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1. ABSTRACT 

 
Maternal dietary protein supplementation to 

improve fetal growth has been considered as an option to 
prevent or treat intrauterine growth restriction. However, in 
contrast to balanced dietary supplementation, adverse 
perinatal outcomes in pregnant women who received high 
amounts of dietary protein supplementation have been 
observed. The responsible mechanisms for these adverse 
outcomes are unknown. This review will discuss relevant 
human and animal data to provide the background necessary 
for the development of explanatory hypotheses and 
ultimately for the development therapeutic interventions 
during pregnancy to improve fetal growth. Relevant aspects 
of fetal amino acid metabolism during normal pregnancy 
and those pregnancies affected by IUGR will be discussed. 
In addition, data from animal experiments which have 
attempted to determine mechanisms to explain the adverse 
responses identified in the human trials will be presented. 
Finally, we will suggest new avenues for investigation into 
how amino acid supplementation might be used safely to 
treat and/or prevent IUGR.  

 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

 The clinical questions to be addressed in 
this review relate to the potential role of protein 
supplementation to improve fetal growth during pregnancy. 
Accretion of amino acids into proteins is an essential 
component of fetal growth. Therefore, maternal protein 
supplementation to improve fetal growth is an attractive 
therapeutic option, especially when fetal growth is failing. 
However, perinatal outcomes in pregnant women who 
received high amounts of protein supplementation are worse 
than in women who receive standard care or balanced 
energy supplementation. In fact, high protein 
supplementation increased small for gestational age (SGA) 
birth. Mechanisms responsible for this are unexplained and 
future experiments are required to fully understand this 
observation.   

 
Maternal dietary supplementation with large 

amounts of protein results in an increased risk for preterm 
and SGA delivery, and increased perinatal mortality 
rates.(1) Prior to publication of these concerning clinical
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Figure 1. Amino acid fluxes within fetal compartments. 
 

findings, a concept promoted in the literature was that the 
mother and fetus were competing for certain amino acids. 
Expansion of maternal tissues during pregnancy, development 
of the placenta, and growth of the fetus all require amino acids 
for protein accretion. One can view these various tissues as 
“competitors” for the same pool of amino acids which are 
considered to be a “scarce resource.” In the context of 
intrauterine growth restriction (IUGR), the fetus is the “loser” 
in this competition.(2) Based on this line of reasoning, it 
seemed obvious that providing supplemental dietary protein to 
pregnant women, especially those at risk for having an IUGR 
infant, would improve fetal growth. This was supported by 
rodent data in which experimental maternal dietary protein 
restriction reduced fetal growth.(3-5) When these approaches 
apparently failed, the emphasis on maternal dietary protein 
intake as a regulator of fetal growth shifted to an evaluation of 
placental transport of amino acids to the fetus.(6; 7) Also it was 
realized that decreased fetal growth during protein malnutrition 
is not due to pure protein deficiency but is more likely due to 
other confounding variables including micronutrient 
deficiencies and the psychosocial environment.(8) In contrast, 
maternal caloric malnutrition is clearly associated with IUGR. 
This is supported by the finding that balanced maternal energy 
supplementation without excessive amounts of dietary protein 
increased fetal weight, though not necessarily lean mass.(1) 
 

This review will discuss relevant human and 
animal model data to generate explanatory hypotheses that 
could test therapeutic interventions using amino acids 
during pregnancy to improve fetal growth. First, we will 
consider some relevant aspects of fetal amino acid 
metabolism during normal pregnancy and those pregnancies 
affected by IUGR. Then, we will review data from animal 
experiments which have attempted to determine 
mechanisms to explain the adverse responses identified in 
the human trials. Finally, we will suggest new avenues for 
investigation into how amino acid supplementation might be 
used safely to treat and/or prevent IUGR.  
 
