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1.  ABSTRACT 
 

This article presents a case-study review of 
synergy concepts of nonlinear blending and dose-reduction 
profiles.  “Strong nonlinear blending” is a novel concept 
that provides a flexible paradigm for the assessment of 
combination drug synergy that is applicable to any shaped 
combination-drug dose-response surface; issues of varying 
relative potency, partial inhibitors, potentiation, or coalism 
pose no problems at all.   Dose-reduction profiles are 
overlay plots created to show how much each drug can be 
reduced in amount and yet achieve the same efficacy as 
larger amounts of each drug used individually.  This review 
applies these synergy concepts to two data sets from a 
previously published experiment.  The previous publication 
had claimed a high degree of Loewe synergy for one of the 
data sets.  However, a more penetrating analysis shows that 
with regard to strong nonlinear blending there is no reason 
to blend (for purposes of response enhancement) the two 
compounds studied.  However, the dose-reduction profile 
plots show how Loewe synergy is present and provide 
further insight to the interaction of the two compounds (on 
the dose-concentration scale).  
 

 
 
 
 
 
 
 
 
2.  INTRODUCTION 
 

This article presents two dose-response surface 
analyses of combinations of trimetrexate (TMQ) and a 
compound known as AG2034 in the presence of low and 
high levels of folic acid, respectively.  The data come from 
an experiment published by Faessel et al. (1). The dose-
response surface models are obtained using a modified 
version of the hierarchical logistic modeling approaches 
appearing in Minto et al. (2) and White et al. (3).  Using 
these dose-response models, an investigation of possible 
drug synergy is performed using a methodology based upon 
mixture-amount experiments. Within the framework of 
mixture-amount experiments, the concept of “strong 
nonlinear blending” is applied to these hierarchical models 
to assess these experiments for the presence of combination 
drug synergy.  Strong nonlinear blending is a novel synergy 
concept first appearing in Peterson and Novick (4).  It 
provides a very flexible paradigm for the assessment of 
combination drug synergy that is applicable to any shaped 
combination-drug dose-response surface; issues of varying 
relative potency, partial inhibitors, potentiation, or coalism 
pose no problems at all. 
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 The nonlinear blending analysis shows that there 
is little or nothing to be gained in response improvement by 
blending AG2034 with TMQ.  In most cases, replacing 
TMQ molecules with AG2034 molecules simply dilutes the 
combination drug effect in the sense that there is 
insufficient Loewe synergy to overcome the loss of efficacy 
obtained by adding the less potent AG2034. 
 

As a secondary analysis, a series of "dose 
reduction profile" plots are created.  These plots are created 
to show how much each drug can be reduced in amount and 
yet achieve the same efficacy as larger amounts of each 
drug used individually.  While this is not a synergy analysis 
on the response scale, such an analysis may nonetheless 
have utility in situations where smaller amounts of two 
drugs used together produce less frequent or less serious 
adverse reactions than larger amounts of either drug used 
one alone.   For the combination drug experiment in the 
presence of high folic acid, it does appear that the blending 
of AG2034 and TMQ offers excellent dose reduction 
potential.  

 
The dose-response modeling for the two TMQ-

AG2034 data sets is described in section 3.  The nonlinear 
blending analyses are provided in section 4, while section 5 
describes the dose reduction profile analyses.  A summary 
is given in section 6.  Subsection 2.1 below describes two 
classical approaches to quantifying combination drug 
synergy, while subsection 2.2 introduces the approach of 
nonlinear blending found in the area of mixture amount 
experiments.  Section 2.3 discusses the graphical concept of 
"dose reduction profile" plots.  
 
2.1.  Two classical approaches to synergy 

As a precursor to the synergy analyses in section 
4, it may be helpful to the reader, particularly one who is 
more familiar with the classical approaches to synergy 
quantification, to understand why the approach of nonlinear 
blending (more widely known in agriculture and industrial 
settings) is favored by this author as a general approach to 
drug synergy quantification on the response scale.  The 
reader may better understand the rationale for the nonlinear 
blending approach by taking notice of the weaknesses 
inherent in the classical approaches to drug synergy 
quantification and then make comparisons with the more 
widely applicable approach of strong nonlinear blending. 
 

In this introduction, I will briefly review the two 
most widely used classical approaches to quantifying 
combination drug synergy, Bliss independence (5) and 
Loewe synergy (6).  The Bliss independence model 
assumes that both drugs act independently on different 
targets.  The Bliss independence model can be described as 
follows.  Suppose that drug 1 produces a “fraction of 
possible response”, 1f  at amount 1A , drug 2 produces a 
fraction of possible response, 2f  at 2A , and a  combination 
of drugs 1 and 2 produces a "fraction of possible response", 

12f , at amount ( )1 2A A+ .  The Bliss independence model 
states that then the fraction of possible response produced 
by drugs 1 and 2 combined is 12 1 2 1 2f f f f f= + − . 

(Suppose that it is assumed that a larger response is better.) 

If instead 12 1 2 1 2f f f f f> + − , then we have Bliss synergy; 
likewise if 12 1 2 1 2f f f f f< + − , then we have Bliss 
antagonism. 

 
As shown by Greco et al. (7), the Bliss 

independence concept exhibits a troubling aspect of 
quantification when viewed along a dose-response 
continuum.  For example, assume that ( )1 ½f A =0.1 , 

( )2 ½f A =0.1 and ( )12 ½ ,½f A A =0.4.  One would then 

conclude Bliss synergy at ( )½ ,½A A  since 0.4 > 0.19.  

However, suppose ( )1f A =0.6 and ( )2f A =0.6.  In this 
case one has to admit that a total amount, A, of either drug 
1 or drug 2 alone produces a better response than the 
combination total amount, A, of drugs 1 and 2 together, 
despite Bliss synergy. 

 
Loewe synergy (6) is based upon the “sham 

experiment” concept.  This concept says that a drug 
combined with itself must be additive.  This idea can be 
extended to two different compounds with the same relative 
potency, i.e. the same shape on the log-dose scale.  Suppose 
that drug 2 has the smaller 50IC .  Dilute drug 2 until both 
dose response curves completely overlap.  Call the diluted 
form of drug 2, drug 2′ . If the response surface for the 
combinations of drug 1 and drug 2′  is the same as that for 
the combinations of drug 1 and drug 1 (or equivalently for 
drug 2′  and drug 2′ ) then we have Loewe additivity (also 
called dosewise additivity).  Under these assumptions, one 
can derive the familiar equation for dosewise additivity,  

 

( ) ( )
1 2
1 2

50 50

1d d

IC IC
+ = , 

 

where ( )1
50IC  and ( )2

50IC are the 50IC 's for drugs 1 and 2 
respectively.  There are several derivations in the literature. 
See for example, Loewe (6), Greco et al. (7), Tallarida (8), 
or Peterson and Novick (4). 
 

