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1. Abstract

Eribulin, a synthetic marine based drug has re-
ceived extensive attention recently due to its promising an-
ticancer activities against a wide variety of cancer types as
evidenced by preclinical and clinical data. Eribulin is pre-
dominantly shown to exhibit microtubule inhibitory activ-
ity, however recent reports indicate that it acts via multi-
ple molecular mechanisms targeting both the cancer cells as
well as the tumor microenvironment. In this review, a com-
prehensive account on various modes of action of eribu-
lin on cancer cells is presented along with important clin-

ical aspects in the management of cancer through a com-
prehensive literature review. We have also highlighted ap-
proaches including combination therapy to improve the ef-
ficacy of eribulin in cancer treatment. Currently, eribulin
is used to treat heavily pretreated patients with metastatic
breast cancer, for which it gained FDA approval a decade
ago and more recently, it has been approved for treating
anthracycline-pretreated patients with metastatic liposar-
coma. Novel therapeutic strategies should aim at resolving
the toxicity and resistance conferred due to eribulin treat-
ment so that it could be integrated in the clinics as a first-
line treatment approach.

http://doi.org/10.52586/S559
https://www.fbscience.com
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2. Introduction

Over the recent years, significant decrease in the
mortality due to cancer has been observed globally [1].
One of the plausible reasons could be better understand-
ing of molecular mechanisms underlying different types
of cancers. Such knowledge has led to the current era
of targeted therapies and precision medicine. Neverthe-
less, chemotherapy is still a powerful approach and var-
ious studies are carried out recently to improve the effi-
cacy of the existing drugs and to identify potent new drugs
[2]. Among the several classes of anticancer agents, micro-
tubule inhibitors are considerably effective, since they in-
terfere with significant cellular processes including mitosis
and angiogenesis [3]. Interestingly, all the FDA approved
microtubule-targeting agents are either isolated or derived
from natural products of plant or marine origin [4, 5]. Plant
based vinca alkaloids and taxanes are incredibly successful
microtubule inhibitors till date which were approved about
five decades ago for cancer therapy [3]. More recently a
unique microtubule inhibitor, eribulin gained a lot of inter-
est owing to its excellent anticancer properties.

Eribulin is a simplified synthetic analog of Hali-
chondrin B (Fig. 1), which is isolated from a rare marine
sponge Halichondria okadai [6–8]. In spite of potent an-
ticancer properties on a wide variety of cancers [7], Hali-
chondrin B could not be developed as a therapeutic drug due
to its limited availability and complicated isolation process
from themarine source. Among its several simplified struc-
tural analogs, eribulin retains the remarkable anticancer ac-
tivity of the parent compound as evidenced through preclin-
ical studies on various cancer cell lines [6, 9]. A number
of clinical trials were conducted before the FDA approval
of eribulin for heavily pretreated patients with metastatic
breast cancer [10] and patients with metastatic liposarcoma
[11]. Clinical trials on eribulin monotherapy or combina-
tion therapy with other anti-neoplastic agents, are still been
conducted primarily forMBC and soft tissue sarcoma (STS)
in addition to several other cancer types also. Currently
eribulin is marketed in more than 50 countries with trade
name of Halaven® with an acceptable toxicity profile with
increased survival benefit compared to other drugs [12, 13].
In this review a detailed account on different molecular
mechanisms of eribulin unraveled until recently along with
preclinical and clinical evidences for its potent anticancer
activity are provided along with its possible implications as
an effective drug.

3. Mechanism of action

Eribulin exerts its anticancer property primarily
through tubulin inhibition and mitosis [14–17]. However,
recent studies revealed that eribulin participates in various
other molecular mechanisms including changes in the tu-
mor microenvironment (TME) that impact significantly on

tumor migration, invasion and metastasis. This section dis-
cusses the involvement of eribulin in various signaling path-
ways along with those that regulate mitosis.

3.1 Microtubule inhibition

The role of microtubules in cancer is well estab-
lished and inhibitors of microtubule growth exhibit excel-
lent anticancer properties [18, 19]. One of the earliest stud-
ies on the effects of eribulin on purified microtubules as
well as in living cells showed that it inhibits microtubule
growth by an end-poisoning mechanism [14]. This is in
contrast to other anti-mitotic drugs such as vinblastine and
paclitaxel that diminish the shortening and growth phases
of microtubule dynamic instability. Eribulin does not cause
the shortening of tubulin but it turns them into aggregates
as observed through electronmicroscopy [14]. Eribulin sig-
nificantly suppressed centromere dynamics in mitotic spin-
dles at drug concentrations that arrested mitosis [15]. Re-
sults from binding studies on soluble tubulin suggested that
eribulin had the ability to bind with high affinity to micro-
tubule plus ends thereby it suppressed the dynamic insta-
bility [17]. Later studies involving X-ray crystallography
eribulin was shown to bind to a site on beta-tubulin that is
required for proto filament plus end elongation. In addition,
single eribulin molecule was found to specifically interact
withmicrotubule plus ends and is sufficient enough to either
trigger a catastrophe or induce erratic microtubule growth
[20]. Eribulin caused irreversible mitotic arrest unlike other
microtubule inhibitors that leads to consistent inactivation
of Bcl-2 and ended up with apoptosis [21, 22]. Molecu-
lar consequences of microtubule inhibition due to eribulin
treatment are summarized in the Figure (Fig. 2).