3. AMINO ACID TRANSFER AND METABOLISM 
 

Most amino acids are supplied from the 
maternal circulation to the fetus via active transport across 
the placenta.(9; 10) Energy-dependent amino acid 

transporters are present on both the maternal-facing (apical) 
and fetal-facing (basal) surfaces of the trophoblast in the 
human placenta. Several different transport systems exist to 
transfer particular groups of amino acids based on their 
charge and structure.(9-11)  For example, one of the amino 
acid transport systems can transfer all of the branched chain 
amino acids (BCAA, leucine, isoleucine and valine), 
threonine, tryptophan, phenylalanine, and methionine. 
Conversely an individual amino acid can be transferred by 
multiple systems. The final rate of transfer for an individual 
amino acid depends upon the relative concentrations of 
amino acids in the maternal plasma and the abundance and 
activity of transport systems.(11; 12) Additionally, there are 
amino acid shuttles between the fetal liver and placenta 
which exchange serine for glycine and glutamate for 
glutamine. These exchanges result in net uptake of serine 
and glutamate from the fetus by the placenta.(13; 14) 
However, with the exceptions of serine and glutamate, 
under normal conditions there is net fetal amino acid uptake 
from the placenta.(15) 

 
Because amino acids also are released into 

the fetal circulation from fetal tissues, overall rates of amino 
acid appearance in the fetal plasma (which are equal to fetal 
amino acid disposal rates at steady state) are greater than net 
fetal uptake rates from the placenta. Fetal amino acid 
disposal is divided into direct flux back into the placenta 
and flux into fetal tissues. For most amino acids this flux is 
further divided into protein synthesis and amino acid 
oxidation. Synthesized proteins can then be degraded and 
the difference between the rates of protein synthesis and 
degradation is the net protein accretion rate (Figure 1). The 
relative contribution of each of these rates (flux from fetal 
plasma into the placenta, protein synthesis, and oxidation) 
to total fetal amino acid disposal varies for each particular 
amino acid.(16-25) However, overall protein accretion rates 
at the end of gestation are estimated to be between 2-4 
gm/day.(24) 

 
4. INTRAUTERINE GROWTH RESTRICTION 
 

Experimental evidence from humans and 
animal models indicate that amino acid transport from 
mother to fetus and fetal amino acid metabolism are 
disturbed during IUGR. IUGR represents a 
pathophysiological condition in which a fetus is restricted 
from reaching its genetically determined size. This 
distinguishes IUGR patients from those that are simply 
SGA based on their genetic make-up. Identifiable causes of 
IUGR include intrauterine infections and maternal illnesses, 
but most cases are idiopathic. In the majority of cases, 
excluding intrauterine infections but including idiopathic 
cases, placental insufficiency and decreased nutrient transfer 
to the fetus are hallmark pathophysiological features (Figure 
2). Although the incidence of IUGR depends on the specific 
definition used to make the diagnosis, estimates place it 
between 4-8% in developed countries.(26) IUGR fetuses 
have significantly elevated risks of intrauterine fetal demise, 
neonatal mortality, and short and long term 
complications.(27) Current clinical management consists of 
close monitoring of fetal growth rates and well being and 
indicated preterm delivery when fetal growth or well being
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Figure 2. Causes of intrauterine growth restriction. 
 

become so poor that the risks of intrauterine fetal demise are 
greater than the risks of prematurity.(28) Currently, there 
are no standard prenatal therapies which are designed to 
specifically improve fetal growth or reverse the 
complications of IUGR. It is therefore evident that any 
successful prenatal therapies have the potential to improve 
mortality and reduce short and long term complications of 
both IUGR and prematurity. 

 
Despite worrisome outcomes in the human 

trials, interest in using protein and amino acid 
supplementation to prevent or treat IUGR remains an 
attractive potential therapeutic option. Human studies 
measuring fetal amino acid concentrations in IUGR 
pregnancies provide conflicting data. Some studies have 
documented decreased concentrations of certain amino 
acids including the BCAA, threonine, and arginine,(29-31) 
while others have not found differences.(32) Animal models 
indicate that this variability is likely due to differences in 
the severity of placental dysfunction.(33) While amino acid 
concentrations in IUGR fetuses are variable, a consistent 
feature in both human and animal studies is reduced 
placental transfer of certain essential amino acids.(16; 23; 
32; 34-36) Furthermore, the severity of IUGR correlates 
with the severity of decreased amino acid transfer.(33; 37; 
38) Decreased placental transfer of essential amino acids in 
cases of placental insufficiency might account for a lack of 
improved fetal growth when mothers were given a high 
dietary protein intake. Less clear are the mechanisms 
responsible for decreased fetal growth and worse overall 
mortality rates in these pregnancies. Prior to addressing the 
potential mechanisms we will review the pertinent human 
clinical trials. 

