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1. ABSTRACT 

 
For a long time the heart has been considered a 

terminally differentiated organ without any regenerative 
potential. The latter has been classically based on the 
terminally differentiated nature of cardiomyocytes and the 
absence of a pool of tissue-specific stem cells. This view 
has been radically changed due to the discovery of resident 
cardiac stem and progenitor cells in the adult mammalian 
heart. However, at minimum, 5 apparently different cardiac 
stem and/or progenitor cell types have been described so 
far. Thus, we have changed from a view of the heart as a 
static tissue to an organ with the highest number of tissue-
specific stem cell populations. Most likely, the different 
putative adult cardiac stem and progenitor cells represent 
different developmental and/or physiological stages of a 
unique resident adult cardiac stem cell. Notably, it is not 
yet known the origin of all these cells. A better 
understanding of the origin, biology and physiology of the 
myocardial stem and progenitor cells will impact the 
development of regenerative medicine as an effective 
therapy for heart disease and failure. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Despite the remarkable progress made in the 
treatment of cardiovascular diseases during the past half-
century, the fact remains that for many the available 
treatment is at best palliative. Meanwhile the increasing 
success in treating acute life-threatening ischemic cardiac 
diseases often results in an extended life for the patient but 
leaving a chronic condition (1). These chronic sequelae are 
frequently without effective treatment. Nowadays, there are 
at least 10 million patients with heart failure in European 
countries with prevalence in the general European 
population ranging from 0.4 to 2% (2). The prognosis of 
heart failure is uniformly poor if the underlying problem 
cannot be rectified. Half of patients carrying a diagnosis of 
heart failure will die within 4 years, and in patients with 
severe heart failure >50% will die within 1 year. Indeed, 
once congestive heart failure emerges, no current therapies 
can improve long-term cardiac function (3) and the only 
available alternative is organ transplantation, with all the 
logistic, economic and biological limitations associated 
with this intervention (4). The root problem for all these 
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patients is a functional deficit arising from a loss of 
myocardial contractile cells and an inadequate coronary 
circulation to nurture those remaining, leading to the 
pathological cardiac remodeling responsible for the 
development of heart failure (5).  

 
A goal of cardiovascular research for the past 

decade has been to find a method of replacing the 
contractile cells (cardiomyocytes) lost through ageing 
and/or one or more myocardial infarctions, so as to prevent, 
or reverse, the pathological remodeling of the myocardium.  
With the explosion of interest for the new exciting field of 
regenerative medicine, stem cells are widely regarded as 
“the magic bullet” to repair the damaged myocardium (6). 
Indeed, stem cell therapy is fast becoming an attractive and 
highly promising treatment for heart disease and failure. 
Research into its design and application is currently at the 
very cutting edge of biomedical research. Current clinical 
trials are mainly using bone marrow cells of different 
origins as the therapeutic agent (6,7) and scientifically the 
race is still on to find the ‘best’ type and source of cell to 
reconstitute the myocardium and improve function 
following myocardial damage. 

 
Until recently, the adult mammalian heart has 

been considered a post-mitotic terminally-differentiated 
organ, precluding any possibility for intrinsic regeneration. 
Thus, a myriad of exogenous cell types have been 
experimentally evaluated to test their capacity to replace 
lost cardiomyocytes and recover the myocardial tissue (6-
8). Embryonic stem cells, fetal myocytes, skeletal 
myoblasts, endothelial progenitor cells, bone marrow-
derived cells, including mesenchymal and hematopoietic 
stem cells, amniotic fluid-derived stem cells, and adult 
testis stem cells have all been transplanted into the post-
infarcted myocardium of experimental animal models in 
order to generate new cardiomyocytes, vascular structures, 
or both (6). Despite the encouraging results obtained from 
experiments carried out in small animals, the outcomes 
from clinical trials have been modest. Recently, a new 
population of multi-potent progenitor cells (MPCs) present 
in peripheral blood has been described (9). These cells (s) 
have proprieties of stem cells and appear to display a 
primitive phenotype with molecular and functional 
characteristics similar to human embryonic stem cells (9).  

