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1. ABSTRACT 
 

To investigate genetic mechanisms of 
hepatocarcinogenesis and identify potential anticancer 
targets in hepatocellular carcinoma (HCC), we analyzed 
microarray gene expression profiles between 33 HCCs and 
their corresponding noncancerous liver tissues. Functional 
analysis of differentially-expressed genes in HCC indicated 
that cell cycle dysregulation plays an important role in 
hepatocarcinogenesis. Based on 14 differentially-expressed 
genes involved in cell cycle in HCC, we applied Structural 
Equation Modeling (SEM) to establish a potential genetic 
network which could assist understanding of HCC 
molecular mechanisms. siRNA-mediated knock-down of 
two significantly up-regulated genes, minichromosome 

 
 

 
 
 
 
 

maintenance protein 2 (MCM2) and cyclin B1 (CCNB1), 
in HCC cells (SMMC-7721 and QGY-7703) induced 
G2/M-phase arrest, apoptosis and antiproliferation in 
HCC. Some up-regulated cell cycle-related genes in 
HCC were down-regulated following specific depletion 
of MCM2 or/and CCNB1 in HCC cells, which might 
well validate and complement the reconstructed cell 
cycle network. This study may contribute to further 
disclose hepatocarcinogenesis mechanism through 
systematically analyzed the HCC-related-cell-cycle 
pathway. This study also shows that MCM2 and CCNB1 
could be promising prognostic and therapeutic targets 
for HCC. 



Systematic analysis of HCC cell cycle pathway 

1128 

2. INTRODUCTION 
 

Hepatocellular carcinoma (HCC) is one of the 
most frequent human cancers. Incidence is increasing and 
HCC has risen to become the 5th commonest malignancy 
worldwide and the third leading cause of cancer-related 
death(1-3). The highest frequencies are found in sub-
Saharan Africa and far eastern Asia, where hepatitis B virus 
(HBV) and hepatitis C virus (HCV) infections are endemic, 
and in regions where food contaminated with Aflatoxin B1 
is consumed(1, 4). Although currently relatively low, the 
incidence of HCC is rising in developed western 
countries(1, 5-7). The major known risk factors for HCC 
are viral (chronic hepatitis B and hepatitis C), toxic 
(alcohol and aflatoxins), metabolic (diabetes and non-
alcoholic fatty liver disease, hereditary haemochromatosis) 
and immune-related (primary biliary cirrhosis and 
autoimmune hepatitis)(1, 8). HCC is prevalently male 
associated with Male/Female ratios ranging from 1.3 to 
12.9 according to the geographic area. It is a rapidly fatal 
disease, with a life expectancy of about 6 months from the 
time of diagnosis. Partial liver resection or liver 
transplantation are potentially curative, but only a minority 
of cases are amenable to these treatments for various 
reasons including the fact that most patients at risk are not 
diagnosed in time. So far, no first-line therapy has emerged 
for advanced HCC. Cytotoxic chemotherapy has proven 
ineffective(9). HCC is characterized by a very poor 
prognosis and is associated with high mortality(9-11). 
Therefore, it is very important to focus research efforts on 
disclosing the mechanism of HCC carcinogenesis, which 
could be helpful to improve the current diagnosis and 
therapy of HCC. 

 
Hepatocarcinogenesis is a slow process during 

which genomic changes progressively alter the 
hepatocellular phenotype to produce cellular intermediates 
that evolve into hepatocellular carcinoma. The 
development of HCC is a multistep process associated with 
changes in host gene expression, some of which correlate 
with the appearance and progression of tumor. An 
understanding of the molecular pathogenesis of HCC may 
provide new markers for tumor staging, for assessment of 
the relative risk of tumor formation, and open new 
opportunities for novel diagnosis and therapeutic 
intervention of HCC.(12, 13) Progress in basic scientific 
research has led to a better understanding of molecular 
mechanism responsible for HCC (12-15). For example, 
altered DNA methylation, genomic alterations (13, 14) (16, 
17) and many deregulated genes such as HBx, TP53, IGF2, 
CDKN2A (p16INK4A), RB1, PTEN, DLC1, MMP, APC, 
CTNNB1, and AXIN1 (12-15, 18) may play roles in 
development of HCC. Biological pathways such as 
upregulation of mitogenic pathways, MAPK/ERK, 
ras/raf/MAPK, NFκ-B, ERBB2/NEU, JAK/STAT, and 
Wnt/β-catenin signal transduction pathways (14) have been 
found to be altered in HCC. 

 
Since uncontrolled cell proliferation is the 

hallmark of cancer and the dysregulations of cell cycle are 
directly related to uncontrolled cell proliferation, the 
dysregulations of cell cycle pathway may play a pivotal 

role in the mechanism of HCC carcinogenesis. HCC cells 
have typically acquired damage to genes that directly 
regulate their cell cycles. Many cell-cycle-related genes 
have been reported to be closely involved in the HCC 
carcinogenesis, such as p53(19), p21(20), ATM(21), 
activation of the CKI-CDK-Rb-E2F pathway(22), 
p16/INK4, cyclin/cdk complex(23), TGFbeta(24), p38 
MAPK(25), Cyclin D1(26), CDC25A(27). Furthermore, 
Inhibition of some important cell-cycle-related oncogenes 
(CDC25A(27), mitogen-activated protein kinase 
activation(28), Cdk2 activity(29)) or activation of some 
important tumor suppressors (p53(30), p21(Cip1) and 
p27(Kip1)(28, 31)) have been reported to induce HCC cell 
cycle arrest, apoptosis and antiproliferation, which might 
be novel therapeutic targets for HCC therapies. These 
researches are very insightful; however, cell cycle pathway 
is so complex that systematical analysis of HCC-related 
cell cycle pathway is needed and could be helpful to the 
better understanding of mechanism of HCC carcinogenesis, 
and to the improving HCC diagnosis and therapy. 
Therefore, a reconstruction of gene interaction network for 
pivotal portion of cell cycle is very necessary, which 
belongs to the well known genetic network and describes 
how genes interact with each other ‘in concert’ to achieve 
specific phenotypic characters(32). 

