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Abstract

The enzymes that belong to the aldehyde dehydrogenase family are expressed in a variety of cells; yet activity of their main members
characterizes stem cells, both normal and malignant. Several members of this family perform critical functions in stem cells, in general,
and a few have been shown to have key roles in malignant tumors and their recurrence. In particular, ALDH1A1, which localizes to the
cytosol and the nucleus, is an enzyme critical in cancer stem cells. In acute myeloid leukemia (AML), ALDH1A1 protects leukemia-
initiating cells from a number of antineoplastic agents, and proves vital for the establishment of human AML xenografts in mice. ALDH2,
which is located in mitochondria, has a major role in alcohol metabolism by clearing ethanol-derived acetaldehyde. Haematopoietic stem
cells require ALDH?2 for protection against acetaldehyde, which can cause damage to DNA, leading to insertions, deletions, chromosomal
rearrangements, and translocations. Mutations compromise stem cell function, and thereby threaten blood homeostasis. We review here
the potential of targeting the enzymatic activity of aldehyde dehydrogenases in acute leukemia.
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1. Introduction

Aldehyde dehydrogenases are enzymes that oxidize
aldehydes to carboxylic acids [1]. Aldehydes are generated
during cellular metabolism, and when accumulated they re-
act and form adducts with a variety of biomolecules, caus-
ing damage to proteins, DNA, lipids, etc. [2,3].

In the organism, ethanol is metabolized to acetalde-
hyde that interferes with systems that protect cells from ox-
idant stress. ALDH proteins oxidize acetaldehyde to ac-
etate, protecting cells and tissues from oxidative damage
and helping maintain tissue function. In particular, ALDH
proteins protect both normal as well as malignant stem cells
(cancer stem cells) from reactive aldehydes and certain cy-
totoxic drugs such as cyclophosphamide [4,5]. Increases
in endogenous formaldehyde deplete blood progenitor cells
[6-8]. According to one line of evidence, hematopoietic
stem cells require the enzymatic activity of mitochondrial
ALDH2 to protect them from the accumulation of acetalde-
hyde, which causes damage to DNA [3]. Protection of mice
or humans from lethal formaldehyde accumulation has been
attributed to ALDH?2 in combination with cytoplasmic al-
cohol dehydrogenase 5 (ADHS5) [9]. Among other effects,
lack of those enzymatic activities (ALDH2 and ADHS) im-
pairs also the differentiation and proliferation capacity of
hematopoietic stem cells [10].

Recently, RNA from the gene that encodes ALDH1A1
was shown to associate with disease outcome in acute

myeloid leukemia: lower expression of ALDHIATI distin-
guished the group of patients with cytogenetics and molec-
ular genetic markers that give them a favorable prognosis
[11,12].

2. ALDH in Cancer Cells

Not only normal hematopoietic cells, but malignant
cells also gain protection when expressing ALDH2: mes-
enchymal cells from bone marrow stroma secrete trans-
forming growth factor-g1 (TGF-$1), to induce ALDH2
activity in acute myeloid leukemia (AML) cells via non-
canonical TGF-§ signaling. Consequently, inhibition of
ALDH2 sensitizes AML cells to chemotherapy [13]. The
neoplasia that has been most extensively studied in respect
to ALDH expression is breast cancer. There, expression of
two main isoforms has been linked with malignant progres-
sion and ensuing metastasis: ALDH1A3 and ALDHI1A1
[14].

