 76]. A subcellular localization
and activity of NOS is determined by myristoylation and
palmitoylation of N-terminal sequence, while acetylation
of N-terminal glycine residues to amide bonds defines a
membrane fixation of the enzyme. Therefore, the neuronal
and endothelial enzyme forms are usually associated with
cell membranes, and the inducible macrophage NOS exists
mainly in the dissolved state in the cytosol [71].

NOS phosphorylation by a number of protein ki-
nases is an important mechanism regulating NO production
[32, 77]. The phosphorylation of the constitutive NOS leads
to a decrease in the enzymatic activity, whereas dephospho-
rylation with the participation of phosphatases, in particu-
lar, calcineurin can increase the catalytic activity of the en-
zyme [70]. The actual mechanism of regulation of NOS
activity is far more diverse and complex than we reported
here. The association of constitutive NOS isoformswith the
cell membrane directly or indirectly through calmodulin or
other specific membrane-associated proteins involves a co-
ordinatedmodulation of the NOS activity through phospho-
rylation/dephosphorylation at Ser-1177 and Thr-495 (Find
out more about this in seminal work of S. Dimmeler, I.
Fleming and R Busse groups [77]).

It has been known that cNOS begin to synthesize
NO in response to increase in cytosolic calcium concen-
tration. This makes calmodulin (CaM) to bind a 30-amino
acid peptide connecting oxygenase and reductase domains
of the NOS subunits. A mechanism of the calmodulin acti-
vation for the Ca2+-dependent cNOS has been considered
to be due to reductase domain conformation change in CaM

binding which leads in turn to an increase in the electron
transfer rate to both flavins and terminal electron acceptors
of the ETC. A high intracellular calcium level has been re-
vealed to stimulate the constitutive forms of the NOS and
long-termNO synthesis, while the NO production by the in-
ducible form does not depend on (Ca2+)i and, at the Ca2+

normal level, this form is limited only by the enzyme level,
substrate amount and presence of cofactors [33].

The mechanism of the eNOS and nNOS ac-
tion is similar in the CVS system. Vasodilator agents
(acetylcholine, adenosine, 5-hydroxytryptamine, gluta-
mate, bradykinin, histamine, etc.) increase cytosolic Ca2+

level in the endothelial cells. As a consequence, Ca2+ in
combination with the CaM activates Ca2+-dependent NOS
isoenzymes in accordance with the mechanism described
above. The activity of eNOS and nNOS lasts for minutes
after the induction. In addition, eNOS is characterized by a
lower maximum rate of catalysis (Vmax) compared to other
isoforms.

The endothelial and neuronal NO synthases are in-
volved in such processes as conductance of nerve impulses,
peristalsis provision and practically instantaneous regula-
tion of blood pressure. For example, factors like acetyl-
choline and bradykinin activate the phosphoinositide sig-
naling pathway in endothelial cells, resulting in (Ca2+)i in-
crease. This leads to the activation of eNOS to produce NO
that diffuses into the VSMC and causes their contraction. In
neurons, Ca2+ level rises during electrical activity that ac-
tivates nNOS. The resulting NO initiates vasodilation inde-
pendent of the endothelium due to innervation of the smooth
muscles [78, 79].

In the CVS cells, the NOS level frequently in-
creases under conditions of oxygen deficiency, since NO
formed by NO synthases is a trigger of mobilization pro-
cesses aimed at maintaining cell viability during hypoxia.
Herewith, the mitochondrial synthase of nitric oxide (mt-
NOS) plays the most important role. Its function is closely
interrelated with other regulatory mitochondrial factors and
signaling pathways and involved in implementing adaptive
cellular responses to hypoxia [70]. mtNOS has been recog-
nized as a constitutive form of the nNOS and it was first dis-
covered in the mitochondria of the excitable brain and heart
cells [80, 81]. The mtNOS is involved in cytochrome oxi-
dase reversible inhibition and functionally associated with
complex I of the ETC [70, 81]. At the same time, mt-
NOS reminds more inducible isoform rather than constitu-
tive enzyme isoform by its main characteristics. Unlike the
constructive enzyme isoform that is compartmentalized in
the cytosol, mtNOS is localized in the inner mitochondrial
membrane (IMM) [81].

The questionwhethermtNOS is a separate isoform
of the enzyme or its post-translational modification remains
open and is interpreted in a different manner [34, 82–84].
Regardless, discovering NOS in mitochondria has opened
up new possible ways to study the roles ofmtNOS andmito-
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chondrial NO in mechanisms of the cellular adaptation and
cardioprotection.

The mtNOS is directly related to cell functioning
in hypoxic and ischemic conditions [35, 85]. On the one
hand, tissue hypoxia significantly slows down the NOS-
dependent synthesis of NO due to the lack of O2 needed
for the enzymatic reaction. On the other hand, it activates
mtNOS via the Ca2+-CaMmechanism [86]. There are stud-
ies supporting the stimulating effect of hypoxia on the mt-
NOS activity [87]. It has been shown that changes in the
activity of mtNOS depend on the severity of the hypoxic
state. Thus, this phenomenon has importance for practi-
cal medicine: the moderate hypoxia can lead to the ac-
tivation of mtNOS and arginine pathway of NO synthe-
sis since the launch of NO production underlies numerous
compensatory-adaptive reactions in response to hypoxia.

NO synthesized in mitochondria during hypoxia
modulates the mitoKATP channels opening that promotes
cell energization and underlies the protective effect of pre-
conditioning [88]. Activation of mitoKATP channels is
one of the first steps in the cell adaptation process to hy-
poxia and ischemia since the mitoKATP channels opening
reduces Ca2+ overload of mitochondria, normalizes the cell
redox balance thus ensuring their functional activity, and
viability in oxygen deficiency conditions [88–90].

A transcription rate of genes regulating mtNOS,
content of mtNOS substrates (NADPH, L-arginine) and
its cofactors (FAD, FMN, tetrahydrobiopterin (BH4)) are
among the factors that affect the dynamics of the NOS-
dependent production of NO in mitochondria. In the or-
ganism, NO is produced by arginine conversion and ni-
trite reductase reactions. The input of nitrite reductase re-
actions into NO production enhances under hypoxic con-
dition. These reduction reactions are catalyzed by elec-
tron donor systems involving NADH, NADPH, flavopro-
teins, and cytochrome oxidase in mitochondria [91]. It has
been demonstrated that mitochondrial NOS switches to the
formation of reactive oxygen species instead of NO in L-
arginine deficiency that leads to the oxidative stress and the
MPTP opening. The Ca2+-induced MPTP opening is then
prevented by ROS neutralization with superoxide dismu-
tase mimetics or mtNOS substrates or cofactors such as L-
arginine or tetrahydrobiopterin [81]. Therefore, maintain-
ing the physiological level of agonists and key components
of the arginine pathway of the NO synthesis during the ox-
idative stress following hypoxia can have a cytoprotective
effect [81, 82].