 
Genetic network reconstruction is a major task in 

system biology, which has emerged and developed rapidly 
for the purpose of unraveling the mechanisms of biological 
systems(33-37). Nowadays, system biology is greatly 
facilitated by DNA microarray observation for mRNA 
expression combined with computational models. Among 
the computational methods, Structural Equation Model 
(SEM)(38, 39) has recently exerted high ability in genetic 
networks reconstruction. There are several advantages in 
SEM for being applied to reconstructing cell cycle gene 
interaction network in this study. First, many current 
computational methods for genetic network reconstruction 
solely focus on network structure, however, it is 
indispensable to measure quantitatively the relationship 
between genes when studying their regulatory 
properties(40). SEM accomplishes this by figuring out the 
coefficient parameters of each gene-gene interaction edge, 
which measure the regulatory effects of one gene on others 
or the strength of the gene-gene interactions. Second, not 
only quantifying the interacting relationship among genes, 
SEM can also confirm the causality, i.e., identifying the 
upstream and downstream direction in an interacting pair. 
Third, since most genetic networks are not fully 
connected(41), it is suitable to employ structural equations 
to describe those sparse networks. Fourth, it has been 
deduced that, linear structural equations are very desirable 
for construction of a first-order approximation model of a 
genetic network using steady-state gene expression 
measurements(38, 42).  

 
It is generally accepted that DNA microarrays 

and RNA interference (RNAi) are useful tools for 
identification and validation of biomarkers in disease 
research. In recent years, DNA microarrays have been used 
to identify genes involved in various diseases including 
HCC (43-56). To apply microarray data to clinical use, it is
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Figure 1. The scheme for genetic network reconstruction 
with linear structural equation modelling. 

 
necessary to identify a small set of genes which can be used 
as clinical biomarkers. It is useful to combine DNA 
microarrays with RNAi. Being effective and highly 
specific, use of RNAi represents another powerful tool for 
exploring gene function and validating novel therapeutic 
targets (57-59). The molecular targeted therapy has been 
emerged. Many novel therapeutic agents for HCC have 
been evaluated in phase I and II studies, such as sorafenib 
(Nexavar), erlotinib (Tarceva), bevacizumab (Avastin), and 
flavopiridol(60). These targets of these drugs may be 
vascular endothelial growth factor (VEGF), tyrosine kinase, 
cyclin-dependant kinase, and so on. Flavopiridol is the 
cyclin-dependant kinase inhibitor. Therefore, HCC-cell-
cycle-pathway-related genes might become promising 
therapeutic targets of HCC. 
 

In this study, we systematically combined cDNA 
microarrays and RNAi analyses to identify and validate 
novel biomarkers involved in HCC carcinogenesis. We 
used linear structural equations to model a network 
composed of 14 cell-cycle-associated genes, which were 
chosen after analyzing data from 33 HCC microarrays. 
Then an improved genetic algorithm was applied to 
calculate network parameters and finally a network was 
identified based on statistical and biological criteria. One 
known interaction was rebuilt in the resulted network and 
several novel interactions were mined out. The validation 
and complement of the reconstructed cell cycle network 
were confirmed by published literatures and some 
biological experiments. Our work facilitated the discovery 
of those novel connections among genes mainly involved in 
the cell cycle of tumors. In addition, we suggested a further 
framework about how to deal with large networks. Our 
findings may help further discover genetic mechanism of 
HCC, and provide clues for identifying novel prognostic, 
diagnostic and therapeutic targets. 
 
3. MATERIALS AND METHODS 
 
3.1. Tissue samples and RNA isolation 

All the 33 primary HCC samples and 
noncancerous liver tissues used in cDNA microarray 
analysis were obtained with informed consent from patients 
who underwent curative resection at different Chinese 
hospitals in Guangxi, with full institutional review board 
approval. They are predominantly male and hepatitis B 
surface antigen (HBsAg)-positive. All liver tissues were 
verified by pathological examination. HCC samples were 
histopathologically diagnosed following Edmonson’s 

classification (61). Total RNA was extracted from each 
sample using TRIzol (GibcoBRL, Grand Island, NY) 
following manufacturer’s instructions. 
 
3.2. cDNA microarrays 

Fabrication of cDNA microarray containing 
12800 genes, probe preparation, microarray hybridization, 
image detection and data normalization were carried out as 
previously described (45, 46). For convenience of 
comparison, ratios of Cy5 (tumor) to Cy3 (nontumor) were 
log2-transformed and then converted back to fold change. 
Differentially expressed (DE) genes in HCC were selected 
according to criteria of P<0.05 by one-way analysis of 
variance (ANOVA) test (62), false discovery rate 
(FDR)≤5% (63). Pathway analysis was performed using 
GenMAPP 2.0 software (available at 
http://www.genmapp.org) (64). P<0.05 calculated by 
MAPPFinder was considered significant. We used EASE 
software (available at 
http://david.abcc.ncifcrf.gov/ease/ease.jsp) to assign DE 
genes to “Gene Ontology (GO) Biological Process” 
categories and test statistically (EASE Score, modified 
Fisher’s exact test) for significant overrepresentation of 
identified genes within each category (65, 66). EASE 
Score<0.05 was considered significant. Full cDNA 
microarray data followed MIAME guidelines and will be 
available in NCBI’s Gene Expression Omnibus (GEO) 
database (http://www.ncbi.nlm.nih.gov/geo/. Accession 
number: GSE4108). 
 
3.3. Reconstruction of cell-cycle genetic network for 
hepatocellular carcinoma 

The following scheme as illustrated in Figure 1 is 
proposed to reconstruct the genetic network for HCC cell-
cycle. First, we select differentially expressed genes which 
are involved in the cell-cycle aberration of HCC by 
microarray data analyses. Second, using these genes, we 
model candidate networks with linear structural equations, 
and then use an improved genetic algorithm to work out the 
regulatory coefficients of a network for both normal and 
abnormal cells. Third, we identify the most appropriate 
genetic network according to two criteria. One criterion is 
derived from the combination of the two ideas: the 
difference between sample covariance and model 
covariance should be as small as possible; at the same time, 
the network should not be too complex. The other criterion 
is obtained from biological supposition that the 
accumulation of regulatory variation ultimately induces 
cancer occurrence. Fourth, we confirm our network with 
gene-gene interactions in published literatures and 
biological experiments and exploit the biological 
significance of our result. Here it’s presumed that the 
framework of genetic network for both normal and 
abnormal cases keep consistent, only interaction 
coefficients vary. 
 
