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Abstract

Chronic kidney disease is generally progressive and currently has no reliable treatment to reverse a decline in kidney function or to
slow the progression of the disease. Diabetic nephropathy is one of the leading causes of end-stage kidney failure. Kidney damage
in diabetic nephropathy is largely attributed to the increased oxidative stress, affecting its metabolic activity, metabolic pathways, and
hemodynamic pathways. In diabetic patients, hyperglycemia causes an increase in the production of reactive oxygen species that further
increase oxidative stress. These reactive oxygen species are created through a variety of pathways, providing the opportunity for treatment

using anti-oxidative defense mechanisms to prevent vascular injury. This review will give an overview of oxidative stress, along with the

current treatments and limitations of diabetic nephropathy. We will also discuss the potential of antioxidative therapies, with an emphasis

on the nuclear factor erythroid 2—related factor 2 (Nrf2) pathway.
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1. Introduction

Diabetic nephropathy (DN) is one of the serious com-
plications of diabetes occurring in 20% to 40% of diabetic
patients and is one of the most common causes of end-stage
renal disease (ESRD) [1]. Currently, there is no curative
therapy for DN. Dialysis and kidney transplantation are typ-
ically required for advanced chronic kidney disease (CKD)
or ESRD.

Evidence suggests that the progression of DN is a re-
sult of metabolic and hemodynamic interactions and dys-
regulation [2]. As such, DN treatment plans typically in-
clude glycemic and hypertensive care to help reestablish
metabolic and hemodynamic control to delay renal injury.
However, there is no single hypertensive therapy that is a
“one size fits all” for every patient, and aggressively pur-
suing a lower blood pressure in patients with pre-existing
cardiovascular diseases is often contraindicated [3]. Addi-
tionally, tight control of blood pressure may contribute to
the slower progression of DN to ESRD but cannot com-
pletely halt it.

Given the lack of definitive treatment for DN, there
is a need for new therapeutic agents and targets that can
either reduce the risk, further slow, or outright prevent the
progression of DN to full-blown ESRD. One such approach
aims to mitigate the deleterious effects of DN-associated
oxidative stress on the kidney by increasing renal cell an-
tioxidant capacity.

Oxidative stress has been shown to play a central role
in the pathogenesis of DN [4]. The metabolic and hemody-
namic dysregulation that are characteristic of diabetes result

in the accumulation of intracellular reactive oxygen species
(ROS) leading to impaired cellular function and chronic dis-
ease [4-6]. Thus, a therapeutic approach aimed at increas-
ing the antioxidative capacity of renal cells under diabeto-
genic conditions is a promising approach in the treatment of
DN. Nuclear factor erythroid 2—related factor 2 (Nrf2), the
central regulator of the cellular response to oxidative stress,
is a promising target for therapies aimed at increasing renal
cell antioxidant capacity in patients with DN [7].

In this review, we discuss the role of oxidative stress in
the pathogenesis of DN, the Nrf2 pathway, and pre-clinical
antioxidative therapies that have been shown to slow the
progression of diabetic kidney disease [4,8,9].

2. Diabetic Nephropathy and Oxidative
Stress

2.1 Renal Impairment

DN is the main cause of ESRD and it is identified
based on renal histological and functional alterations [10].
Diabetic insults induce microvascular injuries within the
glomeruli and tubulointerstitial compartment [11]. In the
glomeruli, thickening of basement membranes, mesangial
expansion, hypertrophy, and loss of podocytes, specialized
epithelial cells, occurs alongside the expansion of the tubu-
lar basement membranes, tubular atrophy, interstitial fibro-
sis, and arteriosclerosis [11].

Hyperglycemia and hypertension are two major in-
sults that result in the decline of renal function, and both
occur through different cellular pathways [12,13]. Hyper-
glycemia causes renal impairment through inducing renal

Copyright: © 2022 The Author(s). Published by IMR Press.
BY This is an open access article under the CC BY 4.0 license.