The sham experiment paradigm appears to be a 
solid one, but only for compounds with constant relative 
potency.  If, however, two compounds have varying 
relative potencies, then one cannot dilute the more potent 
one to make both dose response curves completely overlap 
so as to allow a comparison with the sham experiment.  In 
fact, some authors have tried to apply the dosewise additive 
argument to compounds with differing relative potencies 
and noted that such a derivation produces odd results, such 
a two different curvilinear isobolograms.  Peterson and 
Novick (4) show that the sham experiment strategy can 
lead to paradoxical results, and simply does not make sense, 
whenever two drugs do not have the same relative potency, 
i.e. the exact same shape on the log-dose scale. 

 
However, even if we restrict ourselves to dose 

response curves with the same shape on the log-dose scale, 
the Loewe synergy concept can be misleading when the 
two compounds have very different potencies.  In fact, it is 
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possible for a 50-50 blend of two compounds to show 
Loewe synergy yet this blend has an IC50 much larger than 
the IC50 of the more potent compound.  (Here, IC50 is 
defined as the concentration of a drug that produces a 50% 
mean inhibition or 50% reduction from mean baseline 
response.)  
 
As an example, following Berenbaum (9), define the 
interaction index, I, as  
 

( ) ( )
1 2
1 2

50 50

d dI
IC IC

= + . 

 
If I < 1 then drugs 1 and 2 are said to be Loewe synergistic.  
If I=1, then drugs 1 and 2 are said the be Loewe additive. If 
I > 1, then drugs 1 and 2 are said to be Loewe antagonistic.  

Suppose that ( )1
50 1IC = ,  ( )2

50 50IC = , and the combination, 

1 0.1d =  , 2 9.9d = , produces a 50% response.  It follows 
then that the interaction index, I, is 0.298.  Interaction indices 
having a value of 0.7 or less are generally considered to be 
substantially synergistic (10).  So I=0.298 states strong synergy 
for the dose combination, ( )1 2,d d =(0.1, 9.9).  However, the 

total dose for this combination is 1 2 10d d+ = .  But, this is a 

10-fold increase over  ( )1
50IC  which is equal to 1.  So, the 

combination drug (along a fixed-dose-ratio ray of 
( )1 1 2100 / %d d d+ of drug 1) has an  50IC  (on that ray) 

much larger than the best single drug  50IC  despite having a 
very synergistic interaction index value.  A graphical 
description (not to scale) of this phenomenon for Loewe 
synergy can be found in Figure 5A. 
 

Some researchers have also been known to 
modify the interaction index I above by defining the IC50 to 
instead be the inflection point on the (logistic model) Hill 
equation on the log-dose scale, i.e. the point associated with 
a mean response halfway between the upper and lower 
asymptotes of the log-dose curve.  Unfortunately, this 
approach can also produce troubling results with regard to 
synergy quantification when applied to partial inhibitors or 
partial agonists.  For example, suppose that compounds 1 
and 2 have mean (inhibition) dose response curves given 

by ( ) ( )log10 11 1 0.7 0.3 / (1 10 )df d = + + and 

( ) ( )( )1
2 1

log10 20.7 0.3 / (1 10 )
d

f d
−

= + +
 
, respectively.  

In this case, compound 1 has an (inflection point) IC50 of 1 
and compound 2 has an (inflection point) IC50 of 10.  
Suppose further that along a fixed-dose-ratio ray of, say, a 
50:50 combination of compounds 1 and 2, we have the 
dose response curve, ( )12 1 2,f d d  = 

( )( )1.5 /22log10 11 / (1 10 )
dd + − +

 
.  As such, along this 

50:50 dose-ratio-ray, the combination has an (inflection 
point) IC50 of 101.5= 31.6.  Suppose that this IC50 of 31.6 is 
achieved with individual doses of 1d  =15.8 and 2d =15.8.  
This corresponds to in interaction index of I = 

(15.8/1)+(15.8/10) =17.38, which is a highly antagonistic 
index value.  However, consider the overlay plot of all 
three of these curves vs. log-total-dose is given in Figure 1.  
Here, one can readily see that we have in fact a synergistic 
drug combination rather than a highly antagonistic one, as 
the interaction index would imply.  
 

 In a report of the International Union of Pure and 
Applied Chemistry, Lehárand Keith (11) stated that many 
observed combination drug effects defy description by 
either of the accepted standard models (Bliss or Loewe). 
They stated: 
 

“Rather than simply exceeding or falling short of one 
of the standards, many observed effects alternate 
between synergy and antagonism depending on the 
relative concentrations of the compounds. The 
standard reference models also can't describe coalism 
effects, where two inactive agents give rise to a 
combined effect that could never be predicted from the 
single agent dose responses.  Evidently, the standard 
combination references cannot account for the wide 
variety of empirical contexts.” 

 
Hence, it is clear that a more widely applicable 

approach to quantifying combination drug synergy is 
needed.  One such approach can be found in the subject of 
"mixture amount experiments". 
 
2.2. A nonlinear blending approach to drug synergy 

The subject of "mixture experiments" deals 
with modeling the responses obtained from the blending 
of various substances. Two books devoted to this area are 
by Cornell (12) and Smith (13).  Most of the literature on 
mixture experiments assumes that the blending properties 
of the substances being combined are not affected by the total 
amount of substance used.  This would be the case for mixture 
experiments involving blending of substances such as paint, 
gasoline, soft drinks, etc.  However, experiments where the 
total amount of substance, as well as the mixing proportions, 
affect the response are called “mixture amount” experiments 
(14,15).  While mixture amount experiments have been 
successfully used in both agricultural (e.g. fertilizer blending) 
and industrial settings (e.g. mineral processing) their first 
apparent use was in an assessment of drug synergy (16).  In 
fact, mixture-amount experiments are a natural way to think 
about combination-drug dose-response experiments.  Two 
recent papers on applications of mixture-amount experiments 
to cancer drug modeling are by Kitsos and Edler (17) and Chen 
et al. (18).  

 
      For a fixed total amount, A, of k blended 
substances, one can define a mixture-amount model as  
 

( ), ;y m A e= +βx , 

 
where y is the response and m is the mean response surface 
function of ( )1,..., kx x=x and A, the k mixing proportions 
and the total amount of drug substance, respectively.  



Synergy concepts of nonlinear blending and dose-reduction profiles 

486 

 
 
Figure 1. The curve traced out in red is the dose response curve corresponding to the 50:50 compound combination.  The black 
and gray dose response curves correspond to the single drugs.  
 
Here, ( )1,..., tβ β=β  is a vector of regression parameters and 
e denotes the random error deviation of the mean response 
surface function, m, from the measured response, y.  A key 
assumption of a mixture or mixture-amount experiment is that 
all of the x-variables (proportions) sum to 1, i.e. 