3.2 Effects on tumor micro environment (TME)

Recent evidences show that eribulin not only acts
on the cancer cells but also shows its effects on the entire
Tumor microenvironment (TME) [23, 24]. TME includes
the entire cellular environment containing blood vessels,
immune cells such as T cells, natural killer (NK) cells, ac-
tivated fibroblasts and endothelial and mesenchymal cells
along with the tumor cells [25–27]. The events orchestrated
by all of these components of TME play a major role in tu-
mor progression. Evidences indicate that effectiveness of
the therapy depends on the capability of the anticancer agent
to reduce the abnormalities in the TME [28]. Some of the
alterations in the tumor environment due to eribulin treat-
ment as observed until recently are discussed below. The
different processes that are altered/ activated in the TME
due to eribulin treatment is summarized in Fig. 3.

3.2.1 Reversal of EMT process

Epithelial cells lose their flat and stationary nature
and gain spindle like morphology with highly motile mes-
enchymal characteristics through epithelial mesenchymal
transition (EMT) has beenwidely established in cancer [29–
31]. This EMT process plays a major role in tumor progres-
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Fig. 1. Structures of Halichondrin B and Eribulin.

sion, maintenance, drug resistance, and metastasis [32–34].
Tumor cells acquire mesenchymal properties by up regu-
lation of EMT transcriptional factors such as TWIST1/2,
SNAI2/SLUG, and ZEB1 [35–37]. Further, the expression
profile of adhesion molecules (cadherins) and regulators
such as Notch and Wnt ligands are analyzed to understand
EMT process [38, 39]. Various preclinical evidences indi-
cated that eribulin could reverse the EMT process to MET,
while exerting its anticancer activity [23, 40–42]. In vitro
studies on TNBC cell lines after treatment with eribulin for
7 days resulted in the reversal of spindle-like to epithelial-
like flat morphology, up regulation of mRNA expression
for epithelial markers (CDH1, KRT18) and down regu-
lation of mesenchymal markers (CDH2, VIM, TWIST1,
SNAI2, ZEB1, and ZEB2) [23]. Through IHC studies on
xenograft models, eribulin treatment was shown to induce
increased tumor expression level of epithelial markers (E-
cadherin) in parallel to decreased mesenchymal markers
(N-cadherin, ZEB1) [23]. One of the studies analyzed the

differently altered genes between eribulin and paclitaxel
in different cancer cell line panels. The results showed
that the EMT pathway was activated with significantly al-
tered expression between the drugs for breast and endome-
trial cancers, but not for ovarian cancer [43]. In human
breast cancer xenograft models, 13 EMT-related mesenchy-
mal marker genes, including Snai1, Snai2, Tgfb1, Tgfb2
and Vim, showed decreased expression after eribulin treat-
ment as observed through gene profiling studies [24]. Sim-
ilar pattern of gene regulation was observed in Oral Squa-
mous Carcinoma cell line (OSCC), and in addition, cells
with mesenchymal phenotype were found to be about 100
times more sensitive to eribulin compared to other cell lines
[41]. The gene expression profiles of genes involved in
EMT were altered between sensitive and resistant cell lines
and were predictive of eribulin sensitivity in the breast and
endometrial cancer panels [43].
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Fig. 2. Effects of microtubule inhibition due to eribulin treatment.

EMT also plays a key role in immunosuppression
in cancers and is shown to be involved in the activation of
different immune checkpoint molecules, including PD-L1
[44–46]. EMT reversal due to eribulin treatment altered the
immune suppressive to an immune responsive environment
as indicated by reduced expression of the immunosuppres-
sive drivers (PD-L1 and FOXP3) inmetastatic breast cancer
patients [47].