3.3.1. Gene selection 

Since the turbulence of cell cycle is crucial for 
the occurrence of cancer, only a very small part of genes, 
which are critical to the aberration of cell cycle, are chosen 
for the reconstruction.  
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The complete gene selection consists of two 
steps. An initial selection is done by identifying 
differentially expressed genes from comparing gene 
expression profiles of primary HCC samples with those of 
corresponding noncancerous liver samples. The whole 
process is based on both controlled false discovery rate(67)  
and one-way analysis of variance (ANOVA) test(62). In the 
subsequent selection, these differentially expressed genes 
are associated with different biological pathways using 
Gene Microarray Pathway Profile software (GenMAPP 
2.0)(64). In addition, these genes are grouped into GO 
categories to reveal overrepresented gene functions. 
Finally, a small list of significant genes are found to be 
involved in cell-cycle function and chosen as basic 
elements for genetic network reconstruction. 
 
3.3.2. Modeling genetic network 

Usually, a reconstructed genetic network can be 
represented by an edgeweighted graph. It contains two 
parts. One part is the framework, which consists of nodes 
representing genes and edges representing the existence of 
some relationship between the two linked genes, and the 
framework can be either directed or undirected, with or 
without loops. The other part is the definition of the 
coefficients, i.e. weight, associated with each edge.  

 
Structural equation model represents the genetic 

network with a directed path diagram, and it can contain 
feedback loops(68), but to avoid too much complexity, in 
this study, we do not encourage this. The nodes in the 
diagram denote genes, the edges represent interactive 
effects of one gene on others, the positive coefficient of an 
edge corresponds to an induced effect, and the negative one 
correspond to repressed effect. 

 
The genetic network can be modeled with linear 

structural equations as follows 
 

Γ ,Y BY X e= + +                                (1) 
 

where Y is a vector of  p endogenous variables 
and X is a vector of q exogenous variables. Endogenous 

variables and exogenous variables are both observed 
variables, here representing gene expression levels with 

asymptotically normal distribution.  Exogenous variables 
lie outside the model, e.g. they often act as the initiators of 

pathways, and endogenous variables are determined 
through joint interaction with other variables within the 

system. The terms exogenous and endogenous are model 
dependent, i.e. an exogenous variable in one model may 

play the role as an endogenous variable in another model. e 
denotes the residual error variables that cannot be measured 
and represents all other un-modeled causes to the observed 
variables. We assume that E [e] = 0 and e is uncorrelated 

with observed variables, and ie  is homoscedastic as well as non-

autocorrelated(68). B is a pp×  matrix and Γ  is a qp×  matrix. B and Γ  are usually 
called coefficient matrices, whose elements reveal the 

interacting effects between genes. 
 
  The basic hypothesis for general structural 

equation is 

 
Σ Σ(θ)= ,      (2) 

 
where Σ  is the population covariance matrix 

and )θ(Σ  is the model covariance matrix written as a 
function of the free model parameters which are denoted by 
θ . Let Φ  and Ψ denote the covariance matrices of X and 
e. Then the expression of matrix )θ(Σ  can be written in 
the following equation, which consists of three parts:  the 
covariance contributions of X, Y, respectively, and the 
covariance association of X with Y , 
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(38, 68).  
 
It has been well known that the method of 

maximum likelihood (ML) estimators is consistent and 
asymptotically unbiased(69), therefore, the unknown 
parameters in B, G,F  and Y , can be estimated basing 
on ML and under the principle that, the implied covariance 
matrix )θ(Σ  should be as close as possible to the sample 

covariance matrix S. The closeness between )θ(Σ and S 

can be defined by a target function MLF , which measures 
the difference between model covariance and sample 
covariance, and is required to be minimized(70) 

 
1log | ( ) | ( ( )) log | | ( ),MLF Tr S S p qq q-= S + S - - +               

(4) 
 
where p and q are the numbers of endogenous 

and exogenous variables, and Tr denotes the trace of a 
matrix.  

 
  To find out the maximum likelihood estimate of 

the model parameter values, we use genetic algorithm (GA) 
due to its intelligent ability of automatic learning(71). GA 
is a simulation model based on Darwinian evolution 
mechanism, and a fitness function f can be used to measure 
the evolvement. Relation between fitness function f and 

target function MLF  is defined as 
 

1/ (1 )MLf F= + .                               (5) 
 
Individuals with higher fitness have larger 

opportunities for propagation, and the fitness will finally 
converge to its maximum value through the process of 
inheritance, recombination and variation from generation to 
generation.  

 
To avoid the usual drawback of premature 

convergence to local extremum and overmuch time 
consumption when applying traditional GA, an improved 
algorithm proposed by Mao is applied in our study, which 
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makes improvements in several aspects(72). First, fitness 
scale transformation for each individual in the population 
can prevent the fitness values from being too large or too 
small, otherwise the whole population would be occupied 
by the individuals with considerably large fitness, and 
therefore traditional GA could not terminate since fitness 
values in a generation are so close to each other. Second, 
instead of random selection, reservation of optimal 
individual insures the right direction of evolvement. Third, 
introducing some new individuals with equably random 
distribution can expand the searching range and effectively 
ameliorate the problem of premature convergence. Fourth, 
parallel rather than ordinal performance of inheritance, 
recombination and variation on the same parental 
generation insures that the filial generation is composed of 
optimal individuals with large fitness values. 

 
One run of the genetic algorithm leads to a local 

solution because of randomly generating individuals in the 
initial step, even with the improved algorithm. Generally, 
using many runs with different initializations allows 
exploring the entire data space for the best solution. 

 
In any possible path diagrams, if the interaction 

between two genes has been published or validated, we 
retain those recognized effects. In addition, at the biological 
level, a gene only interacts with a small number of other 
genes. So we calculate correlation coefficients among 
genes, and refer to the correlation coefficient as ‘mutual 
information’, which measures the inter-dependence 
between two genes. Only if the coefficient is above a 
certain value, the corresponding two genes are assumed to 
be interacted and are linked with a directed edge in the path 
diagram. Thus, the number of candidate hypothetical 
networks is reduced based on prior knowledge. This step 
efficiently avoids the agonizing puzzledom of too much 
time consumption, and furthermore, it does not lose the 
necessary information of reconstructing genetic network, as 
shown in the validation section. 
 
3.3.3. Identification of genetic network 

It’s a great challenge to pick out the best fit 
genetic network from many hypothetical ones. At present, 
there are several different standards(38), each has its own 
advantages and disadvantages, and should be chosen 
according to special circumstances. Here we carry out the 
identification based on two criteria, one being statistical 
significance and the other being biological significance. 

 
A widely used approach to measure the goodness 

of a model is the Akaike information criterion (AIC)(68), 
which is defined as  

 
( 1) ( )( 1) 2MLAIC N F p q p q t= - - + + + + ,   (6)      

 
where  N  is the number of samples, MLF  is the 

target function, t is the number of free parameters in the 
model mainly depending on number of edges. The smaller 
the AIC value is, the better the model fits the data. For a 
network in research, the number of samples is given and 
the total number of observed variables is fixed, i.e. 