1 ... 1kx x+ + = . The actual dose, id , of drug i in any 
combination is  i id x A=   (i = 1,…, k), which of course 
implies that 1 ... kd d A+ + = .  The response surface function, 
m, can be completely general, determined empirically or 
mechanistically. 
 
    For simplicity, consider only two drugs, 1 and 2.  
A simple quadratic-form mixture-amount model is: 
 

( ) ( ) ( ) ( )1 1 2 2 12 1 2, ,m A A x A x A x xβ β β= + +x β , 
 
where each regressionβ −  coefficient depends upon A, the 
total dose amount.  Here the regressionβ − coefficients 
may be linear or quadratic functions of A.  Piepel and 
Cornell (14) show that this type of polynomial modeling is 
satisfactory for the hormone blending experimental data of 
Claringbold (16).  For more complex sigmoidal-shaped 
dose-response surfaces, Minto et al. (2) and White et al. (3) 
propose models that generalize the single-drug Hill model 
to a multiple-drug mixture-amount model. 
 

Typical mixture-amount experimental designs 
(for two compounds) are lower triangular in nature.  This is 
because the locus of points, 1 2d d A+ = , is a line with a 
(45 degree angle) slope of -1.  Use of several different 
levels for A results in the lower triangular experimental 
design as shown in Figure 2.  Mixture-amount designs 
for three or more compounds can be found in Cornell 
(12).  

 
In a mixture amount experiment, an important 

class of plots are mixture blending profiles.  For a fixed total 
dose amount (e.g. micromolar) , A, of two drug substances, one 

can plot the response, y, (or an estimated mean response, 

( )ˆ, ;m Ax β , where β̂   is an estimate of  β ) versus 1x , say.  

Such a plot shows how the changing proportion of drug 1 
affects the response at a fixed total amount, A.  Of course, 
several such plots can be made for varying amounts, A, to 
obtain an overall perspective on how drugs 1 and 2 combine to 
produce responses.  See Figures 3A and 3B as an example.  
Here the nonlinear blending plots can be thought of as “slices” 
through the response surface along the line given by 

1 2d d A+ =  for various amounts, A.  

 
Figures 3A and 3B show blending synergy for the 

total-dose amount, A, as the proportion of drug 1 is changed 
from 0 to 1.  Here, Figures 3A and 3B correspond to 
hypothetical inhibition (smaller response is better) experiments.  
Figure 3A shows a weak form of synergy as the response 
at 50% of drug 1 is less than the average of the single 
drug responses, but the best response is still at 0% of 
drug 1.  Figure 3B shows a stronger form of synergy as 
there exist mixture blends which provide better 
responses than either drug 1 and 2 alone for a total 
amount of drug substance, A.  We denote Figure 3A an 
example of “weak nonlinear blending” and Figure 3B as 
“strong nonlinear blending”.  Strong nonlinear blending 
profiles show experimenters at what total amounts the 
drug substances should be blended for improved 
efficacy over drugs 1 and 2 alone at the same total dose 
amount, A.  Figures 3A and 3B are for inhibition (i.e. 
small-the-better) dose-response relationships.  For an 
example involving larger-the-better dose-response 
relationships, see Peterson and Novick (4). 

 
In addition to a plot as in Figure 3B, it is also 

possible to show nonlinear blending plots from a dose 
response curve perspective.  Consider the hypothetical dose 
response curves in Figure 4.  Here the gray and black 
curves represent the single drug agents, while the five red 
curves represent dose response profiles for drug 
combinations at five different fixed dose ratios.  In Figure 4 
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Figure 2. An example of an (unconstrained) mixture-amount experiment layout.Each black point represents an experimental run 
for a given blend of compounds 1 and 2.  Each linear diagonal of points (with slope of -1) corresponds to a fixed total dose 
amount of compound, with total doses ranging from 1 to 5.  
 

 
 
Figure 3. Examples of weak and strong nonlinear blending for hypothetical inhibition (smaller response is better) experiments. 

 
it is clear, that at each fixed total dose level, strong 
nonlinear blending is present. 

 
Unlike Loewe synergy, the concept of nonlinear 

blending (NLB) can be applied to any combination drug 
response surface. Varying relative potency, partial 
inhibitors, potentiation, and coalism pose no problem at all.  
Hence NLB offers a general approach to synergy that is 
needed for the wide variety of response surfaces that could 
occur with combination drug studies.  For each total dose 

amount, NLB profiles can be used to quantify synergy 
directly in the units of response.  As seen in Figure 3B, the 
amount of improvement (over the best single agent) 
obtained by a 25% blend of drug 1 at total dose A is 
estimated to be about 15 percentage points of response.  
For an example NLB plot for three-drug combinations, see 
Peterson and Novick (4).  

 
There is an intimate connection between 

isobolograms, the Berenbaum index, NLB, and efficacy & 
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Figure 4. Example of strong nonlinear blending from a dose response curve perspective.  The black and gray lines correspond to 
the single agent dose response curves.  Here each red line represents a dose response curve corresponding to a different fixed-
dose-ratio drug combination.  The dashed vertical lines are reference lines to compare mean response values at specific total dose 
levels. 
 

 
 
Figure 5. Loewe synergy with a highly potent and low potent drug.Figure 5B shows sufficiently strong Loewe synergy to have 
strong nonlinear blending. Each dotted line represents an isobologram contour with a 50% response.  

 
potency of drug combinations.  Consider the hypothetical 
example in Figures 5A and 5B.  Suppose, for the sake of 
comparison, that for both of these figures the dose response 
curves for drugs 1 and 2 have the same shape on the log 
scale so that Loewe additivity and synergy are well defined.  
In Figure 5A we see that the 50% isobologram (the dotted 
line) shows Loewe synergy.  Now consider any constant-
dose-ratio ray intersecting the isobologram (such as the ray 
in Figure 5A).  One can imagine a dose response curve 
along this ray, where the “dose” is a mixture-amount of 
drugs 1 and 2.  All drug combinations on this ray have the 
same dose ratio. Next consider the intersecting the point 
where the ray intersects the 50% isobologram.  Suppose 

that at this point, ( )* *
1 2,d d , the total dose amount, * *

1 2d d+ , 

equals A.  Then of course, the line, 1 2d d A+ = , will 

intersect the points ( )* *
1 2,d d  , ( ),0A , and ( )0, A . 

 

From Figure 5A, one can see that the ( )* *
1 2,d d  

combination represents an IC50 along the ray that is larger 
than the IC50 for drug 1, despite the fact that we have 
Loewe synergy.  In fact for this particular isobologram it is 
the case that for any dose combination on the 50% 
isobologram, the 50IC  for any intersecting ray is larger 
than the 50IC  for drug 1.  Granted, the bowed-in 
isobologram in Figure 5A shows some kind of positive 
drug interaction but this type of drug synergy is in a sense 
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rather weak since adding drug 2 appears to dilute drug 1, 
resulting in a less potent drug combination.  