Publisher’s Note: IMR Press stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.


https://www.imrpress.com/journal/FBS
https://doi.org/10.31083/j.fbs1402014
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Table 1. List of reactive oxygen species accompanied by their

formula.

ROS Formula
superoxide anion 02—
hydrogen peroxide H202
hydroxyl radical *OH
singlet oxygen 0=0
peroxyl radical ROO-
alkoxyl radical R-O-
lipid hydroperoxide LOOHs
peroxynitrite ONOO-
hypochlorous acid HOCl
nitric oxide NO

R indicates any carbon groups, L indicates
any lipids, and NO is grouped as a reactive
nitrogen species that is relevant to diabetic
nephropathy.

hypoxia, oxidative stress, altering renal vasoreactivity, and
volume depletion due to osmotic diuresis [14]. Systemic
arterial hypertension affects the glomerulus through alter-
ing hydraulic pressure which has been associated with rel-
ative arteriolar dilation and efferent arteriolar constriction
[15,16]. Hyperlipidemia is also considered to play a signif-
icant role in renal damage that leads to DN [17]. While DN
is a result of a combination of several factors, downstream
effects of hyperglycemia, hypertension, and hyperlipidemia
converge at oxidative stress, which has been shown to play a
central role in the progression of DN; thus, targeting oxida-
tive stress may be an important approach for the treatment
of DN [18].

2.2 Oxidative Stress

ROS are molecules containing oxygen, many of which
are free radicals, such as superoxide, hydrogen peroxide,
hydroxyl radical, singlet oxygen, peroxyl radical, alkoxyl
radical, lipid hydroperoxide, peroxynitrite, hypochlorous
acid, ozone, and nitric oxide (Table 1) [19]. Due to the kid-
ney’s high metabolic activity, various types of cells includ-
ing endothelial, vascular smooth muscle, mesangial, and
tubular epithelial cells are able to produce ROS [20,21]. In-
trarenal oxidative stress is associated with the initial stages
and progression of DN [22].

2.3 The Role of Hyperglycemia and Oxidative Stress in
DN

The production of ROS is increased during hyper-
glycemia, which further worsens diabetic complications
[23,24]. Oxidative stress from hyperglycemia causes
metabolic modifications of the target tissue and changes in
renal hemodynamics that increases vascular injury [11,25].
Thus, oxidative stress plays a significant role in the patho-
genesis and progression of DN [26]. ROS are a major con-
tributor to diabetic vascular damage and the overproduction
of these species is directly linked to hyperglycemia [26].

In hyperglycemic conditions, the overproduction of
ROS can be induced through different mechanisms based
on cytosolic and mitochondrial sources [11]. Mitochon-
drial sources of ROS are oxidative phosphorylation, uncou-
pling of the respiratory chain, and dysregulation of com-
plex I, coenzyme Q, and complex III [11,27-30]. The
metabolism of glucose produces energy for the mitochon-
drial respiratory chain via oxidative phosphorylation by
converting it to pyruvate in order to be reduced into NADH
and FADH2. NADH is responsible for donating electrons
to the respiratory chain and in hyperglycemic conditions,
the NADH/NAD+ ratio is increased in stressed porcine en-
dothelial cells [31]. It is important to note that free fatty
acids can produce NADH and FADH?2 via the tricarboxylic
acid cycle, thus excess free fatty acids can mimic hyper-
glycemic damage to the mitochondria [11]. In vitro stud-
ies have shown that ROS production has been prevented
by inhibiting the electron transport chain complex II via
uncoupling oxidative phosphorylation, protein-1, and man-
ganese superoxide dismutase [32]. It was shown that con-
trolling mitochondrial ROS production the formation of ad-
vanced glycation end-products (AGE) was also inhibited
[32]. AGEs are capable of inducing apoptosis and over-
expressing vascular endothelial growth factor (VEGF) and
monocyte chemoattractant protein-1 (MCP-1) [33]. VEGF
and MCP-1 are linked to early phases of DN [33]. AGEs
have been shown to increase ROS production and inhibit
anti-oxidative protection mechanisms but there is also ev-
idence that ROS can cause the production of some AGEs
[34].