3.2.2 Inhibition of TGF- beta signaling

TGF-beta signaling pathway plays a major role for
the induction of EMT and Smad proteins are crucial medi-
ators of this process [48, 49]. In the absence of TGF- beta,
Smad proteins tend to bind with microtubules [50]. Upon
TGF-beta stimulation Smad proteins dissociate frommicro-
tubule and in involve in phosphorylation to Smad2, Smad3
and eventually activate transcription [50]. In a TGF-beta in-
duced model of EMT, eribulin initiated the reversal of EMT
by decreasing the phosphorylation of Smad2 and Smad3
[23]. There exists a correlation between microtubule inhi-
bition by eribulin and EMT reversal. In fact, microtubule
inhibition leads to interrelated mechanistic connection be-
tween other pathways. Eribulin binds to growing micro-
tubule ends as discussed already. This stabilizes the asso-
ciation between Smad proteins and microtubules, and as a
result inhibit Smad phosphorylation and TGF-beta signal-
ing there by reverse the EMT. Recently it was hypothesized

that the ability of eribulin to reverse EMT in cancer cells,
xenograft models and CTCs in patients could be due to a
prompt microtubule depolymerisation-mediated inhibition
of TGF-beta signaling [51]. Inhibition of tubulin polymer-
ization led to the blocking of Smad2/3 transport to the nu-
cleus, which in turn inhibits expression of Snail in breast
cancer [51].

Through the ability to alter the TME and reverse
the EMT process, eribulin could influence the metastasis
and tumor progression even if it loses its efficacy towards
cancer cells. This can be correlated with the prolonged
OS in eribulin treated patients observed during clinical trial
[52].

3.2.3 Vascular remodeling

In tumors, vascular networks are altered with com-
plex branched patterns leading to decreased blood flow
[53]. Two types of anti-vascular activities of tubulin in-
hibitors are reported namely, anti-angiogenic activity and
vascular disruptive activity. In contrast, eribulin exhibits
a unique anti vascular activity through vascular remodel-
ing (increased numbers of smaller functional micro vessels)
which reduces abnormalities in the TME in preclinical hu-
man breast cancermodels and STS [24, 42]. Eribulin signif-
icantly enhanced tumor blood perfusion in STS xenografts
and induced morphological changes and up-regulation of
differentiation marker genes such as MYLK, C/EBPbeta,
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Fig. 3. Effects of eribulin treatment on Tumor microenvironment (TME).

and KIF23 [42]. In a functional endothelial-pericyte co-
culture assay, in contrast to paclitaxel, eribulin showed a
strong efficacy as a potent anti-vascular agent that affected
pericyte driven in vitro angiogenesis [54]. In xenograft
models, the expression of mouse genes associated with the
VEGF, Notch and Eph signaling pathways are reduced by
eribulin [24]. In vitro studies established that the expres-
sion of Dll4, Notch4 and Efnb2 are decreased due to eribu-
lin treatment, indicating that in vascular cells it regulated
the angiogenesis signaling pathways [24].

3.2.4 Elimination of tumor hypoxia

During aggressive cell proliferation, the ability to
develop a network of blood vessels decreases, as a result,
the tumor loses access to oxygen and the hypoxic regions
are created [55]. In such hypoxic environment cancer cells
acquire a high metastatic potential [55, 56]. Eribulin treat-
ment (0.3 and 1.0 mg/kg) significantly decreased mouse
VEGF protein expression in xenograft models. CA9 pro-
tein, a marker for hypoxia that is regulated by hypoxia-
inducible factor, was also observed to have a lower expres-
sion when treated with 1.0 mg/kg eribulin in the MDA-
MB-231 model. These observations suggest that eribulin
treatment resulted in vascular remodeling [24] leading to

an increase in the intra tumoral oxygen supply and decrease
in tumor aggressiveness. Immunohistochemical studies on
tissues of patients with MBC indicated that the expres-
sion of EMT markers and cellular hypoxia (E-cadherin,
N-cadherin, vimentin, and carbonic anhydrase 9 (CA9))
were suppressed by eribulin treatment [40]. Autoradio-
graphic, ex vivo and histological studies of the human tumor
xenograft models (MDA-MB435), demonstrated that after
eribulin treatment, the 18F-FMISO accumulation level in
the tumor decreased which can be correlated with the elim-
ination of the tumor hypoxic condition [57].

3.2.5 Inhibition of tumor migration invasion and
metastasis

EMT results in the mobilization and spread of pri-
mary tumor cells to distant locations due to the morphol-
ogy and mobility of the mesenchymal cells [32]. In a pre-
clinical study, it was demonstrated that loss of the tubulin
polymerase ch-TOG from the growing plus ends of micro-
tubules is caused by eribulin, which is causative to varia-
tions in microtubule dynamics [58]. During metastasis, tu-
mor cells gain the ability to invade the tissue beyond their
normal boundaries and enter the circulation, and seed new
tumors at other locations [59]. Watanabe et al. [52] ob-
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served concentration dependent effects on metastatic os-
teosarcoma cell line- LM8 due to eribulin treatment. Cell
cycle arrest and apoptosis was instigated due to high doses
of eribulin whereas, low doses led to changes in the cell
morphology, decreased LM8 migration and reduced the
directionality during migration. In a murine osteosar-
coma metastasis model, lung metastasis and primary tumor
growth were inhibited sue to increased doses of eribulin
administered on a standard schedule [52]. TNBC metas-
tasis is shown to be associated with Wnt/beta catenin sig-
naling pathway [60]. In the non-basal-like cells, Wnt3a ex-
pression considerably, leading to the inhibition of Wnt/beta
catenin signaling cascade and induced cancer cell apoptosis
[61]. Eribulin might be a candidate for Small bowel adeno-
carcinoma (SBS) treatment due to its inhibitory effect on
Wnt/beta catenin signaling [62].