.,N const= .p q const+ =  This leads to the only 

dependence of the value of AIC on MLF  and t. The 
number of edges among genes is not encouraged to be too 
large and the differences among t in candidate networks are 
small, thus MLF  is the dominant factor when using AIC 
value to measure the goodness of a network. 

 
However, AIC information cannot be employed 

to testify whether the identified genetic network is 
biologically feasible. Since functional mutations in the 
genes will often cause changes in regulatory effects, we 
assume that the accumulation of mutations is the key factor 
for cell alteration from normality to abnormality. Then we 
propose a simple and effective criterion for the 
measurement of the differentially regulatory accumulation 
(DRA), the average value of absolute differences of 
coefficients between normal and abnormal cell, which can 
be written as 

 

,|'|1DRA
1
∑
=

−=
n

i
ii rr

n
         (7) 

where n is the total number of regulatory coefficients, ir  

and 'ir  are the coefficients in normal cell and in abnormal 
cell, respectively. The higher the DRA value, the better a 
network qualifies biological assumption, and then the 
chance of the network to be chosen is enhanced.  
 
3.4. Cell culture 

Two HCC cell lines (SMMC-7721 and QGY-
7703) and one normal liver cell line (L02) were obtained 
from American Type Culture Collection (ATCC) 
(Manassas, VA). Cells were maintained in Dulbecco's 
modified Eagle medium (DMEM) supplemented with 10% 
fetal calf serum (FCS) (PAA, Pasching, Austria) in 
humidified 37°C incubator with 5% CO2. 
 
3.5. RNA interference 

Small interfering RNA (siRNA) oligonucleotides 
with 2-nt (2’deoxy) uridine at 3’ end of the sequence were 
designed for MCM2 (Genbank accession number: 
NM_004526) (sense, 5’-GUCGCAGUUUCUCAAGUAU-
3’), CCNB1 (Genbank accession number: NM_031966) 
(sense, 5’-GCCUGAGCCUAUUUUGGUU-3’), and 
negative control (sense, 5’-
UUCUCCGAACGUGUCACGU-3’). These siRNA 
duplexes were synthesized by GeneChem (Shanghai, 
China), and transfected into SMMC-7721 and QGY-7703 
cells using Lipofectamine 2000 (Invitrogen, Carlsbad, 
CA) following manufacturer’s instructions. siRNA final 
concentration was 50 nM or 100 nM per well. Cells 
were harvested at different time points for further 
analysis. 
 
3.6. Quantitative real-time reverse transcription-PCR 

Quantitative real-time RT-PCR was used to 
validate microarray data and gene knockdowns with RNAi. 
Total RNA was extracted from untransfected and 
transfected cells with TRIzol (GibcoBRL). Reverse 
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transcription was performed using Reverse Transcriptase 
Kit (TaKaRa, Kyoto, Japan) following manufacturer’s 
instructions. Quantitative real-time PCR of MCM2 and 
CCNB1 was performed in triplicate using Sybr Green 
Mastermix on ABI Prism 7900 Sequence Detection System 
(Applied Biosystems, Foster City, CA). GAPDH was used 
as endogenous control. PCR conditions were 95°C for 15 
min, 40 cycles of 95°C for 15 s and 60°C for 1 min. PCR 
primer sequences were as follows: MCM2 5’-
CTCAACCAGATGGACCAGGA-3’(sense), 5’-
GATGTGCCGCACCGTAATG-3’(antisense); CCNB1 5’-
TGCAGCACCTGGCTAAGAATG-3’(sense), 5’-
AGTGCAGAATTCAGCTGTGGTAGAG-3’(antisense); 
and GAPDH 5’-GCACCGTCAAGGCTGAGAAC-
3’(sense), 5’-ATGGTGGTGAAGACGCCAGT-
3’(antisense). 
 
3.7. Cell cycle analysis 

Cells were trypsinized for cell cycle analysis at 
48 hours after siRNA transfection. Cell cycle was analyzed 
with propidium iodine (PI) staining using CycleTEST 
PLUS DNA Reagent Kit (Becton Dickinson, San Jose, CA) 
following manufacturer’s instructions. Approximately 
20,000 cells were acquired and analyzed using CellQuest 

software on Becton Dickinson FACSCalibur flow 
cytometry. Cell cycle distributions were calculated with 
ModFit LT 2.0 software (Becton Dickinson). 
 
3.8. Apoptosis detection using flow cytometry 
Cells were trypsinized for apoptosis analysis at 72 hours 
after siRNA transfection. Apoptosis was detected using 
APO-BRDU Kit (Pharmingen, Becton Dickinson) 
following manufacturer’s instructions. After incubation 
with PI staining, approximately 20,000 cells were acquired 
and analyzed using CellQuest software on Becton 
Dickinson FACSCalibur flow cytometry. 
 
3.9. MTT assay 

Cells (1×104 cells/well) were seeded in triplicate 
in 96-well plates. After siRNA transfection for 24, 48, and 
72 hours, cells were stained with 20 µL 3-(4,5-
dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide 
(MTT) (5 mg/mL, Sigma, St. Louis, MO) for 4 h at 37°C. 
Then culture medium was removed, 150 µL DMSO 
(Sigma) was added to each well and thoroughly mixed for 
10 min. Absorbance values at 490 nm (A490) were measured 
on Spectra Microplate Reader (ELx800, Bio-Tek, 
Winooski, VT). Cell growth inhibitory rate was calculated 
according to the following formula: Inhibitory rate (%) = 
[(A490control-A490sample)/A490control]×100% 
 
A490control: Absorption of cells transfected with negative 
control siRNA; A490sample: Absorption of cells transfected 
with MCM2 siRNA or/and CCNB1 siRNA. 
 
3.10. Statistical analysis 

All RNAi experiments were performed in 
triplicate. Data were expressed as mean±SD. Comparison 
between each experimental siRNA treatment and negative 
control siRNA treatment was determined using one-way 
ANOVA followed by Dunnett’s t test. All analyses were 

performed using SPSS 12.0 software (Chicago, IL). 
Ps<0.05 were considered significant. 