When a DNA plasmid was used to express ALDH
proteins in breast cancer cell line SUM159, three fam-
ily members were detected by immunofluerescence in the
cytoplasm and in the nucleus (ALDH1A1, ALDH3Al,
ALDH7A1), five in the cytosol (ALDH1A2, ALDH1A3,
ALDHIL1, ALDH8AI, ALDH9AI1), seven in mito-
chondria (ALDH1B1, ALDHI1L2, ALDH2, ALDH4Al,
ALDHS5AT1, ALDH6A1, ALDH18A1), one in peroxisomes
(ALDH3A2), one on the cell membrane (ALDH3B1), one
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on the cell membrane and in the cytosol (ALDH16A1) and
one gave peri-nuclear staining (ALDH3B2) [15]. From all
those, at least ALDHI1AL1 [16] (oral, ovarian, and breast
cancer), ALDH1A3 [17] (pancreatic cancer), ALDH2 [18]
(liver), ALDH3A1 [19] (melanoma, lung), have been asso-
ciated with cancer stem cells, and specific phases of ma-
lignant progression, including tumor initiation, drug re-
sistance, and metastasis [16]. Isoforms ALDHILI, and
ALDHIL2 in contrast, function in folate metabolism with
the former acting as tumor suppressor, while the latter as
oncogene [20].

3. ALDH Activity Identifies Progenitor Cell
Fractions in Tissues

ALDH activity is mainly measured as fluorescence
intensity of a product. Specifically, live cells expressing
high ALDH activity are usually identified by the ALDE-
FLUOR kit and sorted by fluorescence activated cell sort-
ing (FACS) [21]. The principle of this assay is that an
uncharged substrate of ALDH is taken up by living cells,
where ALDH converts it to a brightly fluorescent, nega-
tively charged product that is trapped in cells that have an
intact cellular membrane. The brightly fluorescent ALDH-
expressing cells (ALDHbr) are detected in the green fluo-
rescence channel (520-540 nm) of a standard flow cytome-
ter, or can be purified by use of a fluorescence activated cell
sorter [22,23].

ALDHpbr cells isolated from the human bone marrow,
exhibited a higher colony-forming capacity when compared
to a cells with low ALDH activity (Capoccia, et al. [24]).
These cells could function as progenitors for epithelial, en-
dothelial, and mesenchymal lineages [25]. Furthermore,
when assayed in a mouse model of myocardial infarc-
tion, ALDHbr cells isolated from the human umbilical cord
blood had the capacity to augment angiogenesis in the is-
chemic heart [26]. Lung-resident ALDHbr progenitor cells
have shown a higher proliferative and colony-forming po-
tential than cell populations with low ALDH activity, and
the capacity to prevent bleomycin-induced pulmonary fi-
brosis [27]. In general, a variety of tissues harbor ALDHbr
cells, which bestow them with a significant regenerative po-
tential. Examples are pancreatic tissue [28], adipose tissue
that harbors cells with both adipogenic and osteogenic po-
tential [29], foreskin that harbors cells with multilineage po-
tential [30], skeletal muscle [31], cardiac atrial appendage
[32], maternal decidua basalis [33], and trachea [34].

4. ALDH Activity in Acute Leukemia

Several studies have linked increased ALDH activity
with acute leukemia stem cells, although the overwhelming
majority concerns AML, and some studies have used sam-
ples from both acute lymphoblastic leukemia (ALL) and
AML.

In the study model of the zebrafish for engrafted hu-
man acute leukemia cells, higher ALDH activity, less dif-

ferentiated cells and a broader and random migration pat-
tern were related with worse clinical outcome after induc-
tion chemotherapy for patients [35].

In ALL, and especially in pediatric ALL, ALDH
positivity is a marker of immaturity and stemness [36].
From the bone marrow of ALL patients, two cell pop-
ulations could be separated, normal haematopoietic
progenitor cells (ALDH(+)SSC(lo)CD45(hi)Neu5,9Ac2
-GPs(1o)CD34(+)CD38(-)CD90(+)CD117(+)CD133(+))
that differentiated into morphologically discrete, lineage-
specific colonies, being essential for autologous HSC
transplantation, while leukemic stem cells had the
markers (ALDH(+)SSC(lo)CD45(lo)Neu5,9Ac2 -
GPs(hi)CD34(+)CD38(+)CD90(-)CD117(-)CD133(-))
[37]. In B-ALL, ALDH+ cells formed 5-7 fold more
colonies than ALDHneg cells in methylcellulose [38]. In
T-ALL, transcription factor TAL1 activated expression
of ALDH1A2, which supported glycolysis and the TCA
cycle, NADH production, and ATP production, and de-
creased the levels of reactive oxygen species in vitro and
in vivo, overexpression of ALDHIA2 accelerated tumor
onset and increased tumor penetrance in a zebrafish T-ALL
model [39].