3.3 Inhibition of telomerase reverse transcriptase
(TERT)-RNA-dependent RNA polymerase
(TERT-RdRP)

Besides the different mechanisms mentioned al-
ready, eribulin is shown to have specific inhibitory activ-
ity against TERT-RdRP as well [63]. TERT-RdRP is re-
sponsible for mitotic progression through the elevation of
heterochromatin assembly and the maintenance of stem-
cell property [64]. Eribulin-sensitive ovarian cancer cell
lines expressed high levels of human TERT, and inhibi-
tion of the TERT expression reduced the eribulin sensitiv-
ity. Thus, suppression of the cancer cell growth by eribulin
treatment was shown to be dependent on the TERT status
[63]. The human TERT is shown to localize into mitotic
spindles and centromeres during mitosis [65], Therefore it
has been hypothesized that eribulin inhibited human TERT
functions by interfering with the interaction between TERT
and microtubules [63]. Subcutaneous U87MG brain tumor
xenografts treated with eribulin was observed to have a de-
creased TERT-RdRP activity in a dose-dependent manner
[66].

4. Preclinical studies on eribulin

4.1 In vitro studies

Several in vitro studies have accelerated the ef-
forts to undertake the clinical use of Eribulin (Table 1, Ref.
[6, 14, 21, 67, 68]). Eribulin treatment with wide vari-
eties of human cancer cell lines such as breast, prostate,
melanoma, colon, lung, ovaries, histiocytic lymphoma,
pharyngeal squamous cell carcinoma and uterine sarcoma
cell lines resulted in effective inhibition of cell growth
even at very low concentrations (IC50 values in the range
of 0.09–9.5 nM) [21, 69]. Anticancer activities of eribu-
lin at sub nM range against several human STS cell lines
such as, Ewing’s sarcoma, synovial sarcoma fibrosarcoma,
leiomyosarcoma, liposarcoma and promyelocytic leukemia
cell lines were reported [42]. Childhood cancer preclini-

cal models were studied during Pediatric Preclinical Test-
ing Program (PPTP) [70] in which eribulin demonstrated in
vitro cytotoxic activity, with a median relative IC50 value
of 0.27 nM [71]. Studies also showed that eribulin could
inhibit the growth of the glioblastoma cell lines in vitro
[68, 71].

4.2 In vivo studies

Eribulin treatment with human tumor xenograft
models originated from breast, ovary, colon, lung,
melanoma, pancreatic, and fibrosarcoma resulted in in-
creased survival rates, tumor growth delays and reduc-
tions in size at dose levels below the maximum tolerated
dose [6]. Eribulin showed in vivo anticancer efficacy in
MDA-MB-435, COLO 205, and LOX xenograft models
at much lower doses when compared with paclitaxel [6].
It has been proven that intermittent dosing was less toxic
and more effective than daily dosing in preclinical models.
Dose scheduling studies with eribulin on MDA-MB-435
breast, HT-1080 fibrosarcoma, U251, glioblastoma, SR-
475 head and neck cancer, SK-LMS-1 leiomyosarcoma,
NCI-H322M and NCI-H522 NSCLC, PANC-1 pancreatic
cancer, and NCI-H82 small cell lung cancer (SCLC) mod-
els showed that maximal efficacy and minimal toxicity
is achieved with moderate intermittent dosing [21]. Re-
sults from Pediatric preclinical testing program in child-
hood cancer models of different cancer histologies showed
that eribulin exerted higher antineoplastic activity in ES
xenografts than VCR [70, 71]. A latest report showed that
eribulin penetrated the brain tumor tissue and prolonged
the survival of mice by inhibiting the growth of glioblas-
toma cells transplanted subcutaneously or intracerebrally
into mice [66].