 
5. PROTEIN SUPPLEMENTATION TO PREVENT 
OR TREAT HUMAN IUGR 
 

Human trials generally show that increased 
maternal energy intake, without high amounts of dietary 
protein, improve fetal weight (though not necessarily lean 
mass) without significant adverse effects.(1) When 
increasing amounts of dietary protein are used to supply this 
energy, poor fetal weight gain and adverse perinatal 
outcomes occur.(1; 39) Therefore, high dietary protein 
supplementation can be viewed as toxic to the fetus. 

Nutritional intervention trials during pregnancy are 
challenging to interpret and often preclude specific 
mechanistic insight into the observed outcomes. Inclusion 
criteria of patients were variable, thus normal and IUGR 
pregnancies as well as other high risk pregnancies were 
often included. Supplements vary by more than just energy 
and protein; fat, vitamin, and mineral contents were also 
different between studies. The timing of introduction of the 
supplement during gestation varied between studies as did 
the source of protein (and thus the amino acid profile) 
within the supplement. Finally, long term clinical nutrient 
supplementation might have replaced nutrients in the 
normal diet if the mother decreased intake from other 
sources, or the supplement might have been shared among 
family members. These last two problems are more likely to 
occur in subjects with limited resources, but this population 
was more often targeted in these studies because they 
exhibit a higher incidence of IUGR.(40)  

 
Despite these limitations the human trials of 

high maternal dietary protein supplementation provide 
important observations. Human trials using maternal 
intravenous amino acid mixtures showed promise, but 
suffered from several methodological shortcomings 
including small sample size and poor patient selection.(6; 
41; 42) Oral dietary protein supplementation during 
pregnancy has been evaluated in several studies.  Mardones-
Santander et. al. selected low-income pregnant women at 
risk for having an IUGR pregnancy by including only 
underweight subjects. Women were randomized to receive 
one of two supplements; one provided approximately 330 
kilocalories and 19 grams of protein per day and the other 
provided 310 kilocalories and 10 grams of protein per day. 
Subjects began supplementation in the 14th week of 
gestation and continued until delivery, which occurred at the 
same time in both groups (39 weeks). Birth weights in the 
group that received higher protein supplement were 
statistically lower (3.105 vs. 3.178 kilograms) as were the 
percentages of births with a weight less than three 
kilograms.(43) Similarly, a series of studies by Viegas et. al. 
found concerning results for high dietary protein 
supplementation during pregnancy. In their first study 
pregnant women were included regardless of their risk for 
an IUGR pregnancy and were allocated to one of three daily 
supplements. The first group received a high protein 
supplement providing 273 kilocalories with 26 grams of 
protein per day. The second group received a protein free 
supplement that provided 273 kilocalories per day from 
carbohydrates only. A third control group received vitamins 
only, which were also included in the other two 
supplements. Supplementation began in the 18th week of 
gestation and continued until delivery, which occurred at 
~38 weeks in all groups. There were no differences in birth 
weights in any of the groups.(44) However, in a study 
published by the same group women were divided into two 
populations; those at risk for IUGR and those that were not. 
Both groups were further subdivided to receive one of three 
daily supplements: a high protein supplement that provided 
425 kilocalories with 40 grams of protein per day, a 
carbohydrate supplement that provided 425 kilocalories per 
day, and a vitamin only group. These supplements were not 
started until the 28th week of pregnancy and continued until
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Figure 3. Determinants of net fetal amino acid (AA) 
supply. 