Cytosolic sources can be attributed to non-enzymatic
pathways such as advanced glycation and glucose auto-
oxidation or through enzymatic pathways such as xanthine
oxidase, NADPH oxidase, sorbitol flux, uncoupled nitric
oxide synthase (NOS), and glycolysis [11]. The NADPH
oxidase pathway, which is found in mesangial cells, prox-
imal tubular epithelia, vascular smooth muscle cells, en-
dothelial and interstitial fibroblasts, is a major contributor
to the progression of DN [27,35—40]. Subunits of NADPH
oxidase were shown to be elevated in models of diabetic
kidney disease and renal injury due to ROS in experimental
models [41—44]. Another cytosolic origin for ROS is the
uncoupling of NOS. Through different isoforms and cofac-
tors of NOS, this uncoupling produces nitric oxide (NO)
radicals [11]. It is speculated that NO plays a role in the
early stages of DN through inducing hemodynamic changes
[44—47]. Excess production of ROS due to hyperglycemic
conditions and activated anti-nuclear factor-«B (NF-xB) is
linked to increased inflammatory cytokine concentrations
in the kidneys of diabetic rats [30,48].
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Fig. 1. Potential pathogenesis of hypertension via hyperglycemic ROS production. ROS, reactive oxygen species.

2.4 Hypertension and Oxidative Stress

Oxidative stress in the kidney and hypertension has a
complex relationship (Fig. 1). Evidence has suggested that
the development of hypertension can be caused by oxidative
stress. This is supported by studies that show that induc-
ing oxidative stress leads to hypertension and the depletion
of extracellular superoxide dismutase (EC-SOD), an anti-
oxidative enzyme, increases basal blood pressure [49—53].
Furthermore, ROS produced under hyperglycemic condi-
tions increases vascular NO and transforming growth factor
(TGF)-31, which is associated with vasodilation of the af-
ferent and efferent arterioles [54—58]. Hyperglycemia has
also been linked to renin-angiotensin-aldosterone system
(RAAS) activation [22]. Hyperglycemia-induced RAAS
activation can be inhibited via attenuation of ROS gen-
eration, suggesting that ROS generation mediates RAAS
activation [59]. Dysregulated RAAS activation, in turn,
can aggravate hypertension which in turn could cause re-
nal impairment by increasing glomerular capillary pres-
sure. Given the link between inflammation via ROS, neuro-
hormonal change, and the role of the kidney in modulating
blood pressure, interventions to attenuate hyperglycemia-
induced oxidative stress present an opportunity to slow the
progression of CKD in diabetic kidney disease.

2.5 Downstream Effects of Oxidative Stress and DN

When the overproduction of ROS occurs and there is a
disproportionate amount of antioxidants, tissue damage can
occur through the oxidation of protein, nucleic acids, car-
bohydrates, and lipids [11,12,20,60,61]. Not only does the
reactivity of these species directly cause damage but ROS
can act as signaling molecules, during hyperglycemia, for
membrane receptor signaling to induce stress-related path-
ways that cause damage to cells [62]. ROS can also disrupt
DNA by causing breaks in the single or double-stranded he-
lices as well as interfering with histones [63,64]. As such,
more targeted therapies specific to anti-oxidation are a po-
tential novel treatment for DN.
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3. Current Treatments of Diabetic
Nephropathy and Limitations

3.1 Statin

A systematic review and meta-analysis of clinical tri-
als evaluating five types of statins (atorvastatin, cerivas-
tatin, lovastatin, simvastatin, pitavastatin) showed that
statins significantly increased estimated glomerular filtra-
tion rate (¢GFR) and reduced serum creatinine, thus im-
proving renal function. Statin also reduces C-reactive pro-
tein (CRP) level, thus protecting the kidney from a high
level of inflammation. Blood lipids are also reduced by
statin, thus addressing one of the root causes of DN [65].