5. Clinical trials on eribulin

5.1 Phase-1 trials

Phase-1 trials are intended to identify the max-
imum tolerated dose, pharmacokinetics, toxicity profile
and dose-limiting toxicities. First phase-1 trial of eribu-
lin was conducted in patients with advanced solid tumors
[72]. During such phase-1 trials, different dosing sched-
ules were checked. Pharmacokinetic data showed linear,
dose-proportional kinetics with a rapid distribution phase
and a slower elimination phase [73]. As of now, 25 phase-
1 studies are completed [74] in patients with different can-
cer types including advanced solid tumors, breast, ovary,
head and neck, colon and bladder cancers. Eribulin has
been well tolerated and has demonstrated good clinical re-
sponse in breast, NSCLC, urothelial/bladder, and thyroid
cancers. Febrile neutropenia, fatigue, anorexia, and pe-
ripheral neuropathy are some of the most common doses
limiting toxicities reported [72, 73, 75–79]. The pharma-
cokinetic profile of eribulin showed an extensive volume
of distribution, slow-to-moderate clearance, and slow elim-
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Table 1. In vitro studies using Eribulin.
Cell line Origin IC50 Aim of the study Conclusions References

COLO 205 DLD-1, HL-
60, U937, LNCaP DU
145, MDA-MB-435

Colon cancer, promyelo-
cytic leukemia, histiocytic
lymphoma, prostate cancer,
breast cancer

0.4 ± 0.1 nM To analyse the growth in-
hibitory activities of Eribu-
lin and its mode of action

Induced G2/M cell arrest [6]

MCF7 Breast cancer 1.5 nM To analyze themechanism of
action of Eribulin

Inhibition of microtubule growth [14]

U937, Jurkat, HL-60,
HeLa

Lymphoma, T cell leukemia,
cervical cancer

10 nM To analyze mitotic block
reversibility/irreversibility
pharmacodyanamics

compound-specific reversibility
characteristics of antimitotic agents
contribute to interactions between
cell-based pharmacodynamics

[21]

Calu-1, A549 Non-small cell lung carci-
noma (NSCLC)

0.5 pM To analyze the anticancer ac-
tivity

Anticancer activity achieved [67]

U87MG, U251MG,
U118MG, LN229

Glioblastoma Below 1 nM To analyze the growth inhi-
bition efficiency of Eribulin
in glioblastoma

Inhibition of growth a subnanomo-
lar concentrations

[68]

ination. Area under the plasma concentration versus time
curve (AUC) and maximum plasma concentration (C max)
has been reported to be directly proportional to the dose of
eribulin (0.25–4 mg/m2). It was also reported by several
studies that metabolism and renal clearance contribute to
the elimination of eribulin in a negligible way [80].

5.2 Phase-2 trials

Reassuring tumor response data from the phase-1
trials led to the initiation of phase-2 studies in breast can-
cer, as well as in other solid tumor types. Phase-2 clin-
ical trials gathered preliminary data about eribulin effec-
tiveness on cancer patients compared to similar participants
receiving a different treatment, Safety and adverse events
were evaluated. As of now, 39 phase-2 studies on eribulin
treatment are completed [74] in patients with cancer types
including breast cancer, NSCLC, sarcoma, prostate, head
and neck, urothelial, ovarian and pancreatic cancers [80–
102]. In order to address the eribulin intolerance, a phase
II, non-randomized, prospective study was conducted re-
cently, which reportedthat a bi-weekly eribulin schedule
(1.4 mg/m2 on days 1 and 15 of a 28-day cycle) is tolerable
and has an almost equivalent efficacy in patients intolerant
to the standard eribulin schedule [103].

5.3 Phase-3 trials

Phase-3 trials of eribulin involved more number
of participants, different populations and different dosages
of the drug in combination with other drugs were tested to
ensure safety and effectiveness. As of now, 6 phase-3 stud-
ies are completed [74] in patients with breast cancer, STS
andNSCLC [10, 11, 104–106]. After getting FDA approval
for marketing, two phase-4 trials (sponsored by Eisai) have
been completed as of now, to obtain additional information
on the safety, efficacy, and optimal use of eribulin by the
study sponsor [107]. Very recent results favoring eribu-

lin as a potent candidate for first-line treatment of patients
with HER2-negative advanced breast cancer are obtained
in a multicenter, prospective, post-marketing, observational
study from Japan [108].
5.4 Pivotal trials leading to FDA approval

Clinical trials that gained approval for eribulin as
a drug for cancer treatment are given in the table (Ta-
ble 2, Ref. [10, 11, 93, 102, 104]). US Food and
Drug Administration (FDA) approved eribulin in the year
2010 for the treatment of patients with metastatic breast
cancer who were already pretreated with anthracycline
and a taxane regimen. One of the pivotal phase-3 stud-
ies on eribulin treatment was Study 305/EMBRACE (Ei-
sai Metastatic Breast Cancer Study Assessing Physician’s
Choice vs E7389 Study). It was the first mono-therapy
study of a cytotoxic agent to show increase of survival
in patients with heavily pretreated metastatic breast can-
cer. Overall survival of eribulin (OS) was observed as 13.1
months versus treatment of physician’s choice (TPC) where
the OS was 10.6 months. Survival benefit of 2.5 months
was considered statistically significant. Neutropenia was
the most common clinical grade 3 or 4 adverse event with
eribulin (grade 3: 106 [21%] of 503 patients; grade 4: 121
[24%] of 503 patients) [10].