 
delivery, which occurred at 38 weeks in all groups. In the at 
risk group of women, protein supplementation increased 
birthweight compared to carbohydrate supplementation 
(3.335 vs. 2.900 kilograms). However, in the group not at 
risk for IUGR, birth weights in the high protein 
supplementation group were marginally lower than in the 
carbohydrate group (2.940 vs. 3.080 kilograms, 
p<0.06).(45) Possible explanations for the differences 
observed in birthweight between these two trials include 
dose of protein (40 vs. 26 grams), gestational age when the 
intervention began (28 vs. 18 weeks), and likelihood of 
IUGR pregnancy. Finally, the most concerning outcomes of 
increased maternal dietary protein supplementation come 
from a large study by Rush et. al. This study included over 
700 women at risk for having an IUGR pregnancy. Women 
were allocated to one of three groups prior to 30 weeks 
gestation. The high protein group received a supplement 
containing 470 kilocalories and 40 grams of protein per day, 
the second supplement group received 322 kilocalories and 
six grams of protein per day, and a third group received 
only vitamins. Mothers receiving a high protein supplement 
tended to deliver prematurely compared to the other groups 
and those women who delivered prematurely reported 
taking more of the supplement. Overall birth weights in the 
three groups were not different, however, when analysis 
was restricted to premature births there was a higher 
incidence of SGA in the high protein supplement group. 
Most concerning was that fetal and neonatal death rates in 
the high protein group were increased compared to the other 
two groups.(46) 

 
6. POSTULATED MECHANISMS TO EXPLAIN 
FETAL OUTCOMES FROM INCREASED PROTEIN 
INTAKE 
 

The mechanisms responsible for adverse 
fetal outcomes as a result of maternal high protein 
supplementation are unknown. Elucidation of these 
mechanisms has the potential to allow for the rational 
design of interventions which can safely promote 
intrauterine growth, decrease the incidence of indicated 
preterm delivery for IUGR, and prevent short and long term 

complications of this disease. We will review three potential 
mechanisms for fetal amino acid toxicity that have been 
explored in animal models of normal human fetal growth 
and metabolism and animal models of IUGR: 1) 
competitive inhibition of transport among essential amino 
acids across the placenta, 2) mismatch of increased fetal 
amino acid supply with persistently low fetal anabolic 
hormone concentrations, and 3) preferential utilization of 
increased fetal amino acids for oxidative metabolism rather 
than protein synthesis and accretion. It should be 
emphasized that these potential mechanisms are not 
mutually exclusive and most likely interact to explain the 
observations made in the human clinical trials. 

 
6.1. Placental transfer of amino acids to the fetus 

Amino acid flux across the trophoblast 
depends on several factors (Figure 3). Transporter 
abundance, activity, and affinity, as well as villous and 
microvillous surface area all affect transport capacity. 
Transport properties change as gestation advances to 
augment total amino acid exchange capacity and support 
exponential fetal growth.(47-49) These properties are 
affected during an IUGR pregnancy. Examination of 
isolated human and animal placentas from IUGR 
pregnancies demonstrate reduced expression and/or activity 
in several specific amino acid transport systems.(34; 37; 50-
53) Reduced placental surface area has been reported for the 
IUGR placenta, indicating that morphometric changes in 
addition to reduced transporter activity contribute to the 
overall reduction in placental amino acid transport 
capacity.(54-57) In human IUGR pregnancies and animal 
models the severity of IUGR correlates with both reduced 
amino acid transport and fetal oxygenation.(33; 37; 38; 58) 
Because amino acid transport is an energy dependent 
process, further studies are warranted to determine if amino 
acid transport is regulated by low fetal oxygen 
concentrations in IUGR. 
 