Previous studies have also shown statins’ ability to
reduce lipid deposition on the vascular wall. This is con-
ducive to the treatment of early DN, reducing proteinuria,
and delaying the progression of kidney disease [66]. Statin
also improves NO activity in the vascular endothelium, im-
proving its function and relieving contraction found in DN
[67]. With respect to diabetes, statins reduce the inflamma-
tory response and stabilize platelet function [68].

3.2 Vitamin D

Vitamin D supplementation was found to decrease al-
buminuria and urinary TGF-31 in patients with type 2 di-
abetes, as such, it was expected that vitamin D can protect
kidneys from DN [69,70]. Follow-up studies reveal that this
anti-nephropathic effect is mixed, with one study showing
reduced proteinuria, prevention of kidney injury, both in-
dependent of blood pressure and blood glucose level [71].
However, this was contradicted by a study that shows no vi-
tamin D effect on urine albumin to creatinine ratio [72]. A
systematic review and meta-analysis of clinical trials exam-
ining the effects of vitamin D in DN revealed that vitamin
D does improve 24-hour urine protein and inflammation in-
dices. However, vitamin D has no effect on serum creati-
nine, eGFR, or glycemic control [72].

3.3 Mineralocorticoid Receptor Antagonists

Mineralocorticoid receptor antagonists (MRA) have
been used to treat resistant hypertension due to high aldos-
terone levels [73]. Aldosterone affects sodium and potas-
sium balance by binding to the mineralocorticoid receptor
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(MR) at distal nephrons in the kidney [74]. Overactivation
of MR has been found to be common in DN, driving in-
flammation and fibrosis in the kidney [75]. Initial MRA
has been steroid-based, such as spironolactone, eplerenone,
and was found to carry a risk of hyperkalemia, with con-
traindication for patients with serum creatinine >2 mg/dL
[76,77]. More recent non-steroid MRA has a lower risk of
hyperkalemia, such as finerenone, and was shown to have
high selectivity toward MR, with strong anti-inflammatory
and anti-fibrotic effects in the kidney, however, it is still not
recommended for patients with severe CKD [78,79].

3.4 a-lipoic Acid + Valsartan

Valsartan is an angiotensin 2 receptor blocker (ARB),
used to treat hypertension. Low-dose valsartan with no clin-
ical effect on blood pressure was shown to decrease uri-
nary albumin excretion in patients with DN. It’s theorized
that valsartan dilates the efferent more than afferent arte-
rioles resulting in decreased intraglomerular pressure, pro-
tein filtration, and proteinuria [80]. In combination with
angiotensin-converting enzyme (ACE) inhibitor, valsartan
delays glomerular sclerosis and improves renal function in
patients with type 1 DN; although, combined ARB and
ACE inhibitor increases the risk for adverse drug event and
are not generally used in clinical practice.

a-lipoic acid (ALA) is an antioxidant that was shown
to up-regulate the expression of Nrf2-mediated antiox-
idant genes, peroxisome proliferator-activated receptors-
regulated genes, and was used to treat diabetes [81]. In
this case, ALA improved insulin sensitivity, protecting re-
maining [S-cells by reducing their oxidative stress, reducing
lipid peroxidation, and inhibiting protein glycation [81,82].
Meta-analysis of the combination of ALA and valsartan in
DN showed that this combination significantly reduces uri-
nary albumin, level of oxidative stress markers, increases
antioxidant capacity, and alleviates renal function damage
[83].