During hypoxia, when a significant Ca2+ overload
is observed, NO produced in mitochondria delays MPTP
opening. However, it is not clear whether this effect re-
sults from a direct action of NO (for example, direct S-
nitrosylation of thiol groups) on the pore or ROS neutral-
ization [87].

As discussed earlier, ROS overproduction during
many pathological conditions, including hypoxia and is-
chemia, leads to the interaction of oxygen free radicals with
NO and production of the highly reactive peroxynitrite ox-
idant (ONOO−). Ultimately, peroxynitrite (PN) triggers
inhibition of aconitase and iron-containing centers of I–III
MTC complexes, suppression of ATP and creatine phos-
phate synthesis, nitrosylation of membrane thiols that af-
fects permeability of the mitochondrial membranes and re-
sults in the MPTP opening and mitoptosis. In turn, mito-
chondrial dysfunction impairs a reuptake of neurotransmit-
ters, ion transport, generation and conduction of the electri-
cal impulses [36, 92–94].

The effect of NO is multifunctional due to its mul-
tidirectional action on cell function that results in different
cell responses to the same stimulus [95]. Such effect of NO
is determined by the ratio of various NOS isoforms and lo-
cation of NO production in cell compartments. In this re-
gard, it is important to note that increase in the activity of
the NOS and NO production does not always impair cells
and lead to the programmed cell death (see below) but also
has a positive role [81, 96, 97]. Signaling pathways that
involve both pro- and anti-apoptotic proteins are activated
in the cells accordingly [97, 98]. The effect of mtNOS and
mitochondrial NO on the cells is determined by the ratio of
stress factors and cell survival factors that direct NO in one
way or another [82, 99].

At low concentrations, NO reversibly binds the
electron transport chain cytochrome oxidase and blocks
MPTP, therefore, contributing to the cell survival in hy-
poxia. At high concentrations, it causes S-nitrosylation of
the thiol groups of the mitochondrial proteins and inhibits
ATP synthesis that results vice versa in MPTP opening, re-
lease of apoptogenic factors and cytochrome c into the cy-
tosol, and triggering the mitochondrial apoptotic pathway
[100, 101]. The toxic NO influence is associated both with
the direct effect on cellular iron-containing enzymes and
formation of the highly reactive and permeable to mem-
branes peroxynitrite. This results in not only mitochondrial
dysfunction and reduction of ATP production but also in
damage of cell nuclear apparatus as a consecquence of DNA
deamination and ribonucleotide reductase inhibition [94].

It is obvious that the pharmacological regulation
of the mtNOS activity is of great scientific and practical
importance and involves development of selective drugs
blockingmtNOS that could be used specifically formyocar-
dial ischemia-reperfusion treatment. Increased mtNOS ac-
tivity has been demonstrated in experiments with IHD (the
severe hypoxia case especially) and right ventricular hyper-
trophy in hypoxia-induced pulmonary hypertension. The
inhibition of mtNOS has been shown to lead to myocardial
contractility increase in cardiomyopathy [70].

In addition to inhibitors, there is a search for new
inductors of NOS. Currently, cNOS inductors are of great
importance in modern medicine. They can be effective
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cardioprotectors in hypoxic conditions since the cNOS-
produced NO initiates the activity of hypoxia-induced fac-
tor HIF-1 [71]. This factor is transcriptional and regulates
the expression of redox-dependent genes that allow cells to
adapt to oxygen deficiency. These include genes of gly-
colysis (aldolase, lactate dehydrogenase, phosphofructoki-
nase genes), glucose transport (GLUT family glucose trans-
porter genes), angiogenesis (erythropoietin (EPO) genes),
vascular reconstruction (vascular endothelial growth factor
(VEGF) gene, and VEGF receptor 1 (VEGF1)) [19]. In ad-
dition, HIF-1 activates vasomotor genes that are important
for vascular response to hypoxia [102].

The expression of HIF-1 gene itself and the level
of its’ protein product depend on the concentration and par-
tial pressure of oxygen (pO2) in the blood. The HIF-1 ac-
tivity is increased during hypoxia. In this regard, a special
attention is paid to the search for new substances that me-
diate the induction of HIF-1 in the CVS cells.

Currently, some of the NO donors (S-nitroso-N-
acetyl-D, L-penicillamine; S-nitrosoglutathione) have been
demonstrated to induce an increase in the HIF-1 activity
[103]. This process is independent of cGMP, however, as-
sociated with activation of the redox-sensitive PI3K/AKT/
mTOR signaling pathway that controls the key cell func-
tions [19]. NO can bind iron in the HIF hydroxylases and
block their binding with oxygen, thereby, inhibiting the
hydroxylation reaction of the adaptation factor to hypoxia
[104]. This makes relevant the search of the constitutive
NOS inducers as well as compounds that enable to prolong
the effect of NO and support its transport to various organs
and tissues.

Findings from experiments with application of ac-
tivators and inhibitors of mito- and sarcolemmal KATP

channels explain the protective effect of low NO concen-
trations (<1 microM) on the CVS system by its stimu-
lating action on mitoKATP channels [37, 105, 106]. It
has been shown that the NO donor, S-nitroso-N-acetyl-DL-
penicillamine, activates only mitoKATP channels and does
not alter sarcolemmal KATP channels since its effect on the
mitoKATP channels is inhibited by 5-hydroxydecanoate (5-
HD), a specific blocker of the mitoKATP channels, or NO
scavengers [106].

Since the majority of the NO effects are medi-
ated via cGMP-activated signaling pathways, a study has
been conducted to determine the direct effect of 8Br-cGMP,
a non-hydrolyzable cGMP analogue, on the activation of
the mitoKATP channels in the excitable cells. Negative
results of this study have suggested that the mitoKATP

channels are directly activated by NO [106]. Interest-
ingly, the channels activated by diazoxide were more sus-
ceptible to the potentiating effects of NO than those be-
ing inactive and closed [106]. The activity of the single
mitoKATP channels embedded into the lipid bilayer was
inhibited by specific mitoKATP -5-HD blockers or gliben-
clamide [107]. At the same time, activity of mitoKATP

channels was suppressed by NO in non-excitable Jukart
cells [108]. Such differences might be related to discrep-
ancies in the molecular mechanisms underlying the NO ef-
fect on excitable and non-excitable cells. Unfortunately,
no direct studies have been performed on mitochondrial
channels to clarify this difference. However, some an-
swers have been provided by studies conducted on plas-
malemmal KATP channels. For example, registration of
cellular KATP currents in the large rat DRG neurons has
showed that the KATP channels are stimulated by NO by
reducing their sensitivity to ATP, which inhibited the open-
ing of the KATP channels [109]. The stimulating effect
of NO on KATP channels remained after the use of in-
hibitors of cytosolic guanylate cyclase and PKG. This in-
dicated that the sGC/cGMP/PKG pathway was not invoved
in the transmission of NO-mediated signals to KATP chan-
nels. The activating effect of NO was abrogated by dithio-
threitol and NEM, a thiol-alkylating agent. These results
demonstrated that NO activated KATP channels through
direct S-nitrosylation of cysteine residues. Measurement
of inward rectifier K+ currents revealed that the current
through recombinant wild-type SUR1/Kir6. 2 channels ex-
pressed in COS7 cells was activated by NO, but channels
formed only from truncated isoform Kir6.2 subunits with-
out SUR1 subunits were insensitive to NO. Further, muta-
genesis of SUR1 indicated that NO-induced KATP channel
activation involves interaction of NOwith cysteine residues
in the nucleotide binding domain1 (NBD1) of the SUR1
subunit [109].