The maternal plasma amino acid profile is a 
major factor in determining protein delivery to the fetus. 
While maternal diet plays a key role in determining 
concentrations of maternal amino acids, maternal body 
composition (lean body mass) and maternal protein turnover 
and metabolism also affect circulating amino acids.(59-61) 
Experimental manipulation of the maternal plasma amino 
acid profile during pregnancy has highlighted the major 
effect of maternal amino acid concentrations on the fetal 
plasma amino acid profile.  Balanced mixtures of essential 
and nonessential amino acids infused into pregnant sheep 
for two, three, and 12 hours toward the end of gestation 
consistently resulted in increased fetal concentrations of the 
BCAA, phenylalanine, and methionine, and decreased fetal 
concentrations of threonine and serine.(62-64) When 
maternal amino acid infusion enriched with essential amino 
acids was extended out to four days, fetal BCAA remained 
elevated and threonine concentrations remained low.(15) 
Acute maternal mixed amino acid infusions during human 
pregnancy just prior to delivery yielded similar results with 
failure to increase threonine concentrations.(65; 66) When 
threonine is individually infused into the pregnant ewe, fetal 
concentrations increase indicating that it is the presence of 
other amino acids, specifically the BCAA, that inhibit
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Figure 4. Mechanism of amino acid-stimulated insulin 
release. Three mechanisms for amino acid-stimulated 
insulin release have been identified: 1) Amino acids that 
are partially oxidized generate ATP and NADH+, leading to 
closure of KATP channels and membrane depolarization; 2) 
Cationic amino acids such as arginine and lysine directly 
depolarize the cell membrane upon entry into the β-cell, 
causing the voltage-gated Ca2+ channels to open; and 3) 
Amino acids co-transported with Na+ indirectly depolarize 
the cell membrane, also causing the voltage-gated Ca2+ 
channels to open.  In all three cases, Ca2+ influx into β-cell 
results in insulin exocytosis.  ↑ ∆ Ψ, membrane 
depolarization. 

 
threonine transfer to the fetus during a maternal infusion of 
mixed amino acids.(67-69) Collectively, these results 
indicate that fetal amino acid concentrations are affected by 
changes in maternal amino acid concentrations. However, 
competitive inhibition among co-infused amino acids that 
share affinity to specific transporter systems leads to 
unbalanced transport of amino acids across the placenta to 
the fetus. The limitation of supply of essential amino acids 
such as threonine or the transport of amino acids in 
inappropriate ratios are likely to limit fetal protein accretion 
and growth.(15) In summary, composition and content of 
protein supplements, maternal amino acid profile, timing of 
protein supplementation during a pregnancy, and 
sufficiency of the placenta will all have critical implications 
for placental transport and amino acid delivery to the fetus.   

 
6.2. Mismatch of increased amino acids with persistently 
low fetal anabolic hormone concentrations 

Insulin is a primary fetal growth factor.(70) 
Its anabolic effects are mediated by direct actions on fetal 
tissues as well as by increasing fetal IGF-1, which also 
increases fetal growth.(71-74) Fetal insulin concentrations 
are decreased in IUGR.(75-77) Many amino acids act as 
insulin secretagogues or potentiate glucose-stimulated 
insulin secretion in the pancreatic β-cell. But if supplying 
additional amino acids to the fetus in a more chronic fashion 
fails to increase insulin fetal growth might not be enhanced. 
During fetal development, β-cell sensitivity to amino acids 

for insulin secretion occurs earlier in gestation compared to 
sensitivity to glucose.(78; 79) Therefore, amino acid supply 
might act as a more potent stimulus for insulin secretion and 
growth than glucose during early gestation. Amino acids 
have a bidirectional endocrine effect by stimulating both 
insulin and glucagon release,(15; 80) such that some of the 
metabolic effects of insulin might be counteracted by 
glucagon. 

 
Several mechanisms for amino acid 

stimulated insulin secretion have been identified and are not 
mutually exclusive (Figure 4). Amino acids are oxidized as 
fuels and generate ATP and NADH+ which stimulate 
exocytosis of insulin granules;(81) leucine and alanine are 
two examples.(82; 83) Entry of arginine, lysine and other 
positively charged amino acids directly depolarize the β-cell 
membrane to cause the voltage-gated calcium channels to 
open. The increase in cytosolic calcium concentrations 
stimulates exocytosis of insulin granules.(84) Several other 
amino acids, like proline for example, are co-transported 
into the β-cell with positively charged sodium ions and 
cause membrane depolarization and activation of Ca2+ 

channels.(85; 86) In addition, some amino acids also have 
been shown to influence gene expression in the β-cell to 
promote insulin secretion.(87)  