In AML, high aldehyde dehydrogenase activity at di-
agnosis predicts relapse in patients with t(8;21) AML [40].
In general, evidence has been mounting that the protein
family of the aldehyde dehydrogenases plays a role in the
development of AML; yet the interpretation of their ex-
act biological effect on AML progression remains debat-
able [41]. Higher ALDH activity was shown in normal
hematopoietic stem cells, when compared to AML stem
cells in a study of 32 patients and five bone marrow donors
[42]. In alarger sample size (n = 104), a minority of patients
(24 of 104) had numerous ALDH-positive leukemic stem
cells that could not be separated from normal hematopoi-
etic stem cells, were drug-resistant, and had high efficiency
of xenograft formation in mice [43]. Nevertheless, cases
with increased fractions of ALDH-positive AML cells were
shown to derive from immature hematopoietic progenitors,
suggesting an explanation for the poor prognosis and ther-
apy resistance of this subgroup, which was attributed to the
transmission of stem cell properties [44,45]. It can be there-
fore hypothesized that ALDH activity is important for AML
cells, yet the AML cells that retain ALDH activity are not
abundant.

4.1 ALDH Family Members with a Potential Role in
Leukemia

Although most, if not all ALDH proteins have been
linked to phenomena relevant in malignancy, five mem-
bers stand out as potential regulators of malignant stem
cell activities, which can be implicated in key functions
of leukemia stem cells. These are ALDHIA1, ALDHIA3,
ALDH2, ALDH3A1, and ALDH3A2.
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Fig. 1. Comparison of the AML risk group distribution of RNA expression from the genes ALDH1A1 and CALCRL. Association
of ALDHI1AL (left) and CALCRL (right) RNA expression (y-axis) with risk groups (x-axis) in the TARGET AML cohort. p-values

calculated by one-way ANOVA.

4.1.1 ALDH1Al1

ALDH family member ALDH1AI1, encoded in chro-
mosome 9921, is located in the cytosol and the nucleus, and
catalyzes the second step of the main oxidative pathway of
alcohol metabolism.

In general, proteins that belong to the subfamily
ALDHI1 convert the vitamin A oxidation derivative reti-
naldehyde, into retinoic acid, which activates retinoic acid
receptors (RARs) «, 3, and . In turn, RARs function as
regulators of gene expression that controls differentiation
of diverse cell types, and primes tissues for repair, regrowth
and regeneration after inflammation or injury, further acti-
vating genes of the HOX family; the resulting HOX pro-
teins then induce cellular programs of positional memory
during embryogenesis and regeneration [46]. ALDHIA1
may also catalyze the oxidation of toxic lipid aldehydes
such as 4-hydroxynonenal and malonaldehyde, and is the
enzyme responsible for production of retinoid acid during
the late stages of dorsal eye development [47]. In neopla-
sia, in addition to its known enzymatic activity, ALDH1A1
supports tumor growth via glutathione/dihydrolipoic acid-
dependent NAD + reduction [48]. ALDHIA1 overexpres-
sion has also been associated with sorafenib resistance in
AML and other malignancies [49-52]. ALDH1A1 low ex-
pression was recently shown to characterize the favourable
risk group in AML [11].