 
 
In Figure 5B, one can see that the Loewe synergy is 

strong enough, so that for some combinations, the 50IC   
along the corresponding ray is smaller than both the 50IC ’s 
for drugs 1 and 2 alone.  Although, some other points on the 
50% isobologram in Figure 5B still correspond to a ray with an  

50IC  larger than that for drug 1.  However, as one can see 
from Figure 5B (for increasing dose-response surfaces) if 

strong NLB exists at the point  ( )* *
1 2,d d , then the response at  

( )* *
1 2,d d  will be larger than the responses corresponding to 

single compounds at  1d A=  and 2d A= .  Hence the 50IC ’s 
for the single compounds will both be larger than that for the 

combination along the ray intersecting ( )* *
1 2,d d .  So, for 

monotone increasing (or decreasing) dose-response surfaces, 
strong NLB not only establishes a "synergy of efficacy" along 
a path of fixed total dose, but it also is establishes to a “synergy 
of potency” along a fixed-dose-ratio ray.  The equivalency of 
“strong NLB” and a “synergy of potency” along a fixed-dose-
ratio ray is important as many preclinical and clinical studies 
employ fixed-dose-ratio experiments (4). 
 
2.3.  A dose reduction profile approach to compound 
blending 

An important aspect of combining two anticancer 
agents is to find a pair that have different modes of toxicity so 
that lower doses of each one can be used to get efficacy that is 
as good as or better than either of the single agents alone (19).  
The existence of strong NLB provides a large degree of such 
relative dose reduction.  Suppose that the dose points  
( )1 2,d d , ( )1,0D , ( )20, D  are all on the same isobole 

contour, where  iD  is the dose of drug i alone (i=1,2) that 

gives the same response as the combination dose ( )1 2,d d . It 
can be shown that if strong NLB exists for the combination 
( )1 2,d d  then 1 1/d D  can be at most ( )1 1 2/d d d+  and 

2 2/d D  can be at most ( )2 1 2/d d d+ .  Of course, even if 

1D  or 2D  do not exist for a given isobole contour (as with 
partial inhibitors), strong NLB may still exist. 

 
However, even if strong NLB does not exist, 

some dose reduction potential may still exist for a 
combination even in situations of mild antagonism.  If two 
compounds at combination dose ( )1 2,d d  exhibit "excess 
over highest single agent" (20), then 

( ) ( ) ( ){ }1 2 1 2, max ,0 , 0,f d d f d f d> , where f is the mean 

dose response function. If one is screening combination pairs 
for dose reduction potential, testing for "excess over highest 
single agent" (EOHSA) is useful as EOHSA is equivalent 
to { }1 1 2 2max / , /d D d D < 1 for monotonically 
decreasing (increasing) dose response surfaces.  In 

addition, to testing for EOHSA, it can be helpful to 
create a plot of  1 1 1/r d D=   vs. ( )1 1 1 2/p d d d= + to see 
how (as one moves along an isobole contour) changing 
the proportion of drug 1 affects 1r   (the ratio of drug 1 
in the combination, d1,  to the dose of drug 1 alone, D1).  
Likewise, one can make a plot of  2 2 2/r d D=   vs. 1p  
to observe the affect on the ratio of drug 2 in the 
combination to the dose of drug 2 alone.  In fact, it may 
be best to combine these plots into an overlay plot for a 
specific isobologram.  For several isobolograms, these 
overlay plots can be made into a trellised plot for better 
overall visualization across dose response levels.  I call 
such plots "dose reduction profile" (DRP) plots.  Such 
plots can show the relative dose reduction profiles for 
various blends at a given level of efficacy (given by the 
isobole).  Of course, if there is sufficient antagonism, 
the 1r  or 2r  ratios may exceed 1 for some blends.  DRP 
plots are shown below in Figures 18 and 19 for the low 
folic acid and high folic acid experiments, respectively.  
The idea of examining the ratios involving 1d   and 1D  
(or 2d  and 2D ) is originally due to Chou and Chou 
(21); see also Chou (22), although Chou’s plotting was 
done differently. 

 
 For a large sample experiments, if one has a 

smooth, parametric response surface model, one can use the 
delta method (23, pp486-500) to compute confidence 
intervals or p-values associated with the dose reduction 
ratios, 1r and 2r .  In order to do this one must express 

1r and 2r as functions of the model parameters, the mean 
isobole response, and the proportion of one of the two 
compounds, e.g. TMQp .  An example of this will be given 
in section 5. 

 
 In addition, for prespecified relative dose 

reduction levels (e.g. 1 10r r=  and 2 20r r= ), a specified 
isobole, and a given combination, one can test 

 
0 1 10 2 20:H r r or r r≥ ≥  vs. 1 1 10 2 20:H r r and r r< <  

 
using the min test (24, Silvapulle and Sen, 2005, p235-
239 and pp422-423).  Adjustments for multiplicity 
(across isobole levels and/or combinations) can be done 
using the Bonferrioni approach or the more efficient 
Simes-Hommel p-value adjustment approach found in 
Westfall et al. (25). 
 
3.  RESPONSE SURFACE MODELING 
 
3.1. The molar-unit Minto-White model 

Minto et al. (2) and White et al. (3) have 
proposed similar hierarchical logistic model approaches to 
modeling two or more drugs in combination.  Their 
approaches involve the clever idea of fitting logistic dose-
response curves along rays of constant dose ratio.  All of 
these curves are then linked together using polynomial 
models that are functions of the proportions of each 
drug.  Each function models one of the three logistic 
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regression model parameters ([inflection point] logIC50, 
Hill slope, and control [left] asymptote value) as a 
function of the proportions of drugs in the combination 
at each point of the dose-response surface.  The class of 
polynomial models proposed by Minto et al. (2) and 
White et al. (3) are mixture experiment models, 
although any empirical model form (e.g. parametrically 
nonlinear model) can be used.  Hence the Minto-White 
(MW) dose-response model is a function of the total 
dose of the drug combination and the proportions 
making up that combination.  Here, the dose of each 
drug is measured in units of the IC50 of each drug.  
Hence, the proportions and total dose are also derived 
using these units. 

 
In this article, I employ a modified version of 

the Minto-White model, whereby I work in molar units 
rather than IC50 units.  This provides a more natural 
model that can be used even if one or more of the drugs 
does not possess an IC50.  In this article I do not employ 
a formal mixture experiment model for the three logistic 
model parameters.  This is because with only two drugs 
it is simpler to employ polynomial functions of the 
percent of one of the compounds.  In this article I chose 
TMQ.  The molar-unit Minto-White (mMW) model has 
the form  
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where TMQp
 is the proportion of TMQ and A is the 

total amount for the drug combination.  Here, 
( )TMQB p

 is the extrapolated background (asymptote) 

parameter value corresponding to TMQp
, ( )TMQm p

 is 

the Hill slope corresponding to TMQp
, and 

( )TMQ10 50log IC p
 is the logarithm (base 10) of the 

(inflection-point) IC50 as a function of TMQp
.  The 

Econ parameter is the control (left) asymptote.  Note 

that it is not a function of TMQp
 because Econ stands 

for "effect control".  Hence it is the mean response 
associated with no amount of either compound. 
 