On the other hand, NO can regulate mitoKATP

channels via the sGC/cGMP/PKG signaling pathway
in some studied cell types [110–112]. For example,
mitoKATP channels opening index and activity of the
Kir6.2/SUR2A complex has been shown to significantly in-
crease in the presence of NOC-18 (exogenous NO donor)
in transfected HEK293 cells and cardiomyocytes isolated
from rabbit hearts or genetically modified mice [37]. The
activity of mitoKATP channels was significantly reduced
in the presence of compound KT5823, a selective PKG in-
hibitor [113]. Other studies prove that NO can activate
mitoKATP channels in cardiomyocytes through its partic-
ipation in regulation of sGC/cGMP/PKG signaling path-
way [37, 110, 113]. It has been proven that the sGC-
dependent signaling pathway activated by NO can also be
involved into the regulation of Ca2+-dependent MPTP and
mitoBKCa channels in MCM [110, 111, 114].

In summary, we affirm that NO is an important
signaling molecule in the CVS and modulator of mito-
chondrial respiration, ATP synthesis, activity of mitoKATP

channels, HIF-1, and an important MPTP regulator. Cur-
rently, an assumption has been made regarding a functional
dualism of NO in cell injury processes and regulation of
metabolism. Analysis of a numerous experimental find-
ings demonstrated that multifunctionality and multidirec-
tional effect of NO on the CVS cells depends of not only
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the concentration and location of the NO synthesis, but also
its interaction with other signaling molecules, impact force
of a pathogenetic factor on cell, and functional metabolic
state of the cell [30, 32, 68–71]. The mtNOS is one of the
most regulated NO metabolism enzymes in the CVS that
opens up the prospect for use of this enzyme as a specific
target for pharmacological impact. Such approach would
allow looking for effective drugs designed to regulate the
processes of adaptation of the CVS and organism altogether
to hypoxia and ischemia. This is supported using bymtNOS
inhibitors that demonstrated high efficacy in experimental
cardiomyopathy, thus, these compounds can find practical
applications inminimizing adverse effects of coronary heart
disease and ischemia/reperfusion injury. Using such drugs,
it becomes possible to selectively modulate the individual
isoforms of the NOS, including mtNOS, and change their
activity in a targeted way. Thus, cell homeostasis and, more
importantly, resistance to hypoxia can be improved bymod-
ulating the mtNOS activity andmitochondrial NO synthesis
[70, 81, 82].

5. The role of carbon monoxide and heme
oxygenase system in vasodilation.
Antiarrhythmic effects of endogenic CO

Carbon monoxide (CO), also known as a “silent
killer”, is one of the most toxic substances that have harm-
ful effect on all eukaryotic organisms. It is a frequent
cause of morbidity and mortality as a result of poison-
ing [115–118]. Symptoms and signs of CO poisoning and
death result from tissue hypoxia due to its high affinity for
hemoglobin. Carbon monoxide has approximately 210–
250 times higher affinity for hemoglobin than oxygen at
normal atmospheric pressure [119]. Binding of CO with
heme of hemoglobin molecule causes allosteric conforma-
tional change of hemoglobin, resulting in the formation
of carboxyhemoglobin (COHb), a strong compound where
hemoglobin bound to CO is unable to transport oxygen to
tissues of the body [120–122]. Hypoxia induced by oxygen
displacement from hemoglobin, known as a carbon monox-
ide hypoxia, leads to fatal inhibition of ATP synthase, mi-
tochondrial dysfunction, intracellular accumulation of su-
peroxide and cell death [123–125]. However, recent stud-
ies have shown that CO at micromolar concentrations can
participate in the regulation of physiological functions and
even act as a cytoprotector during development of a number
of pathological conditions [118, 126, 127].

Endogenous CO is a product of heme catabolism
to carbon monoxide, biliverdin, iron, and controlled heme
oxygenases. Degradation of heme occurs in the presence
of certain enzymatic systems among which heme oxyge-
nase (HO) and biliverdin reductase are directly involved
into the oxidative conversion of heme. Heme oxygenase
cleaves the tetrapyrrole ring in the heme to form CO and
biliverdin [128].

The key enzyme in the heme oxygenase reaction
is heme oxygenase. Until recently, HO was assumed to be
expressed mainly in brain, liver and spleen cells. How-
ever, it has been now established that HO is widely dis-
tributed in the cells of the CVS [38, 127, 129]. Three iso-
forms of heme oxygenases are known. Among them, HO-1
is a stress-induced form and known as a heat shock pro-
tein 32 (HSP32), and HO-2/3 are constitutive forms [115].
The HO-1 plays an important role in the mechanisms of cell
adaptation to various pathological processes, including hy-
poxia [130]. Initially, HO-1 was considered as a microso-
mal protein, mainly localized in the endoplasmic reticulum,
however, later the enzyme was found in the cytoplasm, nu-
clear matrix, peroxisomes, and mitochondria of the spleen
and liver [128].

In this context, it is important to note that HO-1
is also expressed in the CVS cells, including CM, endothe-
lial and vascular smooth muscle cells, thereby controlling
the formation of CO [131–135]. The HO-1 is activated by
various oxidant species, including endogenous prooxidants,
such as heme and its derivatives [39, 136]. It is known that
“free” heme at high concentrations is a prooxidant and di-
rect participant in the processes of free radical oxidation.
In this regard, induction of HO-1 is primarily aimed at pre-
venting from the development of oxidative stress and cy-
totoxic effects of byproducts of heme protein degradation
on the CVS cells [136, 137]. Inhibition of HO-1 has been
demonstrated to increase oxidative stress and reperfusion
injury of the cells [40–42, 127].

Accumulation of the ROS, in turn, induces tran-
scriptional activity of HO-1 gene that plays a significant
role during hypoxia and oxidative stress. The HO-1 knock-
out mice developed hypertrophy of pulmonary artery and
hypertension during hypoxia, while overexpression of HO-
1 was accompanied by a decrease in proinflammatory cy-
tokine production and vasoconstriction under the same
condition [43]. These protective mechanisms are caused
mainly by products of the heme oxygenase reaction, such
as ferritin that binds Fe2+ and bilirubin characterized by
antioxidant properties, as well as the relaxing effect of CO.