 
The identification of a few small cardiomyocytes 

undergoing mitosis in the normal adult heart of rats, mice 
and humans has challenged the worldwide accepted 
paradigm that considered the heart a post-mitotic organ, 
without any intrinsic regenerative potential (5). 
Undoubtedly, the heart is mainly composed of terminally-
differentiated cells, with cardiomyocytes unable to re-enter 
the cell cycle under any known physiological or 
pathological stimuli (10). Recently, by monitoring carbon 
14 emitted from Cold War-era nuclear bomb tests, 
Bergmann et al. obtained strong evidence for 
cardiomyocyte renewal in humans (11). Myocyte turnover 
and replenishment appears to be the product of the 
activation and differentiation of a pool of resident cardiac 
stem and progenitor cells. Indeed, these cells, are spread 
throughout the myocardial tissue in the four cardiac 

chambers, can give rise to functional cardiomyocytes in 
vitro and in vivo and owing to genetic labeling and 
transitional tracking of differentiation it is now strongly 
documented that the newly born cardiomyocytes observed 
in the adult mammalian heart are the product of resident 
cardiac stem cell (CSC) differentiation (12, 13). 
 

The first report of mammalian CSCs by Nadal-
Ginard, Anversa and colleagues in 2003 (14) was rapidly 
followed by other works (15-20), which described various 
surface markers for the identification and the isolation of 
cells with stem and progenitor properties in the adult 
mammalian heart, including human. Interestingly, each 
reporting group has placed emphasis on different markers 
which made their cell “unique” and different from those 
previously described. Unfortunately, the use of these 
markers, each supposedly identifying a specific stem cell, 
created confusion in the scientific community regarding 
which cell is the real cardiac stem cell and what is its 
origin. The most common misunderstanding originates 
from the uncertain difference between CSCs and progenitor 
cells. Indeed, although some authors have grouped cardiac 
cells proven to have stem and/or progenitor features under 
the same acronym, there is an exact difference between the 
two cell types. Stem cells, as defined by Potten and 
Loeffler, are “undifferentiated cells capable of 1) 
proliferation, 2) self-maintenance, 3) production of large 
number of differentiated progeny, 4) regeneration of the 
tissue after injury, and 5) flexibility in the use of these 
options” (21).   
 

According to this definition, CSCs are 
clonogenic, self-renewing and multipotent, giving rise to a 
minimum of three different cardiogenic cell lineages (i.e. 
myocytes, smooth muscle and endothelial cells) both in 
vitro and in vivo and exhibit significant cardiac tissue 
regenerative capacity when injected into infarcted rat 
myocardium (14). On the other hand, a cardiac progenitor 
cell is an immature but already committed myocardial cell 
that can proliferate and mature into its respective precursor 
which, in turn, develops into one of the main cardiac cell 
lineages (22).  

 
Here we will overview the latest advances in the 

identification and characterization of the different stem and 
progenitor cell populations reported to be present in the 
neonatal and adult mammalian heart, including the human, 
and the possibility that some of these cells are probably 
phenotypic variants of a “master” CSC.   
 
3. RESIDENT CARDIAC STEM CELLS IN THE 
NEONATAL AND ADULT MAMMALIAN HEART 

 
Several lines of evidence have been obtained in favor of 
adult myocardium regeneration. Quaini et al. (23) reported 
an unexpected form of chimerism after the transplantation 
of hearts from female donors into male recipients. They 
identified a high number of “primitive” cells of host origin 
that migrated into the transplanted heart and generated not 
only new cardiomyocytes but also endothelial and smooth 
muscle cells. This incontestable evidence provides a 
conclusive affirmative answer to the
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Table 1. Characteristics of resident cardiac stem and progenitor cells identified in the neonatal and adult heart 

PHENOTYPE SPECIES In vitro STEM CELL 
CHARACTERISTICS 

In vivo CARDIAC 
REGENERATIVE 
POTENTIAL  

C-KIT 

- Adult rodent14 
- Neonatal and Adult mouse17, 30, 31 
- Post-Natal and Adult human17, 36, 

38 
- Adult Porcine27, 28 

- Yes 
- Yes 
- Yes 
- Yes 

- Yes 
- Yes17, 31 
- Yes 
- Yes 

SCA-1 

- Neonatal and Adult mouse15, 16, 39 
 
 
 
 
- ? Adult human (Sca1-like)40 

- Self-renewing, colony 
formation39, 
cardiomyocyte15,16,39 and 
osteogenic and adipogenic 
differentiation16. 
 
- Cardiomyocyte 
differentiation 

- Yes15, 39 
 
 
 
 
- Yes41 

SP - Neonatal and Adult mouse18-20, 42 

- Cardiosphere formation20 
- Cardiomyocyte18-20,42, 
Neuron and Glia 
differentiation20  

- Yes42 

Isl-1 - Post-natal Mice, Rodent and 
Human24 

- Cardiomyocyte 
differentiation ND 

Epicardial progenitors  
C-KIT 

- Adult mouse and human60 
 

- Cardiac and vascular 
precursors 

ND, but proliferation and 
differentiation into cardiac 
and vascular lineages in the 
epicardium after AMI. 