 
4. RESULTS 
 
4.1. Identification and functional analysis of 
differentially expressed genes in HCC 

cDNA microarray analysis of gene expression 
profiles between 33 HCCs and the corresponding 
noncancerous liver tissues identified 1067 DE genes 
(P<0.05 by ANOVA; FDR≤5%) in HCC patients. Pathway 
analysis using GenMAPP 2.0 indicated 13 pathways were 
significantly deregulated in HCCs comparing to normal 
liver tissues (P<0.05), such as Cell_cycle, 
G_Protein_Signaling, Alanine_and_aspartate_metabolism, 
Fatty_Acid_Synthesis, and 
Complement_and_Coagulation_Cascades pathways. 
Notably, 14 up-regulated and 3 down-regulated genes in 
HCC were involved in cell cycle (Figure 2). The majority 
of these genes play important roles in regulating cell cycle 
progression – for example, MCM2 and CDC7 in S phase; 
CCNB1, CCNB2 and CDC25C in G2 phase; BUB1B and 
MAD2L1 in M phase.  

 
MCM2 is phosphorylated, and regulated by 

CDC7(73). CDC25C directs dephosphorylation of CCNB-
bound CDC2 and triggers entry into mitosis. BUB1B and 
MAD2L1 act cooperatively to prevent premature sister 
hromatids separation by directly inhibiting anaphase-
promoting complex. 

 
Using EASE analysis, we further identified 

overrepresented GO biological process categories (EASE 
score<0.05) with the above 17 cell cycle-related DE genes 
in HCCs. GO and pathway analysis of DE genes in HCC 
revealed that up-regulated genes are mainly associated with 
cell cycle progression, while most down-regulated genes  
contribute to immune response. 
 
4.2. Results of the cell-cycle network reconstruction 

We assumed that the 17 cell cycle-related genes 
made up of a local network. So these 17 genes were chosen 
for genetic network reconstruction. It should be noticed 
that, in the 17 chosen genes, MCM2, MCM4 and MCM7 
belong to the same gene family, while CCNB1 and CCNB2 
belong to another gene family. Genes in the same family 
have similar functions and regulatory effects. Hence, the 
number of candidate genes can be reduced to 14, based on 
the assumption that MCM2 represents MCM family and 
CCNB1 represents CCNB family. 

 
Additionally, cell cycle is a very complicated 

process. Here we made a simplified assumption. The cell 
cycle is made up of four consecutive phases, i.e. G1, S, G2 
and M. Some genes are found to function mostly in one certain 
phase, therefore are called phase genes. We supposed that only 
genes belonging to neighboring phases can interact, i.e. a G1 
phase gene can only interact with one S phase gene, and so do 
other phase genes. In addition, since we could not infer 
recurrent genetic network, then we presumed that M phase 
genes cannot interact with G1 phase genes. 
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Figure 2. GenMAPP analysis of cell cycle pathways involved in HCC carcinogenesis (P<0.05). Our expression data are 
integrated into GenMAPP pathways. Color-coding of genes is as follows: Red, overexpression; green, underexpression; Gray, 
neither of the above criteria met; White, gene not found on the array. The numbers represent the fold changes of genes in HCCs. 

 
Based on the assumptions, we could plot hundreds 

of path diagrams. Generally, two genes are considered to 
interact if their expression profiles are similar. Therefore, only 
two genes are linked in diagram if their absolute value of 
correlation coefficient calculated from microarray data is 
above a certain value. Then many interactions were filtered out 
and excluded in path diagram plotting. The complexity of the 
network was greatly reduced and a large amount of 
computational time could be saved. 

 
For each diagram, we use SEM for modeling and 

apply the improved GA to the calculation of model parameters. 
We perform 30 runs of the algorithm, and we kept the model 
parameter values which correspond to the lowest value of the 

criterion MLF . Finally, from all the candidate path diagrams, 
we identify a reconstructed genetic network model, with the 
minimal AIC value, and with the maximum average value of 

difference. The path diagram for this resulted network is 
shown in Figure 3, where the arrows represent the upstream or 
downstream relationship between the two genes. The linear 
structural equation model for the abnormal case can be written 
as 
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Figure 3. The reconstructed cell-cycle genetic network. Solid lines imply known gene interactions, dashed lines imply supposed 
interactions (we have assumed the edge between CDC7 and MCM2 to be previously unknown). The arrows represent upstream 
or downstream relationships between genes, but no direct inducing or repressing effect is indicated. The shuttling edges between 
two genes (e.g. CDC7 and ASK) represent mutual interactions between the two genes, which combine to form a complex. 
 

The coefficients show direct or indirect 
interactive effects. Positive/negative coefficient means an 
increase/decrease expression of genes at the left side 
equation due to the effect of gene in the right side of 
equation. For example, as the expression of G1 phase gene 
GSK3B increases, the expression of S phase gene E2F5 
decreases. 
 
4.3. Reconstructed cell cycle network validation and 
complement 
 
4.3.1. Rebuilding a published interaction 

In order to testify our method, we intentionally 
let the edge between CDC7 and MCM2, whose interaction 
was reported by several publications(74), to be unknown. 
CDC7 and the MCM2 are both essential for the initiation of 
eukaryotic DNA replication. Previous literatures showed 
that MCM2 contains several phosphorylation sites which 
can be phosphorylated by CDC7. At the beginning of S 
phase, MCM2 is directly regulated by CDC7. Expectedly, 
in the identified network, the relationship between CDC7 
and MCM2 was rebuilt, which is a direct support of our 
model. 
 
4.3.2. Unclosing some interesting interactions 

Except for the relationship between CDC7 and 
MCM2, some other interactions, which can be confirmed or 
inferred from researches and publications, are unclosed. 
These interactions are also evidences supporting the 
correctness of our model. 

 
MCM2-7 are related to each other and interact to 

form a stable heterohexamer(75). MCM2-7 proteins bind to 

chromatin in a cell-cycle dependent manner, being tightly 
bound in G1 while being removed in S- and G2-phases(76). 
It functions as a primary helicase opening up the DNA at 
replication origins. PCNA is a member of the so-called 
DNA sliding clamp family(77). When chromatin was 
untied by MCM2-7, PCNA acts as a DNA sliding clamp 
for replicative DNA polymerases in S-phase. There is no 
report of direct physical relationship within them, but the 
result discovers the biological event by the time order and 
suggests MCM2 may regulate PCNA.  