3.5 SGLT2 Inhibitor

Sodium-glucose cotransporter 2 (SGLT2) inhibitors,
commonly known as gliflozins, are used to lower blood
glucose levels by inhibiting glucose absorption at proximal
tubules [84]. In the Empagliflozin Cardiovascular Outcome
Event Trial in Type 2 Diabetes Mellitus Patients—Removing
Excess Glucose (EMPA-REQG) trial, empagliflozin reduced
progression to macroglobinuria, decreased serum creati-
nine, and resulted in a 39% reduction in the death rate by
kidney failure [85]. The SGLT2 inhibitor also has a blood
glucose-lowering effect, reducing HbAlc with its maxi-
mum effect at 6 months post-treatment, and maintaining the
effect from then on up to 1 year in the clinical trial [86]. Its
hypoglycemic risk is low, similar to metformin [87].

SGLT2 inhibitor improves kidney health in DN by the
following actions:

(1) Restoring tubuloglomerular feedback: Increased
adenosine expression, which causes vasoconstriction of the
afferent arteriole, thus reducing glomerular pressure and
hyperfiltration [88].

(2) Reducing tubular workload and hypoxia: Diabetic
patients have enhanced proximal tubular glucose reabsorp-
tion because of their hyperglycemia, leading to increased
glomerular hyperfiltration [88]. This increased reabsorp-
tion increases oxygen demand by the cells, leading to tubu-
lar hypoxia, and is a strong indication of the progression of
diabetic kidney disease [88]. By decreasing glucose reab-
sorption, SGLT2 inhibitors lower the workload and reduce
tubular hypoxia.

(3) Diuretic and natriuretic effect: SGLT2 inhibitors
function as a diuretic, but with preferential fluid mobiliza-
tion from the interstitial compartment rather than the in-
travascular compartment [89]. This helps to reduce the
amount of interstitial fluid in the kidney, which may reduce
cortical and medullary hypoxia.

(4) Anti-inflammatory and antifibrotic effect: SGLT2
inhibitors reduce the markers of DN: Nuclear factor-B
(NFB), interleukin 6 (IL-6), monocyte chemoattractant pro-
tein 1 (MCP-1), and the serum uric acid level, thus reducing
the risk of kidney inflammation [90,91].

3.6 Curcumin

Curcumin, found in turmeric, has strong anti-
inflammatory properties that were expected to reduce
inflammation-mediated kidney damage in DN. In clinical
trials, it was found to have a positive impact on proteinuria,
however, it has no impact on blood urea nitrogen, creati-
nine, eGFR, and serum albumin [92].

3.7 ACE Inhibitor/ARB (General)

Angiotensin-converting enzyme (ACE) inhibitor, or
Angiotensin receptor blocker (ARB), are common hyper-
tension medications that have also been used for the treat-
ment of DN [93]. This is especially recommended for non-
pregnant patients with both diabetes and hypertension co-
morbidity, as per American Diabetes Association (ADA)
guideline in 2018. However, neither ACE inhibitor nor
ARB is recommended for primary prevention of diabetic
nephropathy, in diabetic patients with normal blood pres-
sure, normal urinary albumin to creatinine ratio, and normal
eGFR [93]. The mechanism of ACE inhibitors in diabetic
nephropathy is suggested to be the lowering of glomeru-
lar intracapillary pressure, while still maintaining the flow
of renal plasma. Additionally, ACE inhibitors may also
prevent cellular and glomerular hypertrophy, and reduce
mesangial matrix accumulation [94]. Meanwhile, ARB has
been shown to prevent or delay DN independent of its ac-
tion on hypertension, in patients with type 2 diabetes and
microalbuminuria [95]. This data was supported by further
clinical trials, except for analysis on obese or overweight
patients [96].
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3.8 Glycemic Control

Controlling blood sugar levels is a key requirement
for living with diabetes which includes insulin treatments
and healthy lifestyle habits such as diet and exercise. A
strict and intense diabetic treatment plan aimed at glycemic
control showed a delayed onset of diabetic retinopathy,
nephropathy, and neuropathy in patients with insulin-
dependent diabetes mellitus [97]. Controlling glycemic lev-
els in adolescent patients is especially challenging as they
now take responsibility for their diabetic management and
still require more education, support systems, and guid-
ance [98]. In adolescent patients, HbAlc levels were 1—
2% higher in both the intensive and conventional treatments
compared to adults according to the DCCT research group
[97].