SP denotes side population; ND denotes Not Determined;  AMI denotes acute myocardial infarction. 
 
question of whether or not the heart has regenerative 
potential. In the same study, cells with similar 
characteristics were also found in the normal myocardium 
(23). Based on these data, a variety of studies have 
established that the heart contains a reservoir of stem and 
progenitor cells. Indeed, CSCs have been isolated from 
different animal models by selection based on c-kit, Sca-1, 
and/or Abcg2 (MDR-1) expression. Because the 
“stemness” of a cell is not linked to a single specific 
biological marker, many reporting groups have 
independently described a “unique” CSC or progenitor cell 
that has demonstrated to be different from those previously 
reported, showing a combination of different stem-
associated cell surface markers. With the exception of the 
Islet-1 cells, which decrease dramatically in number into 
adulthood (24) and seem to be remnants from the cardiac 
primordia (25), the identification of different cardiac stem 
progenitor cells by expression of other membrane markers 
(see Table 1) suggest that these phenotypically different 
cells are likely to be phenotypic variations of a unique cell 
type. It is highly unlikely that a tissue which until recently 
was believed to lack any self-renewal capability is indeed 
populated by several different types of tissue-specific stem 
cells.  
 
3.1. c-kitpos cardiac stem cells (CSCs) 

A distinct population of resident c-kit positive (c-
kitpos) CSCs were first identified and characterized in 
rodents (14). Importantly, these cells, identified by their 
negativity for the markers of the hematopoietic lineage (i.e. 
CD45; Lineage negative (Linneg)) but positive for c-kit, the 
tyrosine kinase receptor for stem cell factor, are self-

renewing, clonogenic and, at least, multi-potent giving rise 
to the three main cardiogenic cell lineages: myocytes, 
smooth muscle and endothelial cells. When grown in 
suspension, CSCs form spherical multi-cellular clusters of 
hundreds of cells dubbed ‘cardiospheres’ because of their 
similarity to the pseudoembryoid bodies yielded by neural 
stem cells (26). Out-growing cells from these spheres 
express biochemical markers of myocytes, smooth muscle 
and endothelial cells (14, 22). c-kitpos CSC-derived 
cardiospheres, when placed in a specific medium with 
cardiopoietic factors, differentiate into functional beating 
cardiomyocytes in vitro (Figure 1). Additionally, to 
determine whether these cells were able of acquiring 
functional competence in vivo, after being BrdU- or 
genetically-tagged, c-kitpos cells were injected into the 
border zone of an experimentally produced myocardial 
infarction (14). These labeled cells formed a band of 
regenerating myocardium composed of newly-formed 
cardiomyocytes and vascular structures within the infarcted 
region, which significantly contributed to improving 
cardiac function (14). Moreover, this pool of resident c-
kitpos CSCs can be recruited and activated by growth 
factors to regenerating myocardium after ischemia (27, 28) 
and has pro-survival effects on adult rat cardiomyocytes in 
vitro (29).  
 

Since the first identification of resident CSCs in 
the adult rodent heart, different groups have proven the 
existence of cells with similar characteristics and 
regenerative potential in other species. Interestingly, it has 
been shown that adult human heart has a population of c-
kitpos myocardial cells with analogous characteristics to
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Figure 1. Light microscopy images showing mouse c-kitpos 
CSC-derived cardiospheres (CS) maintained in 
undifferentiated conditions (A) and their myogenic 
differentiation into beating CS when stimulated with 
specific cardiopoietic factors (B). 
 

 
 
Figure 2. Cytospin preparation and immunofluorescence 
staining of human c-kitpos CSCs analyzed by confocal 
microscopy. 

CSCs found in rodent and murine hearts. Indeed, Messina 
et al. (17) isolated cardiosphere-forming c-kitpos cells from 
biopsy samples of human myocardium. These cells were 
cloned with efficiency similar to rodent CSCs and when 
injected into immunodeficient animals after myocardial 
infarction they were able to regenerate functional cardiac 
tissue (17). In addition, the density of Linneg c-kitpos CSCs 
in the adult human and rodent myocardium is similar: 1 cell 
per approx. 1,000 myocytes or approx. 50,000 CSCs per 
gram of tissue (32). Furthermore, their existence and 
activity has been demonstrated in physiological or 
pathological conditions (33-37).  
 