Furthermore, when ALDH1A1 is compared with the
recently published strong AML predictor gene CALCRL in
the TARGET AML cohort [53], it is found that ALDH1A1
is arguably a better predictor of the favourable risk group
(Fig. 1) (For details see Supplementary Material).
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In physiological function, ALDHIAI is elevated in
hematopoietic stem cells, is a predominant ALDH isoform
in mammalian tissues, and the key ALDH isozyme linked
to both normal and malignant stem cells [54]. ALDHI1A1
in hematopoietic stem cells metabolizes reactive aldehydes
and reactive oxygen species, and has a potential role in pro-
tection of neurons from 3,4-dihydroxyphenylacetaldehyde
[55]. Consequently, decreased expression of ALDH1A1
has been linked to the development of Parkinsons’ dis-
ease [56]. Furthermore, the ALDHI1A1 protein is a crit-
ical enzyme for maintaining clarity in human, rat, and
mouse lenses, and corneal integrity; ALDH1A1-null mice
grow to adulthood, but develop cataracts later in life (by
six to nine months of age) [57—-60]. Hematopoietic cells
from ALDH1A1-deficient mice exhibit increased sensitiv-
ity to liver metabolites of cyclophosphamide; however,
ALDHI1AL1 deficiency did not affect the basal function of
stem cells from the hematopoietic and nervous system [61].

4.1.2 ALDH1A3

ALDHI1A3, encoded in human chromosome 15
(15926.3), plays a crucial role in the synthesis of retinoic
acid in the cytosol, and it is essential for development of
the ventral part of the eye [62,63] and cardiomyogenesis
[32]. In pancreatic cancer, ALDH1A3 was proposed to ac-
celerate metastasis by augmenting glucose metabolism via
increased expression of hexokinase 2 [17]. In other cancer
types ALDH1A3 was shown to regulate tumorigenicity and
metastasis in vivo models, with the net effect depending on
the state of the retinoic acid signaling apparatus [14].
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4.1.3 ALDH2

ALDH2, encoded in chromosomal locus 12q24.12,
has a low Km for acetaldehydes, making mitochondria a
subcellular location of efficient acetaldehyde metabolism
[64,65].

Analysis of intermediate-risk cytogenetic acute
myeloid leukemia patients by RT-PCR has shown that
ALDH2 overexpression correlated to shorter overall sur-
vival [66]. It has been postulated that ALDH2 expression
reflects the adverse prognostic impact of age in AML,
while it has been implicated in chemoresistance [67].
AML cells that express low levels of either ALDH1AI or
ALDH2 were sensitive to blocking of the UBE2T/FANCL-
mediated ubiquitination pathway for DNA repair; this
vulnerability could be ameliorated by expression of re-
combinant ALDH2, but not ALDHIA1. ALDH2 alone
could suppress formaldehyde accumulation, and appeared
highly expressed in AML samples carrying TP53 and
KMT2A alterations; in contrast, AML samples with low
ALDH2 expression were mostly carrying mutations in
NPM1, CEBPA, and the RUNX1-RUNXIT1 (AMLI-
ETO) translocation [68]. Enzymatic activity of ALDHIA
generates 9-cis retinoic acid, which is a ligand for retinoic
X receptor (RXR), a transcription factor that activates
ALDH2 gene expression [69,70]. ALDHIA enzymes also
generate all-trans-retinoic acid, which stimulates ALDH2
gene expression via retinoic acid receptors (RARs) [71].
High enzymatic activity of ALDHIA family member
proteins can therefore be expected to lead to ALDH2 gene
expression.

4.1.4 ALDH3Al1

ALDH3A1, encoded in chromosomal locus 17p11.2,
is expressed in human cornea and is the main ALDH de-
tected in saliva under physiological conditions; it has a poor
affinity for short-chain aliphatic aldehydes, while having
a high substrate specificity for medium-chain (6 carbons
and more) saturated and unsaturated aldehydes, including
4-hydroxy-2-nonenal, which are generated by the peroxida-
tion of cellular lipids [72—74]. In hepatocellular carcinoma
cells, overexpression of ALDH3A1 induced resistance to
arsenic trioxide [75].

Also the enzyme ALDH3A2 oxidizes long-chain
aliphatic aldehydes to prevent cellular oxidative damage.
ALDH3A?2 inhibition was synthetically lethal with glu-
tathione peroxidase-4 (GPX4) inhibition; synergistically
they triggered ferroptosis in AML cells, which could not
be induced by GPX4 inhibition alone [76].