The induction of HO-1 often occurs when the NOS
is stimulated by donors of NO and its derivatives, and
during S-nitrosotiols and S-nitrosoglutathione formation.
Alongwith the redox-dependent regulation ofHO-1 expres-
sion, Ca2+ ions, transcription factor Nrf2, MAP kinase, sol-
uble guanylate cyclase and other signaling molecules are
also involved into the regulation of the HO-1 expression
[131, 138].

The constitutive isoform HO-2 (36 kDa) found
in many tissues determines the degradation rate of heme
in physiological conditions. It is abundantly expressed in
the cardiovascular and nervous systems [40, 136]. The
HO-2 is a Ca2+-dependent enzyme that activated by the
Ca2+-calmodulin complex and inhibited by calmidazolium,
a CaM-specific inhibitor [40]. Presence of a region highly-
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sensitive to O2 in the structure of HO-2 allows consider-
ing it as a heme/oxygen sensor activated by hypoxia. The
HO-3 isoform is a constitutive homologue of HO-2. It is
abundantly expressed in different types of cells, however,
characterized by low catalytic activity and functions only in
the presence of oxygen [137]. In addition to the heme oxy-
genase system that promotes the formation of CO, other al-
ternative sources of the CO formation in the organism have
been described. These sources include some products of
lipid peroxidation and biotransformation of pharmacologi-
cal drugs (phenobarbital, diphenin) [43, 137]. Endogenous
CO production is limited by substrate availability. Thus,
the mechanisms that oversee heme production in cells reg-
ulate CO synthesis. In the human body, CO production does
not exceed 20microM/h under physiological conditions and
may increase in various pathological conditions, including
those that are accompanied by hypoxia [132, 134].

Numerous studies indicate that CO and its donors
are involved in regulation of myogenic vascular tone by
causing SMC relaxation [38, 44, 139, 140] (Table 1), and
also cause anti-inflammatory and aniapoptotic effects [38].
In this regard, it seems to be rational applying the CO pos-
itive effects for correcting hypoxia-induced pathological
conditions and reducing a course of chronic cardiovascular
diseases. Cardiovascular diseases have the utmost poten-
tial for therapeutic application of the CO. However, many
mechanisms underlying the CO effects on CVS cells are
still not well known. Considering the importance of the
perspectives of CO use as an endogenous regulator and cy-
toprotector in the CVS, we will focus on common mecha-
nisms underlying its vasodilating and anti-apoptotic effects
(Fig. 1).

To date, it has been known that the vasorelaxing
effect of CO is mainly related to its ability to regulate the
ion permeability of cell membranes through an increase in
the activity of soluble guanylate cyclase and modulation of
various types of ion channels [141]. Moreover, activation
of BKCa channels by CO has been considered as the main
mechanism of CO action in the CVS cells [142, 143].

Under physiological conditions, BKCa channels
can be activated by electrical stimuli or increased [Ca2+]i.
Their function is to repolarize the membrane potential and
remove K+ from the cell [143, 144]. The BKCa chan-
nels contain a pore-forming alpha-subunit and an auxiliary
beta 1-subunit, which increases the channel sensitivity to
Ca2+ ions. The CO sensitizes BKCa channels and regulates
their activity to maintain intracellular Ca2+ level within
micromolar concentrations [145, 146]. Local Ca2+ tran-
sients (Ca2+ sparks) are required to activate BKCa channels
in SMC. They help to maintain the required concentration
of Ca2+ in the micromolar range by activating the ryan-
odine receptors (RyR) localized in the sarcoplasmic retic-
ulum [147, 148]. Some of the BKCa channels are highly
sensitive to Ca2+ and can be activated by a single Ca2+

spark that result in transient K+currents. The transient K+

currents of the arterial wall hyperpolarize themembrane po-
tential and decrease the activity of voltage-dependent Ca2+

channels located in the plasma membrane. This leads to a
decrease in global intracellular Ca2+ concentration and va-
sorelaxation.

The vasorelaxing activity of CO is mediated by its
binding to the alpha-subunit of the BKCa channel and its
subsequent activation by cell heme. The heme, being in
the cell in a reduced state, binds to the heme-binding do-
main (Cys-Lys-Ala-Cys-His) of the alpha-subunit located
between amino acids 612 and 616, and this binding inhibits
the BKCa channels [149, 150]. At the same time, the bind-
ing of CO to the BKCa channel and reduced heme iron
changes the heme’s association with the channel that leads
to increased channel capacity [139]. Thus, the heme associ-
ated with the BKCa channel is a CO receptor, and CO bind-
ing increases the sensitivity of the BKCa channel to Ca2+,
in turn [139, 151]. The CO increasing sensitivity of BKCa

channels to Ca2+ enhances coupling of Ca2+ with activated
Ca2+ sparks of BKCa channels [139, 151–153]. The CO
also raises the conjugation of Ca2+ with BKCa channels
by increasing the Ca2+ sparks frequency as a result of RyR
activation [154, 155].

Since the suppression of Ca2+ oscillations or
blocking the BKCa channels eliminates the relaxation of
vascular smooth muscles induced by CO, it is believed that
the coupling of Ca2+ sparks with the BKCa channel is a
key element in ensuring the CO relaxing effect [156]. In
addition to a direct effect on these channels, CO can regu-
late their activity indirectly through interaction with other
molecules involved in the regulation of these channels, and
in particular PKG, which phosphorylates serine residues
(Ser855, Ser869 and Ser1072) localized in the cytoplasmic
domain of BKCa, increasing the probability of opening the
gate of the channel. The CO is able to stimulate soluble
guanylate cyclase and PKG activation, as a result [157].

In turn, activation of the BKCa channels leads to
hyperpolarization of the vascular SMC membrane, closing
of the voltage-dependent Ca2+ channels, and decrease in
Ca2+ entry into the cells [158]. Thus, despite of some dif-
ferences in the SMC response to CO, the CO vasodilating
effect can be explained by an increase in the sensitivity of
the BKCa channels to Ca2+ as well as an enhance in tran-
sient K+ current, which causes PM hyperpolarization and
closure of the voltage-dependent Ca2+ channels.

On the other hand, the relaxing effect of CO on
SMC is conditioned by activation of the soluble guanylate
cyclase and an increase in intracellular cGMP concentration
[159–161]. The cGMP-dependent protein kinase G (PKG)
is a key participant in the mechanism of cGMP-mediated
CO effect on vascular SMC. The kinase induces re-uptake
of Ca2+ by sarcoplasmic reticulum through phosphoryla-
tion of a number of signaling proteins and lead to reduction
of [Ca2+]i followed by smooth muscle relaxation [162]. In
addition, activated PKG phosphorylates RyR in SR, which
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contributes to an increase in the intensity of Ca2+-sparks
associated with vasorelaxation [163].

Although further studies are needed to determine
the more precise effect of CO on the molecular structures
of the cells during vasorelaxation, CO donors can already
be used in practical medicine to reduce blood pressure in
hypertensive patients. In addition, the endogenous CO in-
duction might be one of the ways to reduce a stage of is-
chemic injury caused by circulatory disorders associated
with pathological vasoconstriction during acute coronary
syndrome and angina pectoris.