Recently, we have confirmed and expanded these 
results. Indeed, we have isolated c-kitpos human CSCs 
(hCSCs) from myocardial surgical or percutaneous biopsy 
samples from each of the four cardiac chambers of patients 
with ischemic and non-ischemic heart disease by explant 
culture technique and enzymatic digestion (Figure 2) (38). 
The c-kitpos hCSCs are self-renewing and clonogenic, and 
their capacity to generate clones from a single cell appears 
to be similar to their rodent counterparts. Many 
experiments have demonstrated that all the hCSCs clones 
express high levels of c-kit and MDR-1 and they score 
negative for the hematopoietic and endothelial markers 
CD45, CD34 and CD31. These cells formed cardiospheres 
and under adequate stimuli differentiated in vitro into 
cardiomyocytes, vascular smooth muscle and endothelial 
cells. Many of these cloned hCSCs have undergone more 
than 60 passages so far without evidence of “crisis” or 
culture senescence. Importantly, when injected into the 
infarcted heart of nu/nu rats, they form histological and 
functional human myocardium and vascular structures. At 
the level of analysis performed so far, there are no 
detectable differences among the isolated cells that can be 
attributed to the cardiac chamber of origin (38). Thus, c-
kitpos hCSCs can be successfully and routinely isolated 
from small myocardial samples of the four cardiac 
chambers, expanded to large numbers and maintained 
undifferentiated and/or differentiated in culture as desired. 
Different isolation protocols are viable (36, 38) however, 
from the progeny of a single cell, it is possible to obtain > 
1x1010 differentiation-competent hCSCs (38).  
 

In recent reports, transgenic mice in which EGFP 
expression is placed under control of the c-kit locus have 
been used to obtain further data on c-kitpos cardiac cells (30, 
31). These data showed that the myocardial c-kit-EGFPpos 

cell population increases in early postnatal growth as the 
heart expands in size, but declines rapidly in the first weeks 
after birth (30, 31). c-kit-EGFPpos cells isolated from 
neonatal hearts showed evidence of commitment to all 
three cardiac lineages and several days after plating in 
specific media, many c-kit-EGFPpos cells began to 
spontaneously contract (30). After myocardial cryo-injury to 
adult c-kitBAC-EGFPpos mice, it was reported that myocardial c-
kit expression increased significantly at 7 days after injury and 
declined within a 4 week period to baseline levels. Upon closer 
examination, c-kit-EGFPpos cells were contributing to the 
endothelium and smooth muscle layer of blood vessels in the 
cryo-injured zone and fibrosis in the border zone. Modest c-
kit-EGFPpos expression was also observed in striated mature 
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cardiomyocytes in the border zone (30). Using a different 
approach, the group of Sussman (31) also studied the response 
of c-kitpos- cells during normal heart growth and following 
myocardial infarction induced by permanent coronary artery 
occlusion in adult transgenic c-kit-EGFPpos mice. This study 
also reported elevated c-kit expression (approx. 5-fold) in the 
infarcted and border regions at 10 days after injury, however 
contrary to Tallini et al. (30) they showed c-kit-EGFPpos cell 
recruitment to the area of injury, with differentiation of c-
kit-EGFPpos cells into the 3 main cardiac lineages: 
cardiomyocytes, smooth muscle and endothelium (31).The 
reason for the discrepancy between these 2 studies could be 
due to the choice of myocardial injury model. 
Unfortunately, as the construct used to develop both the c-
kit-EGFP transgenic mice labeled all the c-kitpos cells 
including bone-marrow derived cells, no firm conclusion 
can be drawn from these data on the actual genetic status, 
mechanism of differentiation and commitment, and 
biological potential of resident c-kitpos CSCs. 
 