5. AML Features and the Relevance of
Leukemia-initiating Cells

AML is the most common form of acute leukemia in
adults, commonly accompanied by a poor prognosis, with
less than 25% of patients surviving five years after diag-
nosis [77-79]. AML is a clonal hematopoetic disease that

is also associated with a rather high death rate in pediatric
(>30%) patients as well. AML is classified according to
patient history into primary, de novo AML, which arises in
the absence of an identified exposure or prodromal stem cell
disorder and non-denovo AML; non-denovo includes sec-
ondary AML, representing transformation of an antecedent
diagnosis of myelodysplastic syndrome (MDS) or myelo-
proliferative neoplasm, therapy-related AML developing as
a late complication in patients with prior exposure to leuke-
mogenic therapies [80]. From a biological and therapeutic
standpoint, relapsed AML is included in non-de novo AML
[81].

AML is genetically heterogeneous, yet it involves a
rather small number of genetic alterations, with a marked
similarity of the molecular spectrum between adult and pe-
diatric patients [82,83]. The World Health Organization de-
fines specific acute myeloid leukemia (AML) disease enti-
ties by cytogenetic and molecular genetic subgroups: recur-
ring, balanced cytogenetic abnormalities are recognized in
AML, with few exceptions [84].

The clinical course of AML is largely determined by
the presence of specific chromosomal aberrations in the cell
nucleus, classifying patient cases into low risk, intermedi-
ate risk, and high risk. Absence of chromosomal aberra-
tions classifies cases into the intermediate risk group, while
cases with detected aberrations are classified into any one
of the three categories [85]. In 2017, mutational screen-
ing for genes RUNX1, ASXL1, and TP53 was added to the
prognostic criteria [86].

Within the heterogeneous population of leukemic
cells, researchers identified rarer cells that were rather
quiescent, and therefore resistant to antineoplastic treat-
ments that target proliferating cells; these cells could give
rise to successful mouse xenografts, their frequency in-
creases after disease relapse and their phenotype has been
attributed to epigenetic changes that involve DNA methy-
lation and modification of histones on chromatin, which
modulate gene expression, leading to changes in the cellu-
lar metabolism, and to resistance to agents that induce stem
cell differentiation [87,88].

AML can show durable remission by transplantation
of healthy (normal, non-malignant) stem cells; yet sub-
stantial work is needed to focus on the effects of thera-
peutic agents on the interactions between key molecular
factors that form the leukemia microenvironment, espe-
cially to distinguish between healthy and leukemic stem
cells [89]. Research needs to target the leukemia-initiating
cells (“leukemia stem cells”) selectively, as LSC appear to
cause the most severe conditions of AML [90]. A “stem-
ness signature” has been related to risk prediction in 908
patients of diverse AML subtypes, reinforcing this notion
[91]. It was then found that approximately 25% of all acute
myeloid leukemias expressed low or undetectable levels of
ALDHI1A1 and that this ALDH1A1-subset of leukemias
correlates with good prognosis cytogenetics. ALDH1A1-
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cell lines as well as primary leukemia cells were found
to be sensitive to treatment with compounds that directly
and indirectly generate toxic ALDH substrates including
4-hydroxynonenal and the clinically relevant compounds
arsenic trioxide and 4-hydroperoxycyclophosphamide. In
contrast, normal hematopoietic stem cells were relatively
resistant to these compounds. Using a murine xenotrans-
plant model to emulate a clinical treatment strategy, es-
tablished ALDH1A1- leukemias were also sensitive to in
vivo treatment with cyclophosphamide combined with ar-
senic trioxide [92]. Furthermore, it was found that ap-
proximately 25% of all acute myeloid leukemias expressed
low or undetectable levels of ALDH1A1 and that this
ALDHI1A1- subset of leukemias correlates with good prog-
nosis cytogenetics. ALDHI1AI- cell lines as well as pri-
mary leukemia cells were found to be sensitive to treat-
ment with compounds that directly and indirectly gen-
erate toxic ALDH substrates including 4-hydroxynonenal
and the clinically relevant compounds arsenic trioxide
and 4-hydroperoxycyclophosphamide. In contrast, normal
hematopoietic stem cells were relatively resistant to these
compounds. Using a murine xenotransplant model to emu-
late a clinical treatment strategy, established ALDH1A1-
leukemias were also sensitive to in vivo treatment with
cyclophosphamide combined with arsenic trioxide [92].
Subsequently, it was found that low expression of that
gene could be statistically associated with the low risk
group across multiple cohorts, strongly associating low
ALDHI1A1 expression with the favorable, low-risk AML
group [12].