 
Individual amino acids vary in their ability to 

stimulate insulin secretion. Direct fetal infusions of leucine, 
lysine,(88) arginine,(89-91) and alanine(92) all have been 
shown to stimulate insulin secretion in the fetal sheep.  
Maternal infusions of BCAA alone or threonine did not 
affect fetal insulin concentrations in late gestation fetal 
sheep, despite significant uptake across the placenta and 
increased fetal amino acid concentrations.(62; 68) However, 
the timing of fetal blood sampling might have missed acute 
changes in insulin concentrations in the first several minutes 
of the infusion. In human full-term fetuses, a maternal 
leucine infusion alone did not increase fetal insulin but did 
potentiate acute fetal glucose stimulated insulin 
secretion.(78) In human neonates at 3 days and 3 weeks of 
age, a combined infusion of leucine, phenylalanine, and 
tyrosine caused no change in insulin or glucagon secretion. 
Again, the timing of blood sampling in this trial might have 
missed an acute increase in insulin.(93) In isolated fetal rat 
or sheep islets, taurine, leucine, lysine, methionine, and 
arginine have been shown to increase insulin secretion,(88; 
94-96) while cysteine does not.(94)  

 
Several experiments have measured in vivo 

fetal insulin secretion following an acute infusion of a full 
complement of amino acids. Insulin secretion in the ovine 
fetus has been demonstrated following either direct fetal 
infusions or maternal infusions that increased most fetal 
amino acid concentrations.(62; 89; 97) These findings have 
been replicated in human preterm infants.(78; 98) Some 
studies have included infusions of amino acids in 
combination with glucose and have found this mixture even 
more effective at stimulating insulin secretion than either 
alone. This demonstrates that amino acids can potentiate 
fetal glucose-stimulated insulin secretion.(90; 98) 
Consistent with in vivo findings, fetal rat pancreas incubated 
in essential amino acids plus glycine and alanine show 
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amino acid stimulated insulin secretion, which is further 
enhanced when glucose is included in the media.(99) The 
potentiating effect of amino acids on glucose stimulated 
insulin secretion may be important to the fetuses’ ability to 
increase insulin concentrations following small changes in 
blood glucose. 
 

The above data show that in general, a short 
term infusion of amino acids acutely stimulates insulin 
secretion, particularly when a full complement of amino 
acids is provided. However, very little work has been done 
to determine the effects of a chronic infusion of amino acids 
on fetal insulin secretion. In one study, the catheterized fetal 
sheep preparation was used to determine the effects of a 
four-day maternal infusion of the full complement of amino 
acids.(15) Despite increases in most fetal plasma amino 
acids, there was no change in fetal plasma insulin or IGF-1 
concentrations. On the other hand, fetal glucagon 
concentrations progressively increased. Thus, the chronic 
amino acid infusion caused an increase in glucagon, a 
catabolic hormone, but no increase in anabolic hormones. 
Similar results have been found after a 24-hour fetal 
infusion of mixed amino acids following 48 hours of 
maternal starvation in the sheep – neither insulin nor IGF-1 
were increased.(100)  Therefore, treatment with chronic 
amino acid infusion is unlikely to be conducive to improved 
growth without a strategy that also increases the anabolic 
signals of insulin and IGF-1.  
 
6.3. Increased oxidative metabolism of extra amino acids 

The rate of fetal protein synthesis must 
exceed the sum of fetal protein breakdown and amino acid 
oxidation rates for net protein accretion and growth to 
occur. Understanding the balance between anabolic and 
catabolic pathways when additional amino acids are 
supplied to the fetus is critical in assessing the potential 
growth promoting effects of the substrate versus the 
potential for fetal toxicity. When amino acids were infused 
into the pregnant ewe for four days, fetal leucine oxidation 
increased without a concurrent increase in fetal protein 
accretion. Decreased oxygen saturation and content were 
observed with a trend towards increased fetal oxygen 
consumption, suggesting that overall fetal substrate 
oxidation rates were increased to handle the increase in 
protein load.(15) These findings indicate that the balance in 
fetal substrate utilization in the face of chronic, excess 
substrate might be tipped towards catabolic pathways.  
 