 
PCNA in mammalian cells also appears to play a 

key role in controlling several other reactions together with 
different partners, including cell cycle regulation(77). It can 
bind to cyclin-CDK complexes(78). Biochemical studies 
show that PCNA interacts with CDK2-cyclin A complex. 
In many literatures, PCNA–CDK2–cyclin-A complex has 
been mentioned as an important regulatory mechanism in 
cell cycle control(77). CDK1-Cyclin B1(CCNB1) complex 
is essential for eukaryotic cell cycle to enter M-phase, with 
which PCNA forms complex with ATR/Chk1-dependent 
checkpoint(77). Then PCNA inhibit the start of M-phase. In 
our result, the arrow from PCNA to CCNB1 is rebuilt well 
to support this kind of cell cycle control model. 

 
MAD2L1 is a component of the mitotic spindle 

assembly checkpoint that prevents the onset of anaphase 
until all chromosomes are properly aligned at the 
metaphase plate. Although no direct evidence shows 
CCNB1 has physical relationship with MAD2L1, which is 
specially expressed in metaphase. It implies that only after 
CCNB1 started up M-phase can MAD2L1 be expressed 
afterwards. Our result finds out this time sequential control 



Systematic analysis of HCC cell cycle pathway 

1135 

relationship and suggests that CCNB1 may indirectly affect 
the expression of MAD2L1 through unknown regulation 
mechanisms. 

 
4.3.3. Experiment validation and complement of the 
network 
4.3.3.1. Silencing of MCM2 and CCNB1 in HCC cells by 
siRNA 

The expression levels of MCM2 and CCNB1 
were significantly higher (≥2-fold) in two HCC cell lines 
(SMMC-7721 and QGY-7703) than that in normal liver 
cell line (L02) with quantitative real-time RT-PCR. 
Quantitative real-time RT-PCR results are consistent with 
that in microarray experiments (Figure 4A). 

 
The inferred network can be validated by 

changing a gene’s expression and observing its downstream 
gene responses. In this reconstructed network, two types of 
gene relations exist. One is the known relations and the 
other is inferred from SEM model. Here several inferred 
relations are focused on and experimentally validated.  

 
We investigated the relations between MCM2 

and CCNB1. MCM2 was overexpressed in HCC and we 
also observed the overexpression of CCNB1. The results 
are consistent with prediction of the structural equation 
model for the network. In the model for HCC case 
described above, we can infer that regulation of MCM2 on 
CCNB1 through positive control of MCM2 on PCNA and 
PCNA on CCNB1. Therefore, the model predicts that 
overexpression of MCM2 would increase expression of 
CCNB1. 

 
For RNAi studies, siRNAs targeting MCM2 

and CCNB1 were transfected separately or cotransfected 
into the two HCC cells, and their effects on altering 
expression levels were examined using quantitative real-
time RT-PCR at 24 hours after transfection (Figure 4B). 
The reason for using two cell lines is to avoid the cell 
strain specificity. Gene expression changes were 
evaluated relative to negative control siRNA-treated 
cells. With both final siRNA concentrations of 50 nM 
and 100 nM, the specific suppression of MCM2 and 
CCNB1 expression was over 70%. We used 50 nM for 
further research. These results indicated that RNAi 
could significantly suppress the overexpression of 
MCM2 and CCNB1 in HCC cells (P<0.001). 
Furthermore, cotransfection of siRNAs targeting both 
genes was as effective as separate transfection (P<0.001). 

 
Cell division cycle 7 (CDC7) was another 

significantly up-regulated gene involved in cell cycle 
pathway. Interestingly, CDC7 and some other up-regulated 
genes involved in cell cycle pathway was found to be 
down-regulated (≥1.5-fold) following specific depletion of 
MCM2 or/and CCNB1 in HCC cells using quantitative 
real-time RT-PCR (Figure 5A and B), indicating that these 
genes might be downstream genes of MCM2 and CCNB1. 
ASK, MAD2L1 and PCNA were down-regulated following 
depletion of MCM2. PCNA and ORC2L were down-
regulated following depletion of CCNB1. ASK, CDC25C, 

MAD2L1, PCNA and PTTG1 were down-regulated 
following depletion of MCM2 and/or CCNB1. These 
results might somewhat validate and complement the 
reconstructed network. For example, PCNA might be 
downstream gene of MCM2, which might validate the 
network. It is suggested that there may exist a feedback 
from CCNB1 to PCNA, which might complement the 
network. 
 
4.3.3.2. Induction of G2/M-phase arrest, apoptosis and 
antiproliferation in HCC cells by depletion of MCM2 
or/and CCNB1 

In HCC cells (SMMC-7721 and QGY-7703), we 
used flow cytometry to observe influence of MCM2 or/and 
CCNB1 siRNA on cell cycle and on apoptosis, 
respectively. Cell cycle and apoptosis were analyzed at 48 
and 72 hours after transfection, respectively. siRNA 
targeting each gene separately resulted in significant 
increase in G2/M-phase (P<0.022) and eventually led to 
obvious apoptosis (P<0.003) compared with negative 
control siRNA treatment. Notably, the G2/M-phase 
arrest (P<0.001) and apoptosis (P<0.001) phenotypes 
could be enhanced by simultaneous cotransfection of 
siRNA targeting both genes (Figure 6A-B). 

 
It is shown in the inferred model that between 

G2 phase genes and M phase genes, only two genes are 
predicted to be interdependent, i.e. CCNB1 regulates 
negatively MAD2L1 in abnormal state. Thus we 
supposed that the inhibition of CCNB1 would lead to 
the cell cycle arrest in G2/M phase in hepatocellular 
carcinoma cells. The influence of CCNB1 RNAi on the 
cell cycle validated the supposition. In both cell lines, 
after the negative control siRNA treatment, less than 
10% cells are in G2/M phase, however, after CCNB1 
siRNA treatment, the cells arrested in G2/M phase 
increase up to 20%. It is speculated that inhibition of the 
gene CCNB1 in G2 phase leads to the loss of the 
regulation effect of CCNB1 on MAD2L1 and 
consequent cell cycle arrest in G2/M phase. The 
experiment results are in accord with the supposition 
from the inferred network. 

 
Since MCM2 and CCNB1 are two of the key 

components required to regulate cell proliferation, we 
analyzed antiproliferative impact of MCM2 or/and 
CCNB1 RNAi in HCC cells (SMMC-7721 and QGY-
7703) using MTT analysis. We found that absorbance at 
490 nm decreased gradually in targets siRNA treatments 
from 24 hours to 72 hours after transfection, but 
increased gradually in negative control siRNA group 
(Figure 6C). Therefore, depletion of MCM2 or CCNB1 
resulted in reduction in proliferation in HCC cells 
(P<0.043). When both genes were targeted simultaneously, 
the antiproliferative effect was more pronounced 
(P<0.011). 