The KATP channels are considered as targets of
carbon dioxide in SMC along with the proteins that have
been mentioned previously. Their participation in the CO-
mediated vasorelaxation was established by using selective
KATP channel blockers. For example, a decrease in the CO
relaxing effect on vascular SMCs was observed in experi-
ments with 10microM glibenclamide, a selective blocker of
ATP-dependent K+ channels [164]. However, the interac-
tion of CO and KATP channels remains poorly understood.

To date, the CO activation of the KATP chan-
nels has been revealed to depend on presence of the heme.
Also, it has been demonstrated that CO tightly binds the
iron heme-SUR2A615–933 complex similar way to the CO
bindings found in other studied heme-dependent regulatory
systems. This supports the fact that CO regulates heme
binding by the SUR2A subunit of the KATP channel. The
data obtained for the heme-SUR2A615-933 complex are
consistent with ideas about the activity of the 6-coordinate
low-spin heme forms with histidine and cysteine as axial
ligands. In the presence of CO, the cysteine ligand becomes
displaced for the interaction of the CO-bound porphyrin
complex with proximal histidine, which significantly in-
creases the functional activity of the channel. Bonds in
Fe-Cys are weak, therefore, iron-protein complexes are ex-
pected to easily dissociate in the presence of CO, a strong
pi-acceptor ligand [161]. The interaction of the heme with
the SUR2A subunit of the KATP channel is flexible and re-
versible that implies conformational changes in the heme
molecule and the heme pocket opening for interaction with
signaling molecules [165]. These molecules primarily in-
clude ROS, which modify the cysteine residues of channel
proteins [164] and soluble guanylate cyclase [166]. The CO
binding to the heme iron is accompanied by a change in sGC
conformation underlying the enzyme activation [166]. The
sGC modification leads in turn to increase in the formation
of cGMP, an inducer of signaling processes, which lead to
vasodilation [39, 159, 166].

Most of the cGMP effects are mediated via cGMP-
dependent PKG, which phosphorylates a wide range of reg-
ulatory target proteins in the CVS cells, and thereby mod-
ulates the functional activity of these cells. Inhibition of
the cGMP synthesis or the kinase itself causes a weaken-
ing of the contractile effects of CO on various SMC types
[39, 167]. In the organism, vessels are often influenced by

two gas transmitters (CO and NO), and the CO effect is en-
hanced in the presence of NO [159]. These effects are as-
sociated with sGC stimulation. In vitro experiments have
shown that NO is 30–100 times more potent sGC stimula-
tor than CO [44], and this explains why the NO-induced va-
sorelaxation is significantly more pronounced than the CO-
modulated one.

Along with existing information of CO as a va-
sodilator, during the oxidative stress CO can exhibit a con-
strictive effect and promote ROS formation in mitochon-
dria [140, 168]. In turn, the CO-induced ROS produc-
tion [169] is a prerequisite for activation of antioxidant en-
zymes and redox-dependent expression of corresponding
genes. Modulating various signaling cascades, including
PI3K/Akt [38], NF-kappaB, HIF-1alpha [132], p38 MAPK
[169], JNK1/2 [128], sGC/cGMP [170–174], CO is able
to exert a protective anti-apoptotic, anti-inflammatory, and
anti-proliferative effect.

6. Antiapoptotic properties of CO, H2S and
NO

This chapter will focus on the protective mecha-
nisms that underlie the CO, H2S and NO effects predomi-
nantly in the CVS cells (CM andCVS smoothmuscle cells).
Apoptosis in the CVS cells can be initiated by endogenous
and exogenous factors that are intracellular signals gener-
ated during cell stress. In this case, the apoptosis induction
depends on release of proapoptotic proteins from the mi-
tochondrial intermembrane space. The exogenous factors
are considered as extracellular ligands that bind “death re-
ceptors” on the cell surface that leads to the death-inducing
signaling complex (DISC) formation [175]. The cytopro-
tective CO effect is associated with the induction of pro-
tective mechanisms that weaken effects of both internal
and death-dependent external apoptotic signaling pathways
[176]. The endogenous factor-induced apoptosis is associ-
ated with mitochondrial signaling pathways and increased
permeability of the mitochondrial membranes [177]. Per-
meabilization of the outer and inner mitochondrial mem-
branes leads to the irreversible programmed cell death. It
is related, first to a loss of mitochondrial membrane po-
tential and cytochrome c release to the cytosol, second to
uncoupling of oxidative phosphorylation, third to ROS hy-
perproduction, fourth to ATP synthesis cessation, and fifth
to release of pro-apoptotic proteins [178].

6.1 Antiapoptotic properties of CO

The main mechanism by which CO mediates anti-
apoptotic effect in the internal mitochondrial pathway is
preventing association of Bid and Bax proteins, which are
pro-apoptotic members of the Bcl-2 family, on the surface
of the external mitochondrial membrane. The CO inhibits
caspase-8, whose function is to activate the pro-apoptotic
protein Bax by cleaving it to the tBid active fragment [176,
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179]. The activated tBid is translocated into the mitochon-
dria, where it binds Bax protein, whose oligomeric form
causes permeabilization of the outer mitochondrial mem-
brane, release of cytochrome c and other pro-apoptotic pro-
teins from the mitochondrial intramembrane space, apopto-
some formation and ultimately cell death [180–185].

As for the external receptor-dependent apoptotic
pathway, CO inhibits formation and movement of the
death-inducing signaling complex DISC from the Golgi ap-
paratus to the plasma membrane. This signaling pathway
is initiated by the FasL (Fas cell death ligand) that inter-
acts with its receptor (Fas-R) localized to the cell mem-
brane [186]. The FAS activation induces oligomeriza-
tion and rapid recruitment of an adapter protein (FADD)
that interacts with the death domain of the Fas receptor
(Fas-associated death domain FADD) and caspase-8 that
form DISC. Inside the signal complex, auto-proteolytic
generation of caspase-8 occurs from procaspase-8 [187].
Although exact mechanisms underlying the DISC forma-
tion and translocation of Fas, FADD, and caspase-8 have
not been fully characterized, the DISC assembly has been
demonstrated to occur in the Golgi apparatus and its acti-
vation happens in the plasma membrane [176, 188, 189].
Activated in the apoptosome, the caspase-8 cleaves Bid to
the active tBid fragment, which transfers from the cytosol
into themitochondrial membrane, where it promotes activa-
tion of Bax, a main molecule of the internal mitochondrial
apoptotic pathway [190].

It is assumed that CO is also involved in other cy-
toprotective mechanisms during activation of the external
apoptotic pathway, particularly through activation of the
p38 MAP kinase signaling pathway and regulation of the
transcription factor NF-kappaB activity. The interaction of
the signaling proteins with CO results in activation of the
FADD-like ICE-inhibitory protein, which inhibits the TNF-
alpha/Act-D-induced caspase-8 cleavage [191, 192].