A hematopoietic stem cell when dividing asymmetri-
cally, it can generate myeloid progenitor cells, which give
rise to myeloblasts. Aberrantly developed myeloid progen-
itor cells or myeloblasts give rise to acute myeloid leukemia
[93]. In patients, AML cells with a primitive stem cell
phenotype (CD34+/CD38- and high aldehyde dehydroge-
nase activity) cause significantly lower complete remission
rates, as well as poorer event-free and overall survival [94].
One key difference between myelodysplastic syndromes
and AML, were balanced cytogenetic rearrangements (p <
0.0001), which could thus be associated with initiation of
leukaemia [95].

Cytogenetic rearrangements may involve the gene
mixed lineage leukaemia (MLL), in which the N-terminal
portion of MLL is fused to the C-terminus of the transloca-
tion partner; these rearrangements give rise to altered pro-
teins that control epigenetic modifications of nuclear chro-
matin and regulation of gene expression thus linking cyto-
genetic rearrangements with molecular changes that show
the potential to initiate leukemia [96].

5.1 Maintenance of Defining Features of AML Stem Cells:
the Role of Insensitivity to Retinoic Acid

The bone marrow microenvironment of leukemia-
initiating cells has a pivotal role in the biology of the dis-
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ease [97]. Deficient signaling from the vitamin A deriva-
tive, all-trans retinoic acid in the hematopoietic microenvi-
ronment in mice was shown to cause a myeloproliferative
syndrome with significant reduction in the numbers of B
lymphocyte subsets and erythrocytes in the bone marrow
[98]. In patients with acute promyelocytic leukemia, high
blast cell counts and failure to respond to differentiation
treatment was associated with low all-trans retinoic acid
plasma concentrations, and a high rate of clearance [99].
For the other types of AML, and despite its importance in
controlling myeloid differentiation and apoptotic pathways,
all-trans retinoic acid has yet to prove itself as a useful agent
in the armamentarium of AML therapeutics. The explana-
tion probably lies in the fact that retinoic acid receptor is
expressed, but of limited functionality in AML blast cells
[100]. However there are both positive and negative asso-
ciations of CD34+ immature blast cells with sensitivity to
all-trans retinoic acid [101,102]. Presence of internal tan-
dem duplications of the FLT3 gene in AML stem cells, rein-
forces the leukemia-initiating capacity of those cells, which
is experimentally demonstrated by successful engraftment
into mice [103].

5.2 Pathways Signaling to NFKkB Function in AML Stem
Cells

A key transcription factor implicated in ALDHI reg-
ulation is nuclear factor kappa B (NFxB) a factor found
constitutively active in malignant myeloblast cells of AML
[104—106]. Cells normally activate NFxB in response
to inflammatory stimuli and disruptions of tissue func-
tion [107]. NFxB has an important role in the control
of AML stem and progenitor cells, especially in the reg-
ulation of interactions between AML cells and their mi-
croenvironment [88,108—110]. In poor-prognosis AML,
ALDHI1A1 RNA is expressed far above the level that is re-
quired for the myeloid lineage. Transcription factors such
as TLX1/HOX11 and NF&B, both associated with a severe
course of AML [111,112] drive ALDH1A1 overexpression,
promoting myelopoiesis [113].