 
Thus, RNAi-mediated depletion of MCM2 or 

CCNB1 induced G2/M-phase arrest, apoptosis and 
antiproliferation in HCC cells, and depletion of both genes 
enhanced the phenotypes. 
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Figure 4. RNAi significantly inhibits the overexpression of MCM2 and CCNB1 in HCC cells. (A), Validation of cDNA 
microarray results for two up-regulated genes (MCM2 and CCNB1) using HCC cells (SMMC-7721 and QGY-7703) and normal 
liver cell (L02) by quantitative real-time RT-PCR. Comparisons of fold change between microarray and quantitative real-time 
RT-PCR (n=3) are shown. Columns, means; bars, ±SD. (B), Effects of MCM2 and CCNB1 RNAi in HCC cells analyzed at 24 
hours after transfection using quantitative real-time RT-PCR. Normalized MCM2 and CCNB1 mRNA levels were expressed as 
percentage of that of cells transfected with negative control siRNA. Columns, means (n=3); bars, ±SD. RNAi significantly 
suppresses the expression of MCM2 and CCNB1 mRNA by over 70%, either separately or together. The final siRNA 
concentration was 50 nM and 100 nM, respectively. *, Significantly different from the negative control group (P<0.001) by one-
way ANOVA followed by Dunnett’s t test. 
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Figure 5. Down-regulation of CDC7 and some other up-regulated genes involved in cell cycle pathway following specific 
depletion of MCM2 or/and CCNB1 in HCC cells. (A), Down-regulation of CDC7 following specific depletion of MCM2 or/and 
CCNB1 in HCC cells using quantitative real-time RT-PCR. Columns, means (n=3); bars, ±SD. The final siRNA concentration 
was 50 nM. (B), Down-regulation of some other up-regulated genes involved in cell cycle pathway following specific depletion 
of MCM2 or/and CCNB1 in HCC cells using quantitative real-time RT-PCR. ASK, MAD2L1 and PCNA were down-regulated 
following depletion of MCM2. PCNA and ORC2L were down-regulated following depletion of CCNB1. ASK, CDC25C, 
MAD2L1, PCNA and PTTG1 were down-regulated following depletion of MCM2 and CCNB1. Columns, means (n=3); bars, 
±SD. The final siRNA concentration was 50 nM. 
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Figure 6. RNAi-mediated depletion of MCM2 or CCNB1 alone induces G2/M-phase arrest, apoptosis and antiproliferation in 
HCC cells (SMMC-7721 and QGY-7703), and depletion of both genes enhances the phenotypes. The final siRNA concentration 
was 50 nM. *, Significantly different from the negative control group (P<0.05) by one-way ANOVA followed by Dunnett’s t 
test. (A), Influence of MCM2 or/and CCNB1 siRNA on cell cycle. (a), Representative results of cell cycle analysis using flow 
cytometry at 48 hours after transfection. Arrows indicate sub-G1 cells (apoptotic). (b), Quantification of cell cycle analysis. 
Means of three independent experiments are shown. *, P<0.022 by transfection of siRNA targeting each gene separately, and 
P<0.001 by simultaneous cotransfection of siRNA targeting both genes. (B), Influence of MCM2 or/and CCNB1 siRNA on 
apoptosis. (a), Representative results of apoptosis analysis using flow cytometry at 72 hours after transfection. M2 represents the 
apoptotic cells. (b), Quantification of apoptosis analysis. Data of apoptotic rate are expressed as means±SD (n=3). *, P<0.003 by 
transfection of siRNA targeting each gene separately, and P<0.001 by simultaneous cotransfection of siRNA targeting both 
genes. (C), Effect of MCM2 or/and CCNB1 siRNA on the proliferation and viability of HCC cells. (a), Cell proliferation analysis 
using MTT assay at 24, 48, and 72 hours after transfection. Means of three independent experiments are shown in the growth 
curve. (b), Quantification of cell proliferation analysis. Means of cell growth inhibitory rate are shown (n=3). *, P<0.043 by 
transfection of siRNA targeting each gene separately, and P<0.011 by simultaneous cotransfection of siRNA targeting both 
genes. 
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5. DISCUSSION 
 

We analyzed gene expression profiles in HCC 
using cDNA microarrays. GO biological process and 
pathway analysis of DE genes involved in HCC 
carcinogenesis revealed that up-regulated genes are mainly 
associated with cell cycle, while down-regulated genes are 
mainly associated with immune response, which is 
consistent with previous report (53). Cell cycle-related 
genes were important because they might be directly bound 
up with tumor development. Some of these genes might be 
effective anticancer targets, such as the up-regulated genes 
associated with cell cycle pathway. Overexpression of these 
genes might contribute to activation of cell cycle pathway 
and play critical roles in HCC carcinogenesis. 

 
We reconstructed a genetic network for cell 

cycle in HCC based on a SEM framework. In the resulted 
network, a known edge (CDC7 to MCM2) is rebuilt, which 
we had intentionally made it unknown to test the goodness 
of our approach. Moreover, an inferred gene-gene relation 
in the network and a supposition of G2/M arrest in cell 
cycle can be validated experimentally. Some novel and 
interesting gene interactions can be mined out. For 
example, MCM2 may regulate PCNA in G1-phase when 
chromatin replicates, and CCNB1 may regulate MAD2L1 
through controlling the onset of M-phase. In cell cycle, 
these genes are strictly expressed in special phase. Our 
result rebuilds such time-dependent relationship and 
implies these molecules may have a long-distance 
regulation. Although our model cannot provide the details 
of the reactions between two or more molecules, it still 
benefits further researches for discovering the regulation 
connection of these molecules.  

 
In our model, several assumptions were applied 

to simplify network model and save computation. The 
system of true cell is so complex that these assumptions 
would be apart from the real conditions. How to do the 
supposition to make computed network closer to real 
biological condition is always a great challenge to 
scientists. However, the resulted HCC cell cycle network 
from our model can be validated by some evidences, so our 
scheme to reconstruct network can also be easily applied to 
study other pathways and other complex diseases. 