The anti-apoptotic CO effects can be useful for
practical medical applications in cases when improving cell
survival is essential to protect against acute stress or chronic
destructive changes. For example, ischemic stroke and
acute coronary syndrome are representative diseases when
ischemic injury is caused by failure of circulation. Treat-
ment of these diseases is associated with repeated vascular-
ization (blood flow restoration in the damaged area), which
causes additional ischemic-reperfusion injury (IRI). In such
conditions, CO by exerting an anti-apoptotic effect on cells
can reduce tissue damage caused both by the IRI and initial
ischemia.

In addition, favorable CO effects on the CVS can
include its antiproliferative effects on VSMC and mito-
chondrial respiration modulation associated with mild un-
coupling of the oxidative phosphorylation and precondi-
tioning [193, 194]. The CO directly regulates the expres-
sion both of cyclin D1, a key regulator of cell cycle progres-
sion in the G1 phase, and p21cip1 gene, a potent inhibitor of

cell cycle progression, which leads to the G0/G1 cell cycle
arrest [195]. Moreover, CO abrogates transition of the SMC
from proliferative dormancy to the growth phase by inhibit-
ing growth factors or cytokines inducing cell proliferation
[196–198]. Thus, with the participation of these mecha-
nisms, CO can exert an antiproliferative effect on the CVS
smooth muscle cells.

In addition, CO contributes to the uncoupling of
the mitochondrial respiration and modulates the production
of ROS. During the mitochondrial oxidative phosphoryla-
tion, 1–3% of consumed oxygen is not completely reduced
to the superoxide produced by the ETC and form primary
moderately reactive oxygen derivatives that contribute to
the formation of more reactive or secondary oxygen deriva-
tives even under physiological conditions [177, 199]. In
pathological conditions, reverse of the electron flow can
lead to a persistent and enhanced ROS generation. Thus,
the mild mitochondrial uncoupling is an integral cellular
mechanism for limiting ROS overproduction and oxidative
stress [193]. Uncoupling of the mitochondrial respiration
by CO via stimulation of mitochondrial uncouplers and/or
the ATP/ADP translocase plays an important role in the un-
coupling of the oxidative phosphorylation at low CO levels
[194].

At the same time, CO partially can inhibit electron
transfer along the ETC, which results in the precondition-
ing at the cellular level (ATP production increase and mi-
tochondrial respiration stimulation) [177, 193]. These CO-
mediated preconditioning effects have a positive effect on
the survival of the CVS cells during ischemia/reperfusion
[177].

6.2 Antiapoptotic properties of H2S

Recent studies have shown that some pharmaco-
logical drugs, which increase the endogenous synthesis of
H2S, can protect the heart from IR injury by reducing apop-
tosis of CM [200, 201]. In addition, H2S improves the con-
tractile function of the myocardium by inhibiting apoptosis
of ventricular myocytes and reducing the infarction zone
(preconditioning effect) [202]. At the same time, the in-
farction zone has been demonstrated to decrease after use of
exogenous and endogenous H2S and to increase because of
pharmacological inhibition of cystathionine γ-lyase (CGL)
[203].

Molecular studies have shown that the protective
preconditioning effect of H2S is associated with an increase
in microRNAs (miRs) levels [204]. MicroRNAs are a re-
cently discovered class of small noncoding RNAs that reg-
ulate gene expression at post transcriptional levels. A pre-
vious study by Kang et al. [205] showed that level of miR-1
was upregulated by 2.21-fold in the IR group compared to
the group preconditioned with H2S. Also, preconditioning
with H2S is protective in IR-exposed CM by regulating the
expression of miR-1 and apoptosis-related genes. Histone
deacetylase 4 (HDAC4) is one of the downstream target
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genes of miR-1. Histone deacetylation alters the chromo-
some structure and affects access of the transcription fac-
tors to DNA. HDAC4 does not bind to DNA directly but
indirectly via transcription factors, MEF2C/D that play a
critical role in transcriptional regulation. Thus, HDAC4 is
involved in the protective effect of H2S against IR-induced
apoptosis of CM.

6.3 Antiapoptotic properties of NO

As noted earlier, the effects of NO on CVS cells
depend on its concentration. Higher NO concentrations de-
press CM function, mediate inflammatory processes fol-
lowing IR, impair MMP, mitochondrial respiration, IMM
permeability, and finally inducing apoptosis or necrosis in
CM.

Lower concentration of NO or its donor SNAP (2
µM) increase the MMP via activation of mitoKATP chan-
nels [206]. Any increase in MMP will reduce the uptake
of Ca2+ by mitochondria, restore Ca2+ homeostasis in CM
and prevent the formation of MPTP and the initiation of the
caspase cascade leading to CM apoptosis.

In addition, there is information that β3-AR
adrenoreceptors and associated eNOS and nNOS pathways
may be involved in the protection of cardiomyocytes from
apoptosis [207]. The authors demonstrated that the number
of apoptotic CM inmicewith inducedmyocardial infarction
(MI) was lower if animals were administrated with β3-AR
agonist BRL37344 (BRL) at 0.1 mg/kg/hour one day after
MI operation. The apoptosis index in mice with MI pre-
treated with BRL was by 12% lower compared to the MI
group [207].

In addition, the authors evaluated the expressions
of NOS isoforms after MI, as well as the role they played in
the cardioprotective effects of β3-AR [207]. It is known
that the eNOS expression and activation which is gener-
ally modulated by 4 phosphorylation sites, eNOSSer1177,
eNOSSer114, eNOSSer633 and eNOSThr495 [77]. Rep-
resentative blotting results and semiquantitative analyses
showed that total eNOS, phosphorylated eNOSSer114 and
phosphorylated eNOSSer633 were unchanged in all groups.
However, phosphorylation of eNOSSer1177, which indi-
cates eNOS activation, significantly decreased inMI group,
whereas the expressions of phospho-eNOSThr495 increased
in MI group. At the same time, BRL-37344 treatment in-
creased the expression of phosphorylated eNOSSer1177 and
decreased the level of phosphorylated eNOSThr495.

It was also found that mRNA expression of nNOS
was significantly increased in theMI+BRLgroup compared
to MI group. These results showed that the modulation of
β3-AR on nNOS is carried out by a transcriptional path-
way. Moreover, the protein expression of nNOS was in-
creased in MI group compared to the sham group. BRL-
37344 treatment resulted in a 2-fold increase in total nNOS
protein expression, increase in expression of phospho-
nNOSSer1417 and decrease in phospho-nNOSSer847 ex-

pression compared to the protein expression in MI group.
In contrary, there were no differences in the expression of
iNOS and phospho-iNOS in the experimental and control
groups.