         The most challenging part of the constructing a MW 
or mMW model is finding good models for the ( )TMQB p , 

( )TMQm p , and ( )TMQ10 50log IC p  parameters.  It is 

helpful that the two data sets discussed in this article came 
from experimental designs where a substantial number of 
fixed-dose-ratio rays were employed.  As such, revealing 

plots of the ( )TMQB p , ( )TMQm p , and 

( )TMQ10 50log IC p  estimates vs. TMQp  can be made.  

 
3.2. Low folic acidexperiment 

The low folic acid experimental layout 
employed 13 distinct rays of constant dose ratio.  Two 
of these rays were for TMQ and AG2034 alone, 
respectively.  A four-parameter Hill model was fit to 
each ray and estimates of B, m, and 10 50log IC  
parameters were obtained for each ray.  These estimates 
were then plotted against their respective TMQp  values 
to obtain the plots in Figures 6A, 6B, and 6C. 

 
 
The chosen forms for the ( )TMQB p , ( )TMQm p , 

and ( )TMQ10 50log IC p  hierarchical functions are as 

follows.  The background function, ( )TMQB p , was 

chosen to be a constant, B.  (Initially, ( )TMQB p was 

chosen to have a quadratic form but neither the linear 
nor quadratic hierarchical parameters were statistically 
significant at the 5% level and the AIC model selection 
statistic (26, p60) preferred the constant form 
for ( )TMQB p .)  The Hill slope function, ( )TMQm p , was 

chosen to have a cubic polynomial form, while the 

( )TMQ10 50log IC p  function was chose to have a linear 

form. To help reduce correlation among the hierarchical 
parameters in the cubic form for the Hill slope, 

( )TMQm p was expressed as a cubic polynomial in 

( )TMQ 0.5p − .  To accommodate heteroscedasticity in 

the residuals, a 'power of the mean' function was used to 
model the residual variance.  Here,  
 

( )TMQ
2( ) ,Var e f p Aσ

φ
= , 

 
where e is the residual error.  The mMW model was fit 
using PROC NLMIXED in SAS® v9.1.3. 
 

Because a 'power of the mean' function was 
used to model the residual variance, a standardized 
residual analysis was done to check for model adequacy.  
The estimated standardized residual here is defined to be 
ε , where ε  is defined as ê divided by the square root 
of the estimated variance of e.  Here, ê is the estimated 
residual.  An initial residual plot of ' ε   vs. predicted 
values' indicated that four observations have residuals 
more than four standard deviations from zero.  As such, 
these four observations were deleted as outliers. 
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Table 1.  Parameter estimates and standard errors for the (molar-unit) Minto-White model (low folic acid experiment) 
 
Logistic parameter form 

 
Hierarchical parameters 

Max. likelihood 
estimate 

Asymptotic standard error of 
the estimate 

B(p1)=constant  B=0.1312 0.001739 
m(p1)=cubic intercept mi=-3.7947 0.1855 
 linear term ml=6.3580 0.6388 
 quadratic term msq=7.4042 0.8237 
 cubic term mcu=-27.3468 2.9223 
log10IC50(p1)=linear intercept lICi=-2.7163 0.008662 
 linear term lICl=-0.3820 0.02181 
Econ  Econ=1.1792 0.00998 
Power of the mean baseline variance    2σ = 0.02533  0.001795 

 exponent φ  = 1.7189  0.05966 

 
The parameter estimates (with outliers deleted) 

are given in Table 1 below.  The 2R for this model is 
94.8%. 

 
 A standardized residual plot corresponding to the 

model specified by Table 1 is given in Figure 7A.  Here, 
one can see that the residuals appear quite random, 
although there is still a slight bulging associated with the 
intermediate predicted values.  A histogram of the 
standardized residuals is given in Figure 7B.  As one can 
see, these residuals appear to have approximately a normal 
distribution, with slightly heavier tails than a normal 
distribution.  

 
 A 3D plot of the dose response surface is given 

in Figure 8.  This response surface is presented on the log 
scale using log10TMQ and log10AG2034 as the predictor 
variables.  The surface is normalized by dividing all 
predicted mean values by the estimate for Econ.  An 
isobologram plot of the normalized dose-response surface 
is shown in Figure 9, with isoboles for 0.9 to 0.2.  An 
isobole of 0.1 is not shown because the ( )TMQB p  values 

are greater than 0.1 for all TMQp  proportions.  (Also, note 
that all values of B in Figure 6A are greater than 0.1.) 
 
3.3. High folic acid experiment 

The high folic acid experimental layout also 
employed 13 distinct rays of constant dose ratio.  Two of 
these rays were for TMQ and AG2034 alone, respectively.  
A four-parameter Hill model was fit to each ray and 
estimates of B, m, and 10 50log IC  parameters were 
obtained for each ray.  These estimates were then plotted 
against their respective TMQp  values to obtain the plots in 
Figures 10A, 10B, and 10C. 

 
For the high folic acid experiment, it appears that 

some of the three logistic model parameters vary most 
naturally on the log scale relative to the proportion of TMQ 
in the drug combination.  The log transformation used is 
log10(pTMQ+0.0001)+2, where pTMQ is the proportion of 
TMQ in the combination.  The value of 0.0001 is an offset 
so that the transformation is bounded for pTMQ=0.  The 
addition of 2 is to approximately center the log-transformed 
values around zero to reduce the correlation among some of 
the hierarchical parameter estimates in the polynomial 
functions of the transformed pTMQ.  The selected forms for

 
the ( )TMQB p , ( )TMQm p , and ( )10 50log TMQIC p  are as 

follows.  The B-parameter function was chosen as linear in 
the transformed TMQp  proportion.   The Hill slope function, 

( )TMQm p , was modeled as linear in the transformed 

TMQp  proportion.  The ( )10 50log TMQIC p  parameter was 

modeled as quadratic in the transformed TMQp  proportion. 
 
As with the low folic acid experiment, a 'power 

of the mean' model was also used to model error 
heteroscedascity. An initial residual plot of ' ε vs. predicted 
values' indicated that two observations have residuals more 
than four standard deviations from zero.  As such, these 
two observations were deleted as outliers. 

 
The parameter estimates (with outliers deleted) 

are given in Table 2.  The 2R for this model is 94.4%.  As 
for the low folic acid experiment, the residuals for the high 
folic acid experiment appear to be reasonably random and 
normally distributed.  See Figures 11A and 11B.  