In another phase-3 trial (study 301), eribulin
showed almost same efficacy as capecitabine while con-
sidering overall survival (OS) or progression free survival
(PFS). The treatment had manageable safety profiles con-
sistent with the known adverse effects; most adverse events
were grade 1 or 2 [104]. As per the request from European
Medicines Agency (EMA), pooled analysis of the above
two phase-3 trials was carried out, to assess whether spe-
cific patient sub-groups, previously treated with an anthra-
cycline and a taxane, benefited from eribulin. In this pooled
analysis, serious adverse events were presented in similar
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Table 2. Pivotal clinical trials leading to FDA approval.

Trial design Cancer type Eligibility criteria of the patients Treatment Number of patients
Efficacy

ReferencesORR Median PFS Median OS

(%) (months) (months)

Phase-2 MBC Women with MBC pre-treated with anthra- eribulin mono therapy 291 9.3 2.6 10.4 [93]
Single arm cyclin, taxane and capecitabine (eribulin mesylate (1.4 mg/m2)

administered as a 2- to 5-
minute intravenous infusion on
days 1 and 8 of a 21-day cycle)

Phase-3 Locally recurrent or
MBC

Women with MBC who had received 2 to 5
prior anthracycline- and taxane-based therapy

eribulin vs Treatment of Physi-
cians Choice (TPC)

762 (total) 12 vs 5 3.7 vs 2.2 13.1 vs 10.6 [10]

Study 305 (EMBRACE trial) 501 (eribulin)
Open label, randomized (2:1),
parallel, multi-centred (North
America, Western Europe, East-
ern Europe, Latin America, South
Africa, Asia)

(eribulin mesylate (1.4 mg/m2)
on days 1 and 8 of a 21-day cy-
cle versus TPC1)

254 (TPC)

Phase-3 MBC Women with MBC who had received prior eribulin vs capecitabine 1102 (total) 11 vs 11.5 4.1 vs 4.2 15.9 vs 14.5 [104]
Study 301 anthracycline- and taxane-based therapy 554
Open label, randomized (1:1), (eribulin mesylate (1.4 mg/m2) (eribulin)
multi-centered (North America,
Western Europe, Eastern Europe,
Latin America, South Africa,
Asia)

on days 1 and 8 versus
capecitabine 1.25 g/m2 twice
per day on days 1–14, both in
21-day cycles)

548 (capecitabine)

Phase-2 Four independent
strata of patients
with mesenchymal
tumours:

Patients with progressive or high-grade STS
who had received not more than one previous
combination chemotherapy or up to two single
drugs for advanced disease and have no pre-
existing neuropathy higher than grade 2

eribulin mono therapy 128 (total) Not re-
ported

2·6 (adipocytic
sarcoma)

Not reported [102]
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Table 2. Continued.

Trial design Cancer type Eligibility criteria of the patients Treatment Number of patients
Efficacy

ReferencesORR Median PFS Median OS

(%) (months) (months)

Non randomized, multi-centered
(14 sites in five European coun-
tries)

(i) Adypocytic sar-
coma

Following sarcomas were defined as ineligi-
ble: embryonal rhabdomyosarcoma, chondro-
sarcoma, osteosarcoma, Ewing family of tu-

(eribulin mesylate (1.4 mg/m2)
on days 1 and 8 of a 21-day cy-
cle)

37 (Adipocytic sar-
coma)

2·9 (leiomyosar-
coma)

(EORTC -trial 62052) (ii) Leiomyosarcoma mours, gastro-intestinal stromal tumours, der-
mato fibrosarcoma protuberans, and inflamma-

40 (Leiomyosar-
coma)

2·6 (synovial sar-
coma)

(iii) Synovial sarcoma tory myofibroblastic tumours. 19 (Synovial sar-
coma)

2·1 (Other types
of STS)

(iv) other STS 32 (Other STS)

Phase-3 Advanced or
metastatic STS

Patients with intermediate-grade or high-grade
advanced liposarcoma or leiomyosarcomawho
had received at least two previous systemic
regimens for advanced disease (including an
anthracycline)

eribulin vs dacarbazine 452 (total) 5 vs 6 2.6 vs 2.6 13.5 vs 11.5 [11]

Open-label, randomized, multi-
centered (across 110 study sites in
22 countries)

eribulin mesylate (1.4 mg/m2)
intravenously on days 1 and 8
on 21-day cycle or dacarbazine
850 mg/m2, 1000 mg/m2, or
1200 mg/m2 [dose dependent
on centre and clinician] intra-
venously on day 1) on 21 day
cycle

228 (eribulin)

224 (dacarbazine)