7. Interactions of H2S, NO and CO in the
cardiovascular system during hypoxia

Various studies have shown that the effect of the
studied gas transmitters H2S, NO and CO on the CVS cells
depends on their concentration. High concentrations of
these gas transmitters are toxic to cells, and low, physio-
logical concentrations, induce vasorelaxation, angiogene-
sis, promote cardioprotection and inhibition of apoptosis.
The transmitters share common features due to the interac-
tion and intersection of their common cardioprotective sig-
nal pathways. For example, BKCa channels play an impor-
tant role in the mechanism of the cardioprotective effect of
H2S on cardiomyocytes during hypoxia, but they are also
activated in response to the stimulation of CM by endoge-
nous CO. Jaggar et al. [208, 209] found that CO regulates
these channels by binding to reduced heme. Activators of
BKCa channels may have a protective effect on the CVS
cells and vascular resistance during hypoxia and I/R [210].
NO is also a trigger molecule for the activation of BKCa

channels but increases their activity indirectly through PKG
and PKA-related pathways [211]. Similar effects of the gas
transmitters on molecular targets in other cardioprotective
signaling pathways during hypoxia and I/R are known too
[212]. These findings may be useful for the search for new
therapeutic agents that modulate the metabolism and inter-
action of gas transmitters with each other in the CVS cells
in I/R or others pathological condition accompanied by hy-
poxia [212, 213].

8. Prospects for the use of donors and
inducers of gasotransmitters (NO, H2S, CO)
synthesis in clinical practice

8.1 Clinical significance of endogenous NO

Nitric oxide refers to compounds that have a poly-
functional effect and can have both physiological and toxic
effects. The toxic effect of NO is primarily manifested in
the inhibition of mitochondrial respiratory chain enzymes,
which leads to a decrease in the production of ATP, as
well as enzymes involved in DNA replication. In addition,
excessive NO production leads to hyperactivation of the
NMDA subtype of Glu receptors and increase of [Ca2+]i,
contributing to neuropathology [214]. High concentrations
of Ca2+ in the cytoplasm of neurons trigger neurotoxic pro-
cesses, including uncoupling of the electron transport chain,
activation of enzymes that may impair neurons [215]. Ex-
amples of the consequences of NO toxic effect include neu-
rodegenerative diseases such as ischemic stroke, epilepsy,
Parkinson’s and Alzheimer’s diseases, etc.
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Fig. 2. Schematic representation of NO synthesis from L-arginine.

The participation of NO has been also demon-
strated in the development of insulin-dependent diabetes al-
though the direct target of the action of NO and other free
radicals is the DNA of the pancreatic beta-cells in the islets
of Langerhans [216]. Furthermore, excessive production of
NO by the iNOS is an important link in the pathogenesis of
acute circulatory failure in thermal, cardiogenic, septic and
other types of shock [217].

Multiple factors such as low-density lipoproteins,
high glucose concentrations, and ischemia can cause a de-
crease in NO production, both by inhibiting of NOS and by
reducing their expression. Low levels of NO may lead to
increased vascular tone, blood clotting and reduced immu-
nity, thereby contributing to the development of hyperten-
sion, atherosclerosis, thrombosis, coronary heart disease,
infectious diseases, and tumor growth [217–219].

Nitric oxide is synthesized via the oxidative reac-
tion catalyzed by the NOS from L-arginine (Fig. 2) [220].

The formation of excessive amounts of NO is
mainly caused by the activation of iNOS, localized in the
cytosol of cells (mainly macrophages) and expressed under
the influence of cytokines and bacterial polysaccharides.
The inducible NOS produces NO hundreds and thousands
of times more than the constitutive isoforms of the enzyme.
It has been recently shown that iNOS is synthesized not only
by macrophages, but many other cells under certain exter-
nal stimuli, mainly during pathological conditions. Interac-
tion of NO with the oxygen radical O2‾ results in formation
of peroxynitrite (ONOO‾), which in combination with NO
damages DNA and causes apoptosis in cardiomyocytes and
other cells [221].

Nitric oxide is involved in various functional pro-
cesses via interaction with regulatory molecules. One of
the most studied functions is the relaxation of SMC. Multi-

ple molecules such as acetylcholine, histamine, bradykinin,
serotonin, adenine nucleotides, and some others are called
“endothelium-dependent vasodilators”. Under physiolog-
ical conditions, stimulation of the endothelium by these
molecules leads to the NO synthesis. In turn, NO diffuses to
SMC and stimulates GC, resulting in formation of cGMP. In
the SMC of the internal organs, cGMP reduces the [Ca2+]i
and activates the myosin light chain kinase, causing relax-
ation of the SMC of digestive tract and respiratory system.

One of the most important and well-studied tar-
get organs for NO is heart. In myocardium, NO becomes
one of the cardioprotective regulatory factors. Nitric oxide
is synthesized in the coronary endothelium, endocardium,
and cardiomyocytes. It enhances ventricular relaxation
and contributes to diastolic heart function by increasing
the intracellular concentration of cGMP. Under experimen-
tal conditions, NO has been demonstrated to have a pro-
nounced effect on heart and hemodynamics by causing a
decrease in heart rate, stroke volume, an increase in the du-
ration of the PQ interval and period of expulsion.

In some cases, an increase in the level of NO can
be protective. For example, it reduces mortality in patients
withmoderate hypercholesterolemia and atherogenic steno-
sis of the internal carotid artery [222].

In extreme conditions, changes in NO level might
be considered as an indicator that reflects the ability of the
organism to provide an adequate regional perfusion. A de-
crease in the level of NO metabolites in patients with is-
chemic heart disease is a poor prognostic sign for a long-
term ischemia. The results of numerous studies justify the
need for use of nitrates in the treatment of various forms
of IHD in patients with reduced levels of NO metabolites
[222]. Thus, NO donor drugs or drugs that stimulate the
release of NO from endothelium have a therapeutic inter-
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Fig. 3. Sulfur metabolism and H2S producing reactions. (a) The classically described roles of CBS and CSE in sulfur metabolism. CBS condenses
homocysteine with serine to generate the thiol ether cystathionine. CSE hydrolyzes cystathionine into cysteine, α-ketobutyrate and ammonia. (b) H2S
producing reactions catalyzed by CBS and CSE. CBS catalyzes the β-replacement reaction of cysteine (Cy–SH) with a variety of thiols (R–SH) to generate
H2S and the corresponding thiol ether (R–S–Cy). CSE catalyzes theβ-disulfide elimination reaction of cystine (Cy–S–S–Cy), this is followed by a reaction
with a variety of thiols, to generate H2S and the corresponding disulfide (R–S–S–Cy) [226].

est. The donors of NO include traditional heart drugs such
as nitroglycerin and other organic nitrates, which serve as
exogenous sources of NO. They have a strong side effect
caused by a sudden drop in blood pressure due to NO hy-
perproduction. In this regard, more attention has been cur-
rently given to the development of new drugs for clinical
use that have modulating properties without significant side
effects. Such modulators include drugs of nitrate-like ac-
tion molsidomine, sodium nitroprusside that stimulate the
activity of guanylate cyclase and NOS. Nebivolol is another
potent option to patients with newly diagnosed or poorly
controlled hypertension. This drug, a representative of the

latest group of β1-blockers, is characterized by a very high
degree of cardioselectivity (the index of blocking β1/β2-
receptors is 293, 10–20 times higher than the similar index
of the vast majority of other β1-blockers) [223] and modu-
lates NO release by endotheliocytes. The results of differ-
ent studies proved efficacy and safety profile of nebivolol
in patients with heart failure, arterial hypertension and CHD
[224].