4. Anti-Oxidative Therapy and the NrF2
Pathway

Identifying anti-oxidative therapies aimed at slowing
and reversing the progression of CKD has become a central
focus of treating DN. Largely, two approaches have been
taken to restore redox balance in kidneys under diabeto-
genic conditions:

(1) Upregulating anti-oxidative enzymes through ac-
tivation of Nrf2 pathways; (2) Reducing the production of
ROS through attenuation of mitochondrial dysfunction.

The Nrf2 is a transcription factor that is centrally in-
volved in the management of oxidative stressors throughout
the body. Nrf2 is expressed in all cells at low levels under
normal physiologic conditions [99]. Common sources of
oxidative stress include superoxide anions, hydroxyl radi-
cals, and hydrogen peroxide produced by mitochondria, en-
doplasmic reticuli (ER), and peroxisomes as a part of nor-
mal metabolic function [2,100]. The role of Nrf2 in limit-
ing cellular damage to such ROS means that it is integral
in maintaining overall cell health. As such, a dysregula-
tion of the Nrf2 pathway results in an inability of cells to
cope with oxidative stress leading to overall cellular dys-
function and disease. Studies utilizing Nrf2 deficient mice
have associated Nrf2 dysregulation with a host of diseases
including cancer, Alzheimer’s disease, cardiovascular dis-
ease, and DN [100-102].

When oxidative stress is low, Nrf2 is bound to the E3
ubiquitin ligase subunit: Kelch-like ECH-associated pro-
tein 1 (Keapl) [102]. When complexed with Keap1, Nrf2
is targeted for ubiquitination and subsequent proteasomal
degradation (Fig. 2) [103]. In this way, nuclear transloca-
tion of free Nrf2 is suppressed when ROS levels are low.
When oxidative stress is high, ROS react with Keapl re-
leasing Nrf2 to translocate to the nucleus and bind with
the antioxidant response element (ARE) promoter region
(Fig. 2) [99]. Nrf2-ARE binding activates transcription of
a multitude of different antioxidant, metabolic, and anti-
inflammatory proteins in addition to an upregulation of
Nrf2 transcription [99]. Overexpression of Nrf2 and/or loss
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of Keap1 function is also associated with increased rates of
autophagy [104].

Nrf2, Diabetic Nephropathy, and Anti-Oxidative Therapies

Hemodynamic and metabolic changes in individuals
with diabetes result in an increase in the production of ROS
which leads to alterations in renal cell structure and a de-
crease in kidney function [105]. In DN, the accumulation
of ROS leads to an overall increase in free cytosolic Nrf2,
however, Nrf2 nuclear translocation is impaired [106]. This
suggests that an increase in Nrf2 production alone is not
sufficient to combat the increased oxidative stress present
in DN. In light of this information, Nrf2 nuclear transloca-
tion should also be a target of therapies seeking to mitigate
the effects of kidney disease in individuals with DN. Mohan
et al. [107] demonstrated the efficacy of epigallocatechin-
3-gallate (ECGC) in increasing Nrf2 translocation in dia-
betic mice as measured by increased expression of func-
tional HO1, «-GCS, and NQO1. Pharmacologic ARE in-
ducers like sulforaphane, Oltipraz, CDDO-Im, BHT in-
crease free Nrf2 through binding of cysteine thiol groups in
the Keap1 repressor [100]. Either ECGC, ARE inducers, or
a combination thereof could hold promise as potential ther-
apies for DN. Evidence also shows that Nrf2 activators have
been shown to slow the progression of DN [105,108—114].
For example, dimethyl fumarate (DMF) is an Nrf2 acti-
vator with anti-oxidative, anti-inflammatory, and immune-
modulating effects that are currently used as a treatment for
psoriasis and relapsing-remitting multiple sclerosis [115].
In a study of 30 diabetic mice, different doses of DMF, low,
medium, and high were given for three months to assess
DN, lipid profile, renal hypertrophy, oxidative stress in the
kidney, and renal histopathological changes [116]. It was
found that high dose DMF (80 mg/kg) was able to attenu-
ate DN significantly [117].