To activate ALDH1A1 expression indirectly, NFxB
induces expression of micro RNA223-3p, which inhibits
expression of ARIDIA. ARIDIA loss, in turn allows hi-
stone acetylation of the ALDHIA1 gene promoter [114];
[115]. Having an established capacity to guide epigenetic
changes that guide leukemic stem cell programs, NFxB has
been associated with cancer recurrence, and with AML re-
lapse [109,116-118].

In AML, constitutive NFkB DNA-binding activity
is frequently mediated by a Ras/PI3-K/PKB-dependent
pathway [119]. Also overexpression of FLT3 induces
NFxB-dependent transcriptional activity in cultured cells
[120]. The constitutive activation of FLT3-ITD also in-
duces NFxB activity [121]. And conversely, FLT3 inhi-
bition or knockdown reduces constitutive NFxB activation
in high-risk myelodysplastic syndrome and AML [122].
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NFkB is regulated by changes in cellular proteostasis; its
native inhibitor, the IkB protein can be degraded by cellu-
lar proteolytic systems such as the proteasome or the lyso-
some, which are mutually regulated through the induction
of transcription factors [123,124]. Inhibition of NFxB by
the sesquiterpene lactone parthenolide was shown to sup-
press P-glycoprotein expression and adriamycin resistance
in cultured AML stem cells [125,126]. In fact, induction of
cell stress combined with NFxB inhibition is a promising
approach in AML treatment, due to the connection between
proteostatic pathways activated by cell stress and those in-
ducing NF&B activity, as was recently shown in a clinical
trial of relapsed patients with acute promyelocytic leukemia
[127,128].

One agent that is used in treatment of AML, is the nu-
cleoside cytosine arabinoside [129]. In fact, cytosine ara-
binoside (cytarabine, ara-C), in high concentrations (>50
uM) inhibits NFxB in some cell types to a certain extent; yet
this inhibition is evidently not enough, since after develop-
ment of drug resistance, ara-C does not suffice as monother-
apy for AML [130-132].

On the one hand, mutated, constitutively active FLT3,
activates signaling molecules RAS, and PI3K/mTOR which
activate NFxB [133]. On the other hand, AML can develop
resistance against all inhibitors of FLT3 at some point [134].
Consequently, combination of NFxB and FLT3 inhibitors
has been previously suggested by in vitro and xenograft
studies of AML cells from patients [135,136]. An addi-
tional reason to combine inhibitors is the fact that NFxB
causes epigenetic changes in nuclear chromatin, which can-
not be reversed by inhibition of NFxB itself in the affected
cells [137]. Therefore, in spite of its central role in regula-
tion of inflammatory gene expression, NFxB can be diffi-
cult to target under certain conditions, due to positive feed-
back loops that are formed by some of the products of its
target genes (Fig. 2), Downstream target genes of NFxB-
guided transcription, therefore, such as ALDH1Al, are at-
tractive aims for AML treatment.

6. Inhibition of ALDH as a Potential
Therapeutic Approach

ALDHI1A1, ALDHI1A3, ALDH2 and ALDH3Al
have structural and functional differences in substrate bind-
ing site, cofactor dissociation, enzyme kinetics, and rate-
limiting steps, which facilitates the design of selective
inhibitors and enzymatic activity tracers; in particular,
ALDHI1A1 substrate binding pocket has a wider access tun-
nel than ALDH2 or ALDH3A1, allowing ALDH1A1 to ac-
commodate larger and more rigid ligands than other ALDH
isoforms [138,139].

ALDH inhibition is not yet established as a therapeu-
tic method in malignant disease; however clinical trials
testing ALDH inhibitors in cancer are ongoing. Several
trials use disulfiram, an FDA-approved drug to treat
alcohol use disorder, to treat central nervous system neo-

plasms and other types of malignancy [140] (U.S. National
Library of Medicine resource platform ClinicalTrials.gov

registration numbers NCTO01777919, NCT02770378,
NCT01907165, NCTO03363659, NCT02678975,
NCTO03151772, NCT03034135, NCT02715609; for

an overview see https://clinicaltrials.gov/ct2/results?term
=disulfiram&cond=Cancer). Disulfiram inhibits multiple
functions of malignant cells, both directly, as well as
through its metabolites, especially in the presence of
copper that accumulates and is essential for tumor cells
[140].