There are several possibilities to consider 
when evaluating the balance between anabolic and catabolic 
pathway activation by substrates in the fetus. First, as 
already discussed, understanding the interactive effects of 
amino acids and insulin are important when considering 
amino acid therapy to improve fetal growth.  Many in vivo 
studies in postnatal animals and humans have demonstrated 
that an acute infusion of amino acids (and particularly 
leucine) promotes translation initiation and muscle protein 
synthesis independently of any changes in insulin 
concentrations.(101-107) Other studies indicate that insulin 
is required for this effect, especially in fetal life.(97; 108-
112) The independent and interactive effects of insulin and 
amino acids on muscle protein synthesis have been well 

described in the neonatal pig,(104; 113; 114) but fetal 
studies addressing this issue have been more limited. In the 
unique hormonal and nutrient environment during fetal life 
when insulin concentrations are relatively low compared to 
postnatal concentrations,(115; 116) additional amino acids 
without concurrent increases in insulin concentrations might 
favor oxidation as opposed to net protein accretion. A 
second possibility is that oxidation might represent the 
preferred pathway for exogenously increased amino 
acids in the fetus. Studies in pregnant sheep have shown 
that oxidation rates for both glucose and lactate increase 
with an increase in their respective plasma 
concentrations.(117; 118) Likewise, increases in fetal 
plasma amino acid concentrations such as leucine and 
phenylalanine promote their oxidation.(21; 89; 119) 
Studies in human preterm neonates also demonstrate 
stepwise increases in leucine and phenylalanine 
oxidation in response to intravenous amino acids.(120) 
Finally, there is evidence that fetal skeletal muscle is 
relatively more resistant to increasing protein accretion 
in response to additional amino acid supply compared to 
postnatal muscle. In a study by DeBoo et al., 
phenylalanine kinetics across the ovine hindlimb were 
performed to measure skeletal muscle specific protein 
metabolism in response to an acute mixed amino acid 
infusion in the IUGR fetus. The amino acid infusion 
failed to promote hindlimb-specific protein 
accretion.(89) Additionally, in normally grown fetal 
sheep a two hour mixed amino acid infusion failed to 
activate signal transduction proteins that upregulate 
mRNA translation in skeletal muscle, independently of 
physiologic increases in insulin.(97) Since the fetus 
receives an uninterrupted supply of amino acids from the 
placenta resulting in fetal amino acid concentrations higher 
than those of the mother,(20) additional amino acid 
supplementation might simply drive oxidative pathways.  
 
7. GROWTH PROMOTING EFFECTS OF SPECIFIC 
AMINO ACIDS 
 

In addition to the need for future research to 
define the mechanisms of toxicity seen in the human trials 
of maternal dietary protein supplementation, there also is a 
need to investigate the unique growth promoting properties 
of individual amino acids during fetal life. The mechanisms 
by which individual amino acids might promote fetal 
growth are varied, and the examples given below serve to 
highlight the type of ongoing research in this area.  

 
7.1. Arginine 

Arginine has been evaluated for the 
treatment of IUGR. Two studies reported improved fetal 
weight gain and/or increased birthweight with arginine 
supplementation in IUGR pregnancies. Sieroszerski et. al. 
started women on an oral arginine supplement of three 
grams per day for 20 days or a placebo around the 32nd 
week of gestation. Fetal growth, as measured by ultrasound, 
was higher in the arginine group compared to the placebo 
group. Furthermore, at delivery, which occurred shortly 
after the treatment period and at the same gestational age in 
both groups, mean birth weight was increased in the 
arginine supplemented group (2.823 vs. 2.495
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Figure 5. Mechanisms by which arginine might improve 
fetal growth. 

 
kilograms).(121) A second trial by Xiao et. al. also reported 
improved mean birth weight with intravenous arginine 
administration of 20 grams per day for seven days (2.972 
vs. 2.794 kilograms). In this trial the treatment began at an 
average gestational age of 33 weeks and also included other 
supplemental amino acids provided to both groups. 
Gestational age at delivery was the same in both groups (39 
weeks), demonstrating that the benefits of arginine 
supplementation might persist beyond the immediate 
treatment period for IUGR pregnancies.(122) However, a 
more recent study by Winer et. al. failed to replicate these 
positive results. In this study pregnant women diagnosed 
with IUGR were enrolled at 28 weeks and randomized to 
receive either 14 grams per day of oral arginine or a placebo 
for the duration of pregnancy. Delivery occurred at 31 
weeks gestation for both groups. Average birth weight in 
the arginine supplemented group was 1.042 kilograms, not 
different from the placebo group (1.068 kilograms).(123) 
The major difference between these three studies, which 
might explain the variable results, was the inclusion criteria. 
In the Xiao trial, mothers were only enrolled if fetal growth 
parameters were less than the third percentile, which 
selected for severely growth restricted fetuses. The other 
two trials included women if fetal growth was less than the 
tenth percentile. Other differences included a more thorough 
analysis of subjects lost to follow up in the Winer trial and 
the use of general amino acid supplementation in both the 
placebo and arginine group in the Xiao trial. 
 

Despite these conflicting results, interest in 
arginine supplementation for IUGR remains high.(124-127) 
There are several proposed mechanisms by which arginine 
supplementation might improve fetal growth (Figure 5). 
Most experimental evidence suggests that arginine improves 
fetal growth in IUGR by increasing uteroplacental perfusion 
and fetal nutrient delivery by increasing local nitric oxide 
(NO) concentrations. NO is a potent vasodilator regulating 
uteroplacental blood flow and NO production in the 
placenta is decreased in IUGR.(122; 128) NO is synthesized 
by nitric oxide synthase (NOS), and arginine serves as the 
NO donor. In pregnant rodents, NOS inhibitors and genetic 
endothelial NOS inhibition both cause IUGR.(129; 130) 
Similarly, an arginine deficient diet in the rodent leads to 
IUGR.(130) Arginine supplementation has been shown to 
reverse the IUGR caused by NOS inhibition.(131) In one 
study of pregnant women with IUGR fetuses, 30 grams of 

intravenous arginine acutely increased uteroplacental 
perfusion.(132) However, of the three human studies that 
measured fetal growth response to arginine, only the study 
by Winer et. al. measured uterine artery blood flow, and 
there was no difference between the arginine or placebo 
group.(123) A second mechanism that would tend to 
increase fetal nutrient delivery is arginine stimulation of 
maternal growth hormone secretion.(132) Growth hormone 
alters maternal nutrient partitioning to favor delivery to the 
fetus,(133-135) although a recent study in undernourished 
pregnant ewes demonstrated improved fetal weight 
following maternal arginine supplementation independent of 
changes in maternal growth hormone concentrations.(124) 
A third potential mechanism is by enhancement of placental 
growth and development via the promotion of polyamine 
synthesis.(181) Arginine (among other amino acids such as 
proline) is an important substrate for polyamine production. 
Polyamines are synthesized from the conversion of arginine 
to ornithine and then to putrescine by ornithine 
decarboxylase (ODC).  In ovine pregnancy, polyamine 
synthesis peaks early in gestation when placental growth is 
rapid. (182) Maternal nutrient restriction during the first half 
of ovine pregnancy decreases arginine and polyamine 
concentrations in fetal fluids and results in IUGR. (183) 
Furthermore, inhibition of ODC in rats results in 
IUGR.(184) A fourth potential mechanism is that arginine 
can stimulate insulin secretion. Arginine, in modest to high 
amounts, is a potent fetal insulin secretagogue,(91; 133) and 
insulin is a major anabolic hormone in the fetus.(70) 
Finally, arginine has been shown to stimulate skeletal 
muscle protein synthesis, though as discussed earlier this 
effect might be dependent on simultaneously increased 
insulin concentrations.(133; 136; 137) 
 
7.2. Taurine 

Taurine has many physiological and 
developmental functions. It is considered an essential amino 
acid for the fetus and neonate, as de novo fetal synthesis is 
inadequate at these ages.(138-140)  Specific effects of 
taurine on the developing pancreas have been demonstrated 
by a series of studies using one particular rat model of 
IUGR characterized by progressive β-cell loss and 
dysfunction. Dams fed a low protein (LP) isocaloric diet 
(8% vs. 20% dietary protein) throughout gestation gave