 
 
A 3D plot of the dose response surface is given in 

Figure 12.  This response surface is presented on the log 
scale using log10TMQ and log10AG2034 as the predictor 
variables.  The surface is normalized by dividing all 
predicted mean values by the estimate for Econ.  An 
isobologram plot of the normalized dose-response surface 
is shown in Figure 13, with isoboles for 0.9 to 0.2.  An 
isobole of 0.1 is not shown because the ( )TMQB p  values 

are greater than 0.1 for all TMQp  proportions.  (Also, note 
that all values of B in Figure 10A are greater than 0.1.) 
 
4.  NONLINEAR BLENDING ANALYSIS 
 
4.1. Strong nonlinear blending 

The NLB plots in Figures 15 and 17 show how 
the change in the fraction of TMQ affects the mean 
response.  Such plots need to be made for a variety of total 
dose values, as the nature of NLB curves may change for 
different total dose levels.  In addition, further insight may 
be obtained by also viewing from an alternative dose 
response perspective.  This perspective is to create plots of 
a dose response curve for a number of fixed-dose-ratio rays.  
Such (alternate nonlinear blending) plots can be distilled 
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Figure 6. Plots of logistic model parameter estimates (B, 
Hill slope, & log10IC50) vs. the proportion of TMQ (low 
folic acid experiment). 

 
from the dose response surface based upon the mMW 
model, by "slicing" the response surface along these rays.  
As a reference, each combination-drug dose-response curve 
can be plotted in an overlay plot with the two single-drug 
dose-response curves.  Such plots (shown in Figures 14 and 
16) provide a view of how the mean response changes with 
the total amount of drug in combination.  One should make 
such overlay plots for various proportions of one of the 
drugs.  These graphical analyses are illustrated in the two 

subsections below for the low and high folic acid 
experiments, respectively. 
 
4.2. Low folic acid experiment  

Based upon the mMW model in section 3.2, nine 
dose-response NLB plots are shown in Figure 14 
corresponding to the proportions of TMQ from 0.1 to 0.9 
by 0.1.  The dose response curve corresponding to the 
combination along the ray is in red.  The reference curves 
corresponding to TMQ alone and AG2034 alone are given 
by the curves in gray and black, respectively.  From Figure 
14, one can see that variations in the fraction of TMQ 
change the slope of the combination-drug dose-response 
curves, but real no improvement in efficacy or potency 
appears to exist.  It is evident that TMQ alone provides the 
best dose response curve. 

 
 NLB can also be assessed for various fixed total 

doses as in Figure 15.  Nine total doses from 0.0005 
micromolar to 0.005 micromolar (equally spaced on the log 
dose scale) were chosen based upon the contour range in 
Figure 9.  From Figure 15, one can also see that there is 
virtually nothing to be gained from an efficacy or potency 
perspective by blending AG2034 with TMQ.  For the total 
dose levels of 0.0037 micromolar and 0.005  micromolar, 
some drug blends appear to do about as well as 100% TMQ, 
but really no better.  Hence, it appears that the addition of 
AG2034 tends to, more or less, dilute the TMQ.  This is 
because the positive interaction of TMQ and AG2034 is not 
sufficiently strong enough to overcome the diluting effect 
of replacing some of the TMQ molecules with AG2034 
molecules, at the total doses studied in this experiment. 

 
For each of the nine total dose levels in Figure 15, 

a confidence set of TMQ proportions associated with the 
minimum mean response can be computed using the 
method of Peterson et al. (27).  The confidence sets are given 
in Table 3.  Note that some of these confidence sets are single 
points or the union of disjoint sets, as for example, total doses 
0.0012 micromolar and 0.0028 micromolar, respectively.  A 
confidence set consisting of a single point is possible for 
minimizations (or maximizations) for a constrained parameter, 
such as a proportion which must be in the interval [0, 1].  A 
confidence set that does not contain the boundary points 0 or 1 
means that a minimum mean response exists only for a mixture 
of the two drugs, thereby implying strong NLB in a 
statistically significant way. Likewise, a confidence set 
containing either boundary point, 0 or 1, indicates that strong 
NLB may not exist at the total dose amount in question. The 
nine confidence sets were adjusted using the Bonferroni 
criterion to provide a simultaneous coverage rate of at least 
95%.  As one can see from Table 3, strong NLB was only 
evident (in a statistically significant way) for the lowest dose 
examined, 0.0005 µM.  

 
From Table 3 one can also see, from an in-vitro 

efficacy standpoint, that there is little or no statistical 
evidence to blend AG2034 with TMQ.  Of the nine total 
doses, only the lowest total dose, 0.0005 micromolar, has a 
confidence set for minimizing TMQ proportions that does 
not contain 0 or 1.  However, even the upper bound of this 
confidence set is very close to 1.
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Figure 7. Plot of standardized residuals (A.) and histogram of standardized residuals (B.) for (molar-unit) Minto-White model 
(low folic acid experiment). 
 

 
 
Figure 8. Normalized mean dose response surface for combinations of TMQ and AG2034 (low folic acid experiment). 
 
4.3. High folic acid experiment 

 Based upon the mMW model in section 3.3, nine 
dose-response NLB plots are shown in Figure 16 
corresponding to the proportions of TMQ from 0.1 to 0.9 by 
0.1.  The dose response curve corresponding to the 
combination along the ray is in red.  The reference curves 
corresponding to TMQ alone and AG2034 alone are given by 
the curves in gray and black, respectively.  One can see from 
Figure 16, that when TMQ is only 10% of the combination, the 
dose response curve along that fixed-dose-ratio ray is already 
close to the one for 100% TMQ.  In addition, one can see that 
the dose response curve for TMQ alone is superior for TMQ 
proportions between 0.1 and 0.6; for proportions 0.7 to 0.9 the 

gray and red curves virtually overlap. From Figure 16, it is 
evident that TMQ alone provides the best dose response curve. 

 
The NLB plots in Figure 17 show that blending 

in TMQ decreases the mean response for all of the nine 
dose levels (equally spaced on the log dose scale) from 
0.005 micromolar to 0.05 micromolar so that 100% of 
TMQ is the optimal blend for each total dose level.  As 
with the low folic acid experiment, for the high folic acid 
experiment, it appears that the addition of AG2034 simply 
dilutes the TMQ.  This is because the (Loewe) "synergistic" 
interaction of TMQ and AG2034 is not sufficiently strong 
enough to overcome the diluting effect of replacing some 
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Figure 9.  Isobologram contour plot of normalized dose response surface for low folic acid experiment.  
 

of the TMQ molecules with AG2034 molecules, at the total 
doses studied in this experiment. 