3.2. Sca-1pos cardiac progenitor cells  

A resident population of progenitor cells has been 
isolated from the mouse heart based on expression of the 
stem cell antigen 1 (Sca-1) (15, 16). These adult-heart 
derived Sca-1pos cells were described as being c-kitneg in 
one case (15) but c-kitpos in another (16). In the case of the 
former, Sca-1pos cells also expressed Tie-2, Ang-1, and 
CD31, which might identify a primitive hemangioblast or 
its precursors (15). When treated with 5'-azacytidine in 
vitro, these cells expressed Nkx2.5, beta-myosin heavy 
chain (beta-MHC), alpha-myosin heavy chain (alpha-
MHC), cardiac Troponin I and sarcomeric alpha-actin, 
documenting their cardiomyogenic commitment (15). 
Furthermore, when injected into the mouse heart following 
ischemia/reperfusion injury, adult-heart derived Sca-1pos 
cells contributed to 1.5% new cardiomyocytes in the infarct 
and border zone (15). A similarly enriched population of 
adult cardiac Sca-1pos cells isolated from the hearts of 10-
12 week old mice formed beating cardiomyocytes with 
spontaneous calcium transients upon oxytocin treatment 
(16). Moreover, these Sca-1pos cells also showed osteogenic 
and adipogenic differentiation in vitro.  Interestingly, this 
Sca-1pos population was also positive for c-kit (16). 
However, multi-potency of the adult Sca-1pos cells remains 
to be proven in cloned cell assays. More recently, Matsuura 
and colleagues (39) produced limited dilution clonal 
colonies of Sca-1pos cardiac progenitors from adult murine 
hearts (clonal efficiency of 0.1%), which could be 
expanded for more than 500 population doublings. Over 
culture time these clonal Sca-1pos cells expressed the 
cardiac precursor markers, Nkx2.5 and GATA4, and 
cardiomyocyte differentiation genes and proteins, beta-
MHC and sarcomeric alpha-actinin. When clonal Sca-1pos 
cells were transplanted as monolayered sheets over the 
infarcted mouse heart, 4 weeks later there was improved 
cardiac function due to the formation of approximately 0.6 
× 105 new cardiomyocytes which amounted to 5% of the 
entire hearts cardiomyocyte compliment (39). 
 

Investigations have also begun with human 
myocardium. Smits et al. (40) have validated a protocol for 
the isolation of Sca-1-like cardiac progenitor cells from 

human cardiac surgical waste pieces (i.e. the auricle: 
appendix of the atrium). Although the human equivalent of 
murine Sca-1 is not yet known, it is postulated that the 
antibody may cross-react with an unknown protein, still 
leading to a homogenous cell population (40). These 
human derived Sca-1-like cells give rise to functional 
cardiomyocytes in vitro and generated new cardiac tissue 
consisting of human cardiomyocytes and blood vessels 
when injected intra-myocardially after a myocardial 
infarction in the mouse heart (41). Interestingly, these Sca-
1 like cells were characterized as being c-kit low, yet 
negative for CD45 and CD34 and positive for CD31 and 
CD105 (40). 
 
3.3. Side population-Abcg2pos cardiac progenitor cells 

Recently, the side population (SP) of cardiac cells 
within the Sca-1pos fraction has been introduced as a 
reliable marker to identify subpopulations of cells with 
stem/progenitor cell properties in the developing and adult 
murine heart (18-20, 42). These cells are best characterized 
by the ability to efflux Hoechst 33342 dye mediated by a 
member of the family of ATP-binding cassette (ABC) 
transporter, Abcg2 (18). Whether the cells present in pre-
natal and post-natal life represent the same or different cell 
populations remains unaddressed. Pfister et al. (19) have 
reported that among cardiac SP cells, the greatest potential 
for cardiomyogenic differentiation resides in the 
Sca1posCD31neg population, which are capable of both 
biochemical and functional cardiomyogenic differentiation. 
Tomita et al. (20) observed that cardiac SP cell fractions 
from neonatal and adult mice hearts (heterogeneously 
positive for c-kit, Sca-1 and CD34) expressed nestin and 
Musashi-1, markers of undifferentiated neural crest stem 
cells. These cells formed cardiospheres, which went onto 
differentiate into neurons, glia of CNS and PNS lineage (in 
vitro and in vivo) and beating cardiomyocytes (in vitro). 
Indirect evidence from Cre/lox transgenic mice also 
supports that these SP- cardiospheres were derived from 
neural crest–originated cells present within the myocardium 
(20). Oyama et al. (42) documented that SP cells isolated 
from neonatal rat hearts and treated with oxytocin 
expressed cardiac specific genes and proteins and showed 
spontaneous beating. Furthermore, these SP cells 
significantly migrated and homed to the injured 
myocardium after intravenous injection and differentiated 
into cardiomyocytes, endothelial and smooth muscle cells 
(42). Nevertheless, direct and definitive proof that adult 
cardiac SP cells contain clonogenic, self-renewing and 
multi-potent cells is still missing, as is whether they exhibit 
regenerative potential in vivo. However, Martin and 
colleagues proved that Abcg2 expression regulates the 
proliferation state of cardiac SP cells in response to murine 
myocardial cryo-injury (43). 
 