At low concentrations of NO, other endogenous
gasotransmitters (H2S and CO) can act as NO mimetics
causing similar physiological changes as vasodilation.
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8.2 Clinical significance of donors and inducers of H2S

Hydrogen sulfide is involved in the regulation of
many physiological processes, including homeostasis, im-
munity, and transmission of nerve impulses in the cells of
the central and peripheral nervous system. It also plays a
vital role in vasodilation and reducing blood pressure. The
discovery of these properties of H2S marked the begin-
ning of a new direction in pharmacology associated with
the development of a fundamentally new group of antihy-
pertensive drugs whose actions is based on release of H2S
molecules from endogenic or exogenic sources.

The endogenous source of H2S in the cells is cys-
teine (8. Hydrogen sulfide synthesis is carried out by
three enzymes, namely cystathionine-β-synthase (CBS),
cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sul-
furtransferase (3-MST), depending on the cell type [225].
Cystathionine-β-synthase synthesizes H2S primarily in
neurons. In CM and VSMC, the synthesis of H2S is carried
out by CSE. The third H2S – producing enzyme, 3-MST,
was found in endothelial cells) (Fig. 3, Ref. [226]).

Clinical studies have shown that the level of H2S
in the blood plasma of individuals with normal blood pres-
sure was 34 microM, while it was reduced to 20 microM in
patients with arterial hypertension. Inhalation of H2S gas
contributed to a decrease in blood pressure parameters in
hypertensive patients [227]. In experiments on rat models,
it was found that intravenous administration of a H2S so-
lution caused a dose-dependent decrease in blood pressure
[226].

In vitro, H2S donor sodium hydrosulfide (NaHS),
which is actively used in experimental practice, also caused
relaxation of thoracic aorta, mesenteric, renal arteries and
portal vein. The relaxing effect of H2S on smooth muscle
cells is associated with effects on cGC, and, as we noted
earlier, on KATP channels [23, 228, 229].

Hydrogen sulfide reduces myocardial contractil-
ity both in vitro and in vivo [66, 228, 229]. This effect is
partially related to the activation of KATP channels in CM
[230]. It has been demonstrated that myocardial infarction
in rats is associated with reduction in concentration of H2S
by 60% compared to the control group. In addition, the
intraperitoneal injection of NaHS (14 microM/kg) signif-
icantly reduced mortality among rats with myocardial in-
farction [231].

Given the importance of H2S in the regulation of
vascular tone, new drugs that are exogenous H2S donors,
inducers, and inhibitors of endogenous H2S synthesis are
currently being developed [232].

Right now, sodium hydrosulfide (NaHS) and
sodium sulfide Na2S are the most often used H2S donors in
experimental practice. However, when these molecules are
dissolved, H2S is released too quickly that causes a sharp
drop in blood pressure in vivo, resulting in vascular collapse
[231]. In this case, difficulties related to handling H2S re-
lease make NaHS and Na2S unsuitable for therapeutic use.

Li Ling and co-authors [233] obtained a new H2S
donor designated as GYY4137. Unlike NaHS, GYY4137
releases H2S gradually, which makes this molecule more
promising for further pharmacological applications. In ex-
periments on rat models and in vitro, GYY4137 has demon-
strated vasodilatory properties and antihypertensive effect
[234].

Another direction in the development of H2S-
based drugs is based on incorporation of H2S-releasing
groups into already existing and widely used drug
molecules. Alternative H2S donors can be obtained by at-
taching sulfide groups to nonsteroidal anti-inflammatory
drugs [235, 236].

Furthermore, inhibitors of enzymes H2S syn-
thesis can be used in order to reduce pathologically
high concentrations of H2S. These inhibitors include DL-
propargylglycine with high lipophilic properties that allow
the inhibitor to pass easily through cell membrane with-
out causing noticeable damage to it [237]. However, DL-
propargylglycine is characterized by low selectivity and in-
hibits not only CSE, which is an enzyme of H2S synthesis
in the cardiovascular system, but also CBS in neurons, af-
fecting the central nervous system function [238].

8.3 Clinical significance of endogenous CO donors

Carbon monoxide (CO) is formed during the ox-
idative cleavage of protoheme IX by heme oxygenase-1
(HO-1) [128]. In turn, protoheme IX is formed in the pro-
cess of heme catabolism from hemoglobin and myoglobin
as well as other hemeproteins (Fig. 4).

During the reaction, heme is converted to
biliverdin by the enzyme heme oxygenase, CO is produced,
and the iron is released from the heme as the ferrous ion.
Biliverdin then is converted to bilirubin by the biliverdin
reductase. All three products of the heme oxygenase reac-
tion are biologically active.

Studies on the role of endogenous CO as an anti-
inflammatory agent and cytoprotector have been conducted
in numerous laboratories around the world [239]. These
properties of endogenous CO make it an interesting ther-
apeutic target for the treatment of such pathological con-
ditions as tissue injury caused by ischemia and subsequent
reperfusion (for example, myocardial infarction, ischemic
stroke), graft rejection, vascular atherosclerosis, severe sep-
sis, severe malaria, and autoimmune diseases. Human clin-
ical trials have also been conducted, but the results have not
been published yet [240].

Experimental approaches of cancer therapies in-
clude the use of free CO donors ([Ru(CO)3Cl2]2, Mn2
(CO)10, etc.) and inhalation of CO gas. Despite the certain
effectiveness of these approaches in mouse models, their
clinical trials are stalled due to doubts about the therapeutic
index [241].
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Fig. 4. Schematic representation of CO formation as a result of heme catabolism.

9. Conclusions

In summary, the adaptive changes in the CVS cells
in chronic diseases and response to hypoxia are closely as-
sociated with the participation of Ca2+ ions and gas trans-
mitters (NO, H2S, CO). These molecules affect blood ves-
sels tone, angiogenesis, and cell survival under conditions
of hypoxia and oxidative stress initiated by hypoxia. Effects
of these gas molecules and Ca2+ are mediated through ac-
tivation of signaling mechanisms affecting the mitochon-
drial function and activity of such important regulators of
intracellular processes as PKG, PI3K, p38MAPK, JNK1/2,
sGC, cGMP, NF-kappaB, HIF-1alpha, and ion channels
(mitoKATP and BKCa channels). The energy synthesiz-
ing and Ca2+-depositing function of the cells depend on
throughput capacity of these channels. Development of
new drugs which molecular targets are mitochondrial chan-
nels will offer new ways for prevention and treatment of the
CVS diseases.
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