 
In addition, structural equation modeling can 

also be used in other challenging work. Usually, general 
structural equations are made up of measurement model 
and structural model, i.e. path model. Measurement model 
describes relations between latent variables and observed 
variables, while structure model only deals with latent 
variables themselves. This sheds new light on 
reconstructing global network, which includes hundreds of 
genes involved in many different pathways. A global 
network can be divided into several local ones, which 
independently associate with a certain pathway. Gene 
expression data in a local network can be considered as 
observed variables. We can define few factors related to the 
disease, mainly involved in the function of the networks. 
The factor corresponding to a local network can be 
regarded as a latent variable. Therefore, measurement 

model describes the contributions of genes in a local 
network to the corresponding latent variable, and relations 
among latent variables are described by structure model. 
Then main relations among factors of a disease can be 
unraveled in light of the reconstructed network. Since the 
contributions of those factors to the disease can be 
quantitated, a great perspective of individual therapy is 
provided. 
 

Among the up-regulated cell cycle-related genes, 
MCM2 and CCNB1 were chosen for further analysis. 
Reason for overexpression of MCM2 and CCNB1 may be 
that they map to frequent cytogenetic gains of 3q21 and 5q12 
in HCC (16, 17), respectively; while their overexpression 
may drive selection for the chromosomal gains. Moreover, as 
both MCM2 and CCNB1 are cell cycle regulated (79), their 
overexpression are likely to be due to increased cell 
proliferation and cycling in cancer cells; while their 
overexpression may induce cell proliferation. 

 
Recent studies have shown that MCM2 and 

CCNB1 are overexpressed in various tumors but present at 
low levels in normal tissues, indicating that they may be 
specific anticancer targets (80, 81). In HCC research, 
increased MCM2 mRNA levels have been reported (82). 
CCNB1 protein overexpression related to poor-
differentiation in HCC has been reported (83). Therefore, 
MCM2 and CCNB1 may be potential diagnostic and 
therapeutic targets involved in HCC carcinogenesis and 
tumor progression. 

 
Recently, knockdown of MCM2 or CCNB1 

alone has been reported to inhibit tumor cell growth (84-
86), suggesting that downregulation of MCM2 or CCNB1 
might become an interesting strategy for antitumor 
intervention. Here, this is the first report of RNAi analysis 
of MCM2 or/and CCNB1 in HCC cells. Our results show 
that RNAi can significantly silence the overexpression of 
MCM2 and CCNB1 in two HCC cells (SMMC-7721 and 
QGY-7703), either separately or together. Specific 
depletion of MCM2 or CCNB1 alone induces G2/M-phase 
arrest, apoptosis and antiproliferation in HCC cells, and 
depletion of both genes enhances the phenotypes, 
indicating the potency and effectiveness of siRNA against 
MCM2 or/and CCNB1 as a new strategy for HCC therapy. 

 
MCM2 is one of the MCM proteins which are 

essential for initiating and elongating replication forks 
during S-phase (87). Moreover, MCM proteins affect 
chromosome structure, which is consistent with the 
evidence that most MCM proteins don’t colocalize with 
DNA synthesis sites. Even modest reductions in MCM 
proteins levels confer chromosome instability (88). Thus, 
G2/M-phase arrest resulted from MCM2 depletion may be 
due to the fact that loss of MCM2 function causes DNA 
damage and genome instability. 

 
CCNB1 complexes with CDC2 to form M-phase 

promoting factor (MPF), which is essential for G2/M phase 
transitions of cell cycle (89). This may be responsible for 
the effect that CCNB1 depletion resulted in G2/M-phase 
arrest. 
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Because MCM2 and CCNB1 have a direct effect 
on mitosis, their overexpression in HCC may lead to 
uncontrolled cell proliferation and tumorigenesis. After 
performing RNAi, G2/M-phase arrest may be responsible 
for the effect that depletion of MCM2 or/and CCNB1 
eventually led to apoptosis and antiproliferation in HCC 
cells. 

 
Interestingly, compared with depletion of MCM2 

or CCNB1 alone, depletion of both genes enhances the 
phenotypes of G2/M-phase arrest, apoptosis and 
antiproliferation, indicating a relationship between MCM2 
and CCNB1. The plausible explanations for the effects are 
as follows. It has been reported that MCM2 may interact 
with CCNB2 (90), suggesting that MCM2 may interact 
with CCNB1. Both CCNB1 and CCNB2 associate with 
p34cdc2 and are essential components of cell cycle 
regulatory machinery. B1 and B2 differ in their subcellular 
localization. Moreover, MCM2 protein is phosphorylated 
and regulated by protein kinases CDC2 and CDC7 (73, 91), 
while CCNB1 complexes with CDC2 to form MPF (89), 
suggesting that CDC2 and CDC7 might function as bridges 
between MCM2 and CCNB1. CDC7 was another 
significantly up-regulated gene involved in cell cycle 
pathway. Interestingly, in this study we found that CDC7 
was down-regulated following specific depletion of MCM2 
or/and CCNB1 in HCC cells, indicating that MCM2 and 
CCNB1 might be upstream genes of CDC7 and act on 
CDC7. Therefore, MCM2 and CCNB1 may be useful in 
HCC diagnosis and therapy, and it’s more efficient to 
disrupt functions of both genes in therapy. 

 
Furthermore, we found that some other up-

regulated genes involved in cell cycle pathway were down-
regulated following specific depletion of MCM2 or/and 
CCNB1 in HCC cells, indicating that ASK, MAD2L1 and 
PCNA might be downstream genes of MCM2; PCNA and 
ORC2L might be downstream genes of CCNB1; and ASK, 
CDC25C, MAD2L1, PCNA and PTTG1 might be 
downstream genes of MCM2 or/and CCNB1, and their down-
regulation might be involved with the interaction with MCM2 
and CCNB1. It has been reported that MCM2 may interact 
with ASK, and CCNB1 may interact with PCNA, which are 
consistent with our results. Here, our work is the first report of 
the other interactions. These interaction results also validated 
and complemented some results of the cell-cycle network 
reconstruction. Some interaction results might well validate the 
network reconstruction, such as PCNA and MAD2L1 might 
be downstream genes of MCM2, while CDC25C, MAD2L1, 
and PTTG1 might be downstream genes of CCNB1. In 
addition, some other interaction results might complement the 
network reconstruction, such as feedbacks from CCNB1 to 
PCNA and ORC2L, and feedbacks from MCM2 to CDC7 and 
ASK. 

 
In conclusion, our studies may be helpful to 

further disclose the mechanism of HCC carcinogenesis 
through systematically analyzed the HCC-related-cell-cycle 
pathway. Our studies also show that MCM2 and CCNB1 
may be potential biomarkers involved in HCC 
carcinogenesis. Importantly, MCM2 and CCNB1 may 
serve as promising molecular targets for HCC therapy. 
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