MBC,metastatic breast cancer; STS, Soft tissue sarcoma; ORR,Objective response rate; OS, Overall survival; PFS, Progression free survival. TPC1: physicians can treat patients with any single-agent chemotherapy,
hormonal treatment or biologic therapy approved for the treatment of patients with cancer; radiotherapy; or palliative treatment administered according to local practice and defined before randomization.
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magnitudes in the two groups (eribulin 21.1%; control
22.6%). Conclusively, 10.5% of patients in the eribu-
lin group and 12% in the control group had an adverse
event that led to discontinuation of the treatment and [109].
A subgroup analysis of 392 patients with human epi-
dermal growth factor receptor 2 (HER2)-negative MBC
showed a longer OS with eribulin (16.1 months) versus
capecitabine (13.5 months) in this subgroup. The most
frequent treatment-emergent adverse effect in the eribu-
lin group of this study were neutropenia (53.3%), alope-
cia (34.8%), leukopenia (31.0%), peripheral neuropathy
(pooled term, 23.9%), and anemia (21.2%) grade 3 or
4 neutropenia occurred in 43.5% of eribulin treated pa-
tients [110]. Very recent Post hoc, pooled exploratory sub-
group analysis of EMBRACE and Study 301 revealed that
eribulin provided a median OS benefit of 2.1 months over
TPC/capecitabine in patients who received fewer prior reg-
imens (≤3) for locally advanced/MBC. Although neutrope-
nia and asthenia/fatigue rates were higher with eribulin
treatment compared with control, the incidences of both
were similar regardless of whether patients had ≤3 or >3
prior regimens (neutropenia, 51.7% for both subgroups; as-
thenia/fatigue, 53.2% vs 55.1% for≤3 vs>3, respectively)
[111].

Phase-3 study by Schoffski et al. [11] showed that
better improvement of OS in the liposarcoma group com-
pared to all sarcoma subtypes. The PFS was similar in both
the study arms. Similar results were also observed in the
MBC trial (study 301) with improvement in OS but with-
out notable difference in the PFS (Table 2). The benefit of
eribulin monotherapy based on improvement in OS led to
approval by the FDA and EMA in 2016 for patients with un-
resectable (inoperable) or metastatic liposarcoma who had
already undergone treatment with anthracyclines.

6. Future directions to improve eribulin
therapy

6.1 Eribulin based combination therapy

Combination therapy is a treatment modality in
which rational combinations of different anticancer agents
are employed [112]. Synergistic effect of eribulin and
other chemotherapeutic drugs are carried out to minimize
the toxicities and to improve the drug sensitivity. Eribu-
lin makes effective chemotherapeutic combinations with
several cytotoxic and targeted inhibitors from widely dif-
fering mechanistic classes. The combination of S-1 (5-
FU) and eribulin exerts a synergistic effect for TNBC cell
lines through MET-induction by eribulin. Such combina-
tion therapy could be a potential treatment option for TNBC
[113]. Several investigations were conducted in which,
eribulin was combined with either one of the cytotoxic
agents (capecitabine, carboplatin, cisplatin, doxorubicin,
gemcitabine) or targeted agents (bevacizumab, BKM-120,

E7449, erlotinib, everolimus, lenvatinib, palbociclib) in tu-
mor xenograft models of breast cancer, melanoma, non-
small cell lung cancer (NSCLC), and ovarian cancer. Eribu-
lin showed positive combination activity with most of the
agents with more efficacy than the individual agents [114].
Synergistic effects of eribulin on CDK inhibition [115],
PIK3 inhibition [116, 117] and mTOR inhibition [118, 119]
in TNBC and pAKT inhibition in STS [120] were carried
out with corresponding inhibitors. In all these studies, pos-
itive synergistic effects were noticed. It is indeed a pow-
erful strategy to increase the therapeutic index of the drug
combination to improve drug efficiency even at the lowest
doses on the aggressive or resistant cancer types. Recently
several phase-1and phase-2 clinical trials were conducted
with eribulin in combination with other chemotherapeutic
agents to evaluate and improve the therapeutic efficiency
[76–80, 82, 84, 100, 101, 121–132].

6.2 Overcoming drug resistance

Resistance to chemotherapeutic drugs is a ma-
jor obstacle to therapeutic success [133]. A common
mechanism of drug resistance in various tumors is iden-
tified as over expression of a drug efflux pump such as
P-glycoprotein (Pgp)/(ABCB1) [134]. Eribulin increased
the mRNA and protein expression of P-glycoprotein in
LS174T cells andMDR1 promoter activity in human breast
cancer MCF7 cells thereby the drug efflux transporter P-
glycoprotein is activated [135].