 
Using the approach in Peterson et al. (27), one 

can show in a statistically significant manner that the 
optimal proportion of TMQ foreach of the nine total doses 
is 100% TMQ.  This is done by computing (Bonferroni 
adjusted) 95% confidence sets for each of the nine total 
doses.  In each case the confidence set was composed of the 
single point 1.  Hence, there is statistically significant 
evidence that for total dose amounts of 0.005 micromolar to 
0.05 micromolar blending in AG2034 only dilutes the 
efficacy of TMQ.  In other words, the AG2034-TMQ 
Loewe synergy (as shown by the isobologram plot in 
Figure 13) is not enough to overcome the diluting effect of 
the less potent compound AG2034.  

 
5.  ANALYSIS OF DOSE REDUCTION PROFILES 
 
5.1. Dose reduction profile curves 

In viewing the isobles in Figures 9 and 13, one 
may be able to see, that for some dose combinations, the 
levels of TMQ and AG2034 are lower than for the 
respective amounts of TMQ and AG2034 alone on that 
same isobole.  However, making this assessment from 
viewing the isobolograms is not graphically optimal.  For 
some isoboles in Figure 9 it is difficult to tell if such dose 
combinations exist.  A dose reduction profile (DRP) as 
described in section 2.3, on the other hand, makes such an 
assessment immediate.  This is because it is a direct overlay 
plot of respective (combination by single agent) dose ratios 

versus the proportion of one of the drugs in the 
combination. 

 
Also as mentioned in section 2.3, one can make 

large sample statistical inferences for 1r  and 2r using the 

delta method.  For the mMW model, ( ),TMQf p A , this can 

be done as follows.  Recall that /i i ir d D=  (i =1,2), where 

1d   and 2d are the doses for the combination where 

1 2d d+ = A and TMQp = 1p = ( )1 1 2/d d d+ .  (Here, TMQ is 
denoted by drug 1 and AG2034 by drug 2.) Suppose  y = 

( ), ; /TMQf p A Econθ , for some (normalized) mean 

response value, y, where θ  is the vector of regression 
model parameters in the mMW model.  Solving the 

( ), ; /TMQy f p A Econ= θ equation for A (for 

( ) /TMQB p Econ <y<1) yields A = ( ), ;TMQg p y θ , where 

( ), ;TMQg p y θ  equals 

 

( ) ( )
( )( )

( )1/
log10 5010

TMQ

TMQ

m p
IC pTMQ Econ yEcon

yEcon B p

−
 − 
 − 

. 

 
Note that A= 1D  when TMQp =1 and A= 2D  when 

TMQp =0.  Hence, 1D = ( )1, ;g y θ  and 2D = ( )0, ;g y θ .  

Thus 1D  and 2D  can be expressed as functions of y and θ , 
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Figure 10. Plots of logistic model parameter estimates (B, 
Hill slope, & log10IC50) vs. the transformed proportion of 
TMQ (high folic acid experiment). 

 
if A can be expressed as ( ), ;TMQg p y θ .  Furthermore, since 

1d  = TMQp A  and 2d = 2034AGp A = ( )1 TMQp A− , we can 

express 1d  as ( ), ;TMQ TMQp g p y θ  and 2d as 

( ) ( )1 , ;TMQ TMQp g p y− θ .  Hence one can use the delta 

method to obtain large sample confidence intervals or 
hypothesis tests about 1r  and 2r .  Note that because 1r  and 

2r  are bounded below by zero, it is better to make (delta 
method) inferences using 1log r  and   2log r , and then use 
anti-logs for the final expressions associated with 1r  and 

2r .  Confidence intervals and test statistics involving 1log r  
and 2log r  (using the delta method) can be easily obtained 
by PROC NLMIXED using the PREDICT statement.  

 
It may also be possible to construct simultaneous 

confidence bands about the underlying DRP curves in order 
to assess their uncertainty in a more complete fashion.  
However, this is left as a further research problem. 
 
5.2. Low folic acid experiment 

 From Figure 18 one can see that for all isobole 
contours, except possibly the ones equal to 0.5 or 0.6, the 
profiles exceed 1 for certain proportions of TMQ.  
However, one should also note that, by viewing the DRP 
plot one can observe that for TMQ proportions around 
0.25-0.3 the profiles corresponding to AG2034 and TMQ 
intersect.  It is these intersection points where both drugs in 
combination can be brought to the same ratio relative to 
their single drug dose level.  Such intersection points can 
be of interest if the corresponding ratio is small.  As can be 
seen in Figure 18, the profile intersection points are less 
than 0.5 for the isobole contours 0.2, 0.3, and 0.4.  This 
implies that better dose reduction for both drugs may be 
possible at higher efficacy levels for this combination of 
drugs. 

 
Table 4 shows the point estimates and large 

sample confidence intervals for 1r  and 2r at TMQp =0.25 for 
mean response isobole values from 0.2 to 0.9.  These 
confidence intervals were created as described above in 
section 5.1  The Bonferroni adjustment was performed 
across all sixteen confidence intervals to obtain 95% 
simultaneous confidence intervals.   It can be seen from 
Table 4 that, for isoboles from 0.2 to 0.7, the corresponding 

TMQr  and 2034AGr values are less than one in a statistically 
significant way. 
 
5.3. High folic acid experiment 

For the high folic acid experiment, Figure 19 
shows that the profile intersection points correspond to 
rather low ratios and quite low levels of TMQ for all of the 
eight isoboles from 0.2 to 0.9.  Hence, at a high folic acid 
level, only small amounts of TMQ are needed to make both 
dose ratios small. 

 
Table 5 shows that, even when TMQp  is only 1% 

of the total amount in combination, both dose ratios, TMQr  

and 2034AGr are noticeably small for all of the mean 
response isoboles from 0.2 to 0.9. 
 
6.  SUMMARY AND PERSPECTIVE 
 

The two data sets obtained from the low and high 
folic acid experiments are very nice examples of data
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Table 2.  Parameter estimates and standard errors for the (molar-unit) Minto-White model (high folic acid experiment) 
Logistic parameter form Hierarchical parameters Max. likelihood 

estimate 
Asymptotic standard error of 
the estimate 

B(p1) =linear intercept Bi=0.1363 0.002601 
 linear term Bl=-0.00757 0.002369 
m(p1) =linear intercept mi=-2.2211 0.07203 
 linear term ml=-0.2342 0.06490 
log10IC50(p1) = quadratic intercept lICi=-1.3502 0.009128 
 linear term lICl=-0.4135 0.006733 
 quadratic lICq=0.06748 0.005010 
Econ  Econ=1.1562 0.006812 
Power of the mean baseline variance 2σ = 0.01586 

0.000931 

 exponent φ  =1.4295 0.05919 

 
Table 3.  Simultaneous 95% confidence sets for the minimizing proportion of TMQ for fixed total doses (as given in Figure 15) 
for the low folic acid experiment 