3.4. Homebox gene Islet-1pos cardiac progenitor cells 

A population of undifferentiated cardiac cells 
expressing markers different from those described above 
has also been identified (24, 25). These cells are remnants 
of cells present since the embryonic life in the heart fields 
and anterior pharynx (25). These cells express the homebox 
gene Islet-1 (Isl-1). They are most commonly located in the 
outflow tract, in the atria, and throughout the right 
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ventricle, in agreement with the embryonic contribution of 
the secondary heart field (SHF) (25). Nonetheless the 
number of these cells dramatically falls in the first few 
weeks of post-natal life (24) and a small number of Isl-1 
positive cells are present in the fetal and early postnatal 
heart (25±7 Isl-1 cells in the left ventricle of a 1 day old rat; 
Ref 24) of rodents and humans. These cells have been 
proposed to represent residual SHF cells that identify a 
resident progenitor cell population potentially contributing 
to growth of the heart (24). Lineage tracing studies and 
purification of Isl-1pos progenitor cells from the early 
embryo or post-natal heart have shown their self-renewal 
capacities and ability to contribute to multiple 
cardiovascular cells of distinct lineages, including 
cardiomyocyte, conduction system cells, endothelial and 
smooth muscle lineages in vivo and in vitro (24, 44, 45). 
Recently, Bu et al. (46) more closely analyzed the Isl-1pos 
progenitor cells in the fetal human myocardium. Similar to 
their fetal rodent counterparts, human Isl1pos progenitor 
cells, tagged by a Cre/Lox system, are self-renewing, 
clonogenic and multipotent giving rise to the three major 
cardiac lineages, i.e. cardiomyocytes, smooth muscle and 
endothelial cells (46). At the early stage of human 
cardiogenesis, these cells are Isl-1pos/Nkx2.5neg/KDRneg. 
During different periods of development, Isl-1 is expressed 
in a family of partially committed progenitors, that 
depending on their stage of differentiation, are positive for 
Nkx2.5, KDR and also Wilms Tumor Gene (WT1); 
identifying the epicardial lineage (46). The multi-
potentiality capacity of these progenitors to engraft in the 
heart and to regenerate lost myocardium has not been tested 
(47). Moreover, whether the signaling pathways regulating 
the Isl-1pos progenitor cells during development and in the 
early embryo also regulate this population in the adult heart 
remains to be elucidated. In particular, Wnt/beta-catenin 
signaling stimulates proliferation of isolated Isl-1pos cells 
(46, 48, 49), and Notch signaling appears to block 
differentiation and allows expansion of activated cardiac 
precursor cells in the failing heart (49). These molecular 
data should lay the foundations for ascertaining an 
applicable technique to isolate, maintain and trigger 
proliferation and differentiation of these cells for clinical 
application. 
 
4. CARDIOGENESIS AND EPICARDIAL 
PROGENITOR CELLS 

 
The mammalian heart develops through a series 

of carefully orchestrated events. Two different mesodermal 
heart fields contribute to the development of the heart in a 
temporally and spatially specific manner. The “first” heart 
field (FHF) derives from cells in the anterior lateral plate 
mesoderm. These cells form a primitive heart tube and 
contribute to populate the left ventricle, right ventricle, and 
inflow region of the heart. More recent studies indicate that 
the heart tube derived from the FHF may predominantly 
provide a scaffold upon which cells from the “second” 
heart field (SHF) migrate and build the requisite cardiac 
chambers (50). The SHF is marked by the expression of Isl-
1, Tbx1 and the growth factors Fgf8 and Fgf10 (25, 51, 52). 
Isl-1-expressing SHF progenitors contribute to 
cardiomyocytes that ultimately reside in the outflow tract 