In a study involving 7 different eribulin resistant
cell lines, ATP-binding cassette subfamily B member 1
(ABCB1) and subfamily C member 11 (ABCC11) were ob-
served to be overexpressed and had an increased gene ex-
pression as well [136]. Both were responsible for the de-
velopment of eribulin resistance in breast cancer cells re-
gardless of the molecular subtype. Thus, it was suggested
that ABCB1 and ABCC11 could be used as a biomarker
for predicting the eribulin response in patients with breast
cancer [136]. Studies have proven that therapeutic target-
ing of EMT may be beneficial in treatment-resistant cancer
subtypes. Vimentin and claudin-1 are important markers of
EMT pathway activation which were significantly up regu-
lated in eribulin resistant cell lines [43]. Eribulin-resistant
leiomyosarcoma cell lines were investigated to understand
the mechanism of resistance [137]. Eribulin resistant cell
lines express higher TUBB3 levels and growmore promptly
than the parent cell line. Knockdown of TUBB3 by siRNA
resulted in the inhibition of cell growth. Therefore, it could
be predicted that if over expression of TUBB3 is observed
for a type of cancer, eribulin would be suggestively be the
drug of choice for treatment and alternative treatment ap-
proaches should be considered.

Further mechanistic understanding of Pgp activa-
tion, ABCB1 andABCC11 activation, TUBB3 over expres-
sionmight lead to novel therapeutic regimen to bridle eribu-
lin resistance in the future.
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6.3 Development of prognostic markers for eribulin
treatment

6.3.1 Detection of CTCs

EMT plays a crucial role in cancer by the gener-
ation of Circulating Tumor Cells (CTCs) that exist in pe-
ripheral blood as single cells or as clusters of tumor cells
along with platelets and lymphocytes and involved in tumor
metastasis [138]. Enumerating the CTCs is an advanced
liquid biopsy approach and an emerging tool for predict-
ing patient outcomes and treatment effects [139–141]. The
effectiveness of eribulin treatment is evaluated by enumer-
ating CTCs thereby predicting the efficiency of the drug.
Preliminary studies have indicated that assessment of both
mesenchymal and epithelial CTCs might be important for
predicting eribulin responsiveness [142, 143].

6.3.2 Detection of serum miRNAs

Detection of serummiRNAs has emerged recently
as potent tool to predict the prognosis and response to can-
cer therapy [144]. A serum micro-RNA (miRNA)-based
prediction model has been established for the emergence of
new distant metastases after eribulin treatment [145]. Evi-
dences indicate that serum miRNA profiling may serve as a
biomarker for the responsiveness to eribulin and for predict-
ing the development of new distant metastases in metastatic
breast cancer [145]. An exploratory clinical trial was aimed
at identification of putative miRNA biomarkers that asso-
ciate with eribulin sensitivity or resistance in STS. Among
the 756 miRNAs assessed, the expression of 26 individual
miRNAs differed significantly between non-responders and
responders [146].

6.4 Importance of patient-derived primary cultures

Primary cultures moderately imitate the in situmi-
croenvironment of the diseased condition and also preserve
the crosstalk between malignant and healthy constituents.
Such features are to be involved in the different responses
to therapies and in all stages of the natural history of malig-
nant tumors, i.e., carcinogenesis, migration, invasion and
metastatic dissemination. Therefore, ex vivomodels permit
a more faithful reproduction of tumors and are a valid strat-
egy especially for clinical and preclinical analyses [147].
Recently, efforts have been made to develop methods for
tumor cell culture from biopsies and expansion of patient-
derived circulating tumor cells CTCs) for individualized
drug susceptibility [140, 141, 148]. A recent study by De et
al. [149] had established an ex vivo 3D system for cultur-
ing CTCs derived from either primary or metastatic tumors
that recapitulates their physiological characteristics. This
scaffold imitates the architecture and stiffness of breast tu-
mors and allows improved cell-matrix interactions. Patient-
derived organoid models are also established as they offer
spatial and temporal insights into cancer biology. These
models conserve the heterogeneity of the primary tumor,
which makes them more appropriate for identifying thera-

peutic targets and corroborating drug response [150]. The
anticancer activity of eribulin on the patient-derived pri-
mary culture of a liposarcoma patient was assessed its an-
tiproliferative effect by the arrest of cell motility and initi-
ation of apoptosis [151, 152].

7. Conclusions

Even though eribulin is an approved clinical drug,
sustained investigation of its antitumor characteristics may
contribute enormously towards improved cancer manage-
ment. Deeper understanding of molecular pathways would
provide a better strategy of using eribulin in combination
with other therapeutic regimens. As our knowledge on
resistance mechanisms improves, specific drugs and drug
combinations that would work on specific cancer type could
be identified. Emerging techniques involving CTCs and
serum miRNA profiling as prognostic methods for cancer
patients are to be explored widely and employed in the fu-
ture studies. Novel molecular and therapeutic strategies
should aim at combating the disadvantages associated with
the toxicity and resistance, which would enable eribulin
therapy to be deliberated as a first-line treatment option.
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