While increasing anti-oxidative enzyme expression is
an important aspect of treating DN, reducing the produc-
tion of ROS and inflammation is also important in the long-
term management of DN. Diabetogenic conditions result
in abnormal metabolism of glucose and fatty acids by the
mitochondria, resulting in dysfunction and activation of
NADPH oxidase, one of the major contributors of ROS pro-
duction [118].

Several other macromolecules and pathways have
been implicated in ROS production including advanced gly-
cation end products (AGE), defects in polyol pathway, and
uncoupled nitric oxide synthase (NOS). In this review, we
focus on mitochondrial dysfunction and therapeutic agents
targeted at restoring mitochondrial homeostasis as an im-
portant point of intervention to suppress ROS production
[25]. Early diabetic kidney disease has been associated
with mitochondrial fragmentation, fission, impaired mi-
tophagy, decreased mitochondrial membrane potential, and
ROS production [119]. Several agents such as Tilapia Skin
Peptides, berberine, Sirte 6, and progranulin have been
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Fig. 2. The Nrf2 and Keap1 pathway under oxidative stress conditions. Under non-stressed conditions, Nrf2 is ubiquitinated and

degraded in the proteasome. Under stressed conditions, ubiquitination is downregulated and Nrf2 is free to translocate to the nucleus.

shown to impede the progression of DN by restoring mi-
tochondrial morphology and function [120-125]. In par-
ticular, pyruvate kinase M2, a glucose metabolic enzyme,
was found to be elevated in kidneys of diabetic patients who
did not develop DN but remained low in patients with pro-
gressed to DN [120]. Pyruvate kinase muscle isozyme 2
(PKM?2) activation by TEPP-46 reversed diabetes-induced
defects in mitochondrial function and prevented the de-
velopment of glomerular pathology evidenced by a mouse
model of DN [120]. Unfortunately, these agents are yet to
be studied in humans and thus the safety and efficacy are
unknown. Nrf2 activators, in addition to elevating the ex-
pression of antioxidants, have also been shown to exhibit
their therapeutic effects by restoring mitochondrial home-
ostasis. Human proximal tubular cells, human kidney-2
(HK-2) cells, cultured under hypoxic ambiance to emulate
the hypoxic state under diabetic conditions resulted in in-
creased mitochondrial fragmentation, ROS production, mi-
tochondrial membrane potential loss, and apoptosis; these
results were reversed with cotreatment with an HO-1 ago-
nist [125]. Furthermore, MitoQ and CoQ10, mitochondrial
antioxidants restored mitophagy and mitochondrial qual-
ity control in vivo in streptozotocin-induced DN [107,117].
Thus, further advancements and identification of Nrf2 ac-
tivators that also restores mitochondrial homeostasis is a
promising approach in the treatment and prevention of DN.

5. Conclusions

DN and oxidative stress are intertwined in CKD pro-
gression. The overproduction of ROS causes vascular dam-
age and over time impairs the kidney. Hyperglycemia fur-
ther aggravates oxidative stress by inducing more produc-
tion of ROS. Current treatments have long been known
to delay the progression of diabetic kidney disease; how-

ever, the majority of patients with DN progress to ESRD.
Therefore, targeted therapies on the antioxidation via the
NrF2 pathway can be a promising option. Ultimately, a
multimodal therapeutic approach involving traditional and
newer anti-oxidative therapies applicable in clinical prac-
tice should be further explored to mitigate CKD progression
in patients with DN.
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