(OFT), right ventricle, and inflow region. The left ventricle 
and OFT are therefore mostly exclusive derivatives of the 
FHF and SHF, respectively. (25, 53, 54). Despite these 
differences, the FHF and SHF are contiguous in the early 
embryo, and recent studies suggest that FHF cells 
transiently express genes that continue to be expressed in 
the SHF, including Isl-1 (55). Previous studies in avian 
species have demonstrated that the pro-epicardium (PE) 
and/or epicardium provide the heart with non-myocardial 
cells that are necessary for a complete and correct cardiac 
development. These studies showed that the PE and/or 
epicardium are a source for coronary vascular progenitors 
and cardiac fibroblasts (56-58). The epicardium has an 
extra-cardiac origin. In fact, the primitive epicardial tissue, 
also known as “epicardial mesothelium”, is formed by a 
monolayer of epithelial cells that originates from a cluster 
of cells derived from the septum transversum in 
mammalians and located close to the liver primordium in 
other vertebrates. This epicardial mesothelium covers the 
outer edge of the premature heart and the epicardial cells 
fill the so-called sub-epicardial space with a dense layer of 
extracellular matrix. After a process known as epithelial-to-
mesenchymal transition of the epicardial mesothelium, a 
pool of these epithelial cells migrate into the subepicardium 
space where they generate a population of epicardially-
derived cells (EPDCs), which have the features of 
pluripotent stem cells (59).  

 
Recently, the presence of c-kitpos cells in the fetal 

and adult human and murine epicardium has been reported 
(60). These cells are also positive for CD34, Sca-1 and 
MDR-1, but negative for CD45 and CD31. Based on these 
findings, the role of c-kitpos epicardial progenitor cells in 
the process of adult myocardium repair was tested. The 
number of epicardial c-kitpos cells increases in the 
epicardial compartment after inducing myocardial 
infarction in a murine model and the myocardial infarction 
provides the environment to induce their differentiation 
into a myocardial, endothelial and smooth muscle 
phenotype within the epicardial and subepicardial regions 
(60). Moreover, treatment of adult mouse and human 
epicardial explants with thymosin beta-4, a G-acting 
monomer binding protein which is implicated in 
reorganization of the actin cytoskeleton, stimulated 
extensive outgrowth of cells that differentiated into 
fibroblasts, endothelial and smooth muscle cells (61).  
 

It is widely known that the epicardial cells in the 
embryo that migrate from the PE are characterized by the 
expression of the product of WT1, which plays a pivotal 
role in normal heart development. Moreover, it has been 
demonstrated that WT1 is expressed in PE and epicardium, 
but not in myocardium (62). Mouse embryos with 
homozygous WT1 null alleles (WT1 -/-) fail to develop 
several organs like kidneys, gonads, spleens and adrenal 
glands, and they exhibit severe defects in mesothelial tissue 
(63, 64). Importantly, WT1-/- embryos show an impaired 
developing and extremely thin myocardium, which 
sometimes consist of no more than a single layer of cells 
(63, 64). It has been shown that epicardial cells migrate 
from the PE and spread over the surface of the heart. A 
subset of epicardial cells turns into a mesenchymal 
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phenotype, migrates into the subjacent myocardium and 
differentiates mostly into smooth muscle cells and, a 
minority into endothelial cells, crucial in the development 
of coronary vasculature (65). Surprisingly, Pu’s team (66) 
demonstrated that WT1 positive epicardial cells not only 
give rise to smooth muscle and endothelial cells, but also 
significantly contribute to cardiomyocyte formation (7-10% 
ventricular and 18% atrial) during normal cardiogenesis 
(66). This group analyzed the expression of cardiac genes 
Nkx2.5 and Isl-1 in the WT1 positive PE/epicardial cells. 
At the early stage of mouse heart development, Nkx2.5 and 
WT1 were expressed in adjacent cells, but not co-
expressed, suggesting that Nkx2.5 and WT1 could be 
expressed sequentially, or just transiently co-expressed. In 
the same way, they demonstrated a robust contribution of 
Isl-1-expressing precursors to the WT1 positive cells in PE 
showing that WT1 and Isl-1 were expressed in adjacent 
regions and a subset of cells were positive for both 
markers. These data propose that PE/epicardial WT1 
positive cells originate from progenitors that express 
Nkx2.5 and Isl-1 suggesting that they could share a 
common precursor with the widely known multi-potent 
cardiovascular progenitors (44, 66). Accordingly, another 
group led by Sylvia Evans (67), identified a population of 
Tbx18-expressing epicardial progenitors that contribute to 
cardiomyocyte formation in the ventricular septum, atria 
and ventricular wall. Moreover, these cells give rise to 
cardiac fibroblasts and coronary smooth muscle cells, but 
not endothelial cells (67). It is clear that there are still many 
questions regarding the biology of the epicardial 
progenitors, but the present findings propose these cells 
could be a possible source for cardiac regeneration and 
repair. 
 