Disulfiram inhibits human lens ALDH1A1 at IC50
values of the micromolar range [59]. In breast cancer
cells, ALDH1A1 enzymatic activity facilitated breast tumor
growth, and acidified the cytosol to promote phosphoryla-
tion of TAK1, activate NFxB signaling, and to increase the
secretion of granulocyte macrophage colony-stimulating
factor (GM-CSF), which led to myeloid-derived suppressor
cell (MDSC) expansion and immunosuppression; disulfi-
ram and chemotherapeutic agent gemcitabine cooperatively
inhibited breast tumor growth and tumorigenesis by purging
ALDH+ cancer stem cells, and by activating T cell immu-
nity [141].

In fact, in spite of the presence of ALDH activity
in hematopoietic stem cells, disulfiram with copper could
overcome bortezomib and cytarabine resistance in ALD-
Hbr LSCs via inducing apoptosis and proteasome inhi-
bition [142,143]. Furthemore, another ALDH inhibitor,
namely diethylaminobenzaldehyde (DEAB), could induce
the expansion of normal human hematopoietic stem cells
[144]. DEAB-inhibition of ALDH delayed hematopoietic
differentiation and expanded multipotent myeloid cells that
accelerated vascular regeneration following intramuscular
transplantation into immunodeficient mice with hind-limb
ischemia [145]. Yet a further ALDH inhibitor, namely
dimethyl ampal thiolester (DIMATE) eradicated leukemia
stem cells while sparing normal progenitors, both in vitro
as well as in mouse xenografts of human AML cells [146].

To date, several inhibitors for ALDH are under devel-
opment, with the aim a selective effect on specific proteins,
especially ALDH1A1. Indeed, novel selective inhibitors
for ALDH1A1 were developed recently [147—150]. This
field of research shows marked progress due to the fact that
ALDHI1AL1 is implicated in pathological manifestations of
inflammatory and metabolic syndromes in addition to can-
cer [151,152].

Also compounds derived from natural substances ex-
hibit inhibitory activity against ALDH. Notably, the ter-
penoid citral (3,7-dimethyl-2,6-octadien-1-al), a compo-
nent of essential oils obtained from several plants, which
is used as a food additive and fragrance, inhibits human
lens ALDH1A1 at low IC50 values of the micromolar range
[59]. Spice and herb extracts have shown a wealth in mod-
ulatory activities of ALDH family members ALDH1A1,
ALDHI1A2, ALDH1A3 and ALDH2; even though it may
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Fig. 2. Overview of the effects of AML stem cell signaling. Due to the extensive phenotypic changes in the cell, upstream signals are
rapidly converted to multi-pronged cascades, which become largely self-sustained. Specifically, the induction of expression of diverse
downstream genes triggers both developmental changes and alters sensitivity to differentiation signals and to apoptotic stimuli, leading to

cells that are substantially unresponsive to physiological homeostatic regulators and at the same time resist pharmacological intervention

and escape immune surveillance.

be possible that extracts contain selective modulators, cer-
tain extracts manifested general effects, with sage and
thyme extracts indicating the potential for complete sup-
pression of the enzymatic activity of all four proteins tested
[153].

7. Conclusions

Although initially the principal research finding was
that cancer stem cell properties are linked to ALDHIAI,
it later became apparent that other family members can be
implicated in cancer stem cell function. A wider range of
ALDH are linked to cancer stem cell activities than what
was expected, and it is likely that ALDH members have the
capacity to replace one another under specific conditions,
which depends strongly on the host tissue and the metabolic
conditions encountered by the malignant cells. This condi-
tion is expected to hold in leukemia too, with a particular
role of the transitions between bone marrow niche and cir-
culation taking effect in leukemia subtypes that show cor-
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responding transitions between ALDH activity.
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