Total dose (micromolar) Confidence Set 
0.0005 [0.87,0.97] 
0.00067 [0.88,1] 
0.00089 [0.90,1] 
0.0012 {1} 
0.0016 {1} 
0.0021 {1} 
0.0028 [ ] { }0.51, 0.62 1∪  

0.0037 [ ] { }0.42, 0.51 1∪  

0.005 [ ] { }0.38, 0.45 1∪  

 
Table 4.  Point estimates and simultaneous 95% confidence intervals (in parenthesis) for the dose ratios for various isobole levels 
for the low folic acid experiment.  Here, the proportion of TMQ is 0.25 

 Dose ratios for TMQp = 0.25 

Isobole 
TMQr  2034AGr  

0.2 0.29 
(0.23, 0.35) 

0.27 
(0.23, 0.32) 

0.3 0.36 
(0.31, 0.41) 

0.37 
(0.34, 0.41) 

0.4 0.41 
(0.37, 0.45) 

0.46 
(0.43, 0.49) 

0.5 0.46 
(0.41, 0.51) 

0.55 
(0.53, 0.57) 

0.6 0.51 
(0.45, 0.57) 

0.65 
(0.62, 0.68) 

0.7 0.57 
(0.49, 0.66) 

0.77 
(0.71, 0.83) 

0.8 0.65 
(0.53, 0.79) 

0.94 
(0.84, 1.07) 

0.9 0.79 
(0.60, 1.03) 

1.28 
(1.06, 1.55) 

 
Table 5.  Point estimates and simultaneous 95% confidence intervals (in parenthesis) for the dose ratios for various isobole levels 
for the high folic acid experiment.  Here, the proportion of TMQ is 0.01 

 Dose ratios for TMQp = 0.01 

Isobole 
TMQr  2034AGr  

0.2 0.045 
(0.039, 0.053) 

0.054 
(0.041, 0.071) 

0.3 0.041 
(0.035, 0.047) 

0.064 
(0.052, 0.079) 

0.4 0.039 
(0.034, 0.44) 

0.070 
(0.058, 0.84) 

0.5 0.037 
(0.033, 0.042) 

0.075 
(0.062, 0.090) 

0.6 0.036 
(0.031, 0.040) 

0.0794 
(0.065, 0.097) 

0.7 0.034 
(0.030, 0.039) 

0.084 
(0.067, 0.110) 

0.8 0.033 
(0.028, 0.038) 

0.090 
(0.069, 0.119) 

0.9 0.031 
(0.026, 0.036) 

0.100 
(0.070, 0.142) 
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Figure 11. Plot of standardized residuals (A.) and histogram of standardized residuals (B.) for (molar-unit) Minto-White model 
(high folic acid experiment). 
 

 
 
Figure 12.  Normalized mean dose response surface for combinations of TMQ and AG2034 (high folic acid experiment). 
 
from carefully planned experiments that do not skimp on 
information.  As such they allow researchers to build good 
dose-response models for the underlying drug interactions.  
It is clear that the levels of folic acid affect the interactions 
of AG2034 and TMQ.  At a high level of folic acid, TMQ 
and AG2034 appear to have a larger interaction effect than 
for the low folic acid level. 

 
From the perspective of strong NLB, both the 

low and high folic acid experiments show that, with regard 
to increased potency or efficacy, little or no synergy is 
gained by blending in AG2034 with TMQ at any of the 
total dose levels shown in Figures 15 and 17, respectively.  

This is supported for the most part by the confidence set 
method of Peterson et al. (27).  

 
On the other hand, it does appear that the 

blending of AG2034 and TMQ does offer excellent dose 
reduction potential for the high level of folic acid.  From 
the DRP plots in Figure 19 one can see that for each of the 
eight isoboles (from 0.2 to 0.9) blending in only a small 
amount of TMQ greatly reduces that amount of AG2034 
that is required for the same level of response as that of 
AG2034 alone.  For the high folic acid experiment (see 
Figure 19 and Table 5) there are dose combinations where 
both dose ratios, TMQr and 2034AGr , are small (e.g. in the 
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Figure 13. Isobologram contour plot of normalized dose response surface for high folic acid experiment.  
 

 
 
Figure 14. Nonlinear blending plots (dose response perspective) for low folic acid by proportion of TMQ. Key: Black line = 
AG2034 alone, Gray Line = TMQ alone, Red line= combination. 
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Figure 15. Nonlinear blending plots for low folic acid by total dose. 
 

 
 
Figure 16. Nonlinear blending plots (dose response perspective) for high folic acid by proportion of TMQ. Key: Black line = 
AG2034 alone, Gray Line = TMQ alone, Red line= combination. Note that for TMQ proportions of 0.7, 0.8, and 0.9 the red and 
gray lines virtually overlap.  
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Figure 17. Nonlinear blending plots for high folic acid by total dose. 
 

 
 
Figure 18. Dose reduction profile plots (low folic acid experiment).  The gray line (TMQ) is the ratio TMQ TMQ TMQ/r d D= , 

while the black line (AG2034) is the ratio AG2034 2034 2034/AG AGr d D= .  The red dotted line is a reference line for a ratio of 
one.  
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Figure 19. Dose reduction profile plots (high folic acid experiment).  The gray line (TMQ) is the ratio TMQ TMQ TMQ/r d D= , 

while the black line (AG2034) is the ratio AG2034 2034 2034/AG AGr d D= . 
 

neighborhood of 0.1 or less).  Since the Berenbaum index is 
TMQ 2034AGI r r= + , it follows that for some dose 

combinations on various isoboles, I is much less than 1.  
This would account for the statement of "super in-vitro 
synergy" mentioned in Faessel et al. (1).  If I < 1, then of 
course both TMQr and 2034AGr  are less than 1.  However, it 
is more informative to directly analyze each dose ratio 
separately.  

 
In conclusion, it is worth pointing out that the 

concept of strong NLB can be applied to dose-response 
surfaces even more complex than those shown in these case 
studies. Unlike Loewe synergy, the concept of nonlinear 
blending (NLB) can be applied to any combination drug 
response surface.  Varying relative potency, partial 
inhibitors, potentiation, and coalism pose no problem at all.  
Hence NLB offers a general approach to synergy that is 
needed for the wide variety of response surfaces that could 
occur with combination drug studies.  It is also worth 
noting that the presence of strong NLB implies the 
existence of Loewe synergy (but the reverse does not 
necessarily hold true, particularly for large differences in 
relative potency between the two drugs used in 
combination).  For further discussion, see Peterson and 
Novick (4).  Nonetheless, these case studies show 

(particularly for the high folic acid experiment) that even if 
strong NLB is not achieved, it may be possible for one or 
both of the (combination-to-single-agent) dose ratios to be 
quite small. This may be useful if it is desirable to use a 
drug combination to lower the levels of one or both of the 
drugs to lessen possible adverse reactions. 
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