5. CARDIAC STEM AND PROGENITOR CELLS: 
THE SAME OR DIFFERENT CELLS? 
 

For a long time the heart has been considered a 
terminally differentiated organ without any regenerative 
potential. The latter has been classically based on two lines of 
evidences: first, the cardiomyocytes, the main cell type of the 
adult heart, are terminally differentiated cells unable to divide 
under any physiologic or pathologic stimuli and second, the 
absence of a pool of resident tissue-specific stem cells. This 
view has been radically changed by the discovery of resident 
cardiac stem and progenitor cells throughout the atria and 
ventricles of the adult mammalian heart. However, as above 
described, at minimum, 5 apparently different cell types with 
tissue-specific characteristics of stem and/or progenitor cells 
have been described in the adult heart so far. Thus, we have 
changed from a view of the heart as a static tissue to one of an 
organ with the highest number of tissue-specific stem and 
progenitor cell populations. As the latter is improbable to be 
proved correct, aside from Isl-1pos cardiac progenitor cells, it is 
likely that the different putative adult cardiac stem and 
progenitor cells reported so far, do not represent different cell 
types but, instead, different developmental and/or 
physiological stages of a unique resident adult cardiac stem 
cell.  

 
One of the main reasons for the apparent 

confusion surrounding the myocardial stem and progenitor 

cells is that it is not yet known, at least for the majority of 
them, the origin of these cells, i.e. whether they are intrinsic 
cells present in the myocardium from embryonic and fetal 
life or cells of extra-cardiac origin which have colonized 
the myocardium in post-natal life, where they acquire 
tissue-specific properties. 

 
Three papers have described a population of cells 

resident in the embryonic heart which give rise to all 3 
cardiac lineages, suggesting a developmental origin of a 
common ancestor for the different cardiac progenitor cells 
(68). However, although pertinent, the phenotype of the 
multipotent cardiac progenitor cells (Islpos/Flk1pos) 
described by Moretti et al. (44) and Kattman et al. (69) 
does not include c-kit. Also, both studies describe the 
location and in vitro differentiation of these cells but they 
have not yet shown the existence of similar multi-potent 
cells in the adult heart or their ability to reconstitute 
functional myocardium upon injury. Interestingly, Wu et al. 
(70) describe c-kitpos /Nkx2.5pos bi-potential myogenic 
precursor cells in the developing mouse embryo which 
more closely relates to adult c-kitpos CSCs and therefore 
supports a developmental origin of CSCs. c-kitpos/Nkx2.5pos 
bi-potent progenitor cells underwent in vitro differentiation 
into both myocardial and smooth muscle cells and 
demonstrated engraftment and differentiation when 
transplanted into the chick embryo (70). It is highly 
tempting to speculate that these cells might represent 
different developmental stages of the same cell population 
which acquire different phenotypes and express a particular 
array of epitopes in response to local cues throughout 
development and in different regions of the heart. However, 
this still remains to be demonstrated. 

 
In this regard the many varied phenotypes of 

cardiac progenitor/stem cells identified in the adult 
mammalian myocardium brings into question whether they are 
all exclusively different or actually of the same population of 
cell yet selected and identified at different physiological states. 
Recent work from our lab favors a transitional developmental 
sequence, which involves changes in expression of different 
receptors and transcription factors before differentiation into 
one of the 3 cardiac lineages (12). Under this view, it would be 
fair to argue the existence of one CSC and would predict the 
existence of a ‘true’ stem cell in the adult heart which exhibits 
more primitive characteristics than all the previously described 
adult “cardiac stem/progenitor cells”. Indeed we and others 
have found a small population of Oct-4pos/c-kitneg cells in the 
myocardium of adult Oct-4/EGFP transgenic mice (12, 71). 
Interestingly, the number of Oct4pos cells decreases with age 
(Unpublished observations). A fraction of the Oct-4pos cells 
were also positive for c-kit suggesting a developmental 
response of the stem cell as it goes from being perhaps the 
‘early’ quiescent stem cell to an amplifying progenitor. On the 
other hand, no Oct-4pos cells were positive for the stem cell 
antigen, Sca-1. Oct-4pos cells were also positive for other 
embryonic pluripotent markers, i.e. Nanog, Sox-2 and stage-
specific embryonic antigen, SSEA-1 (Unpublished 
observations).  

 
Nevertheless, even with the many identified 

phenotypically distinct cardiac progenitor cells little 
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evidence exists regarding the functional role of the different 
cell surface receptors identified on CSCs. Thus, a better 
understanding of the origin, biology and physiology of the 
myocardial stem and progenitor cells will impact the 
development of regenerative medicine as an effective 
therapy for heart disease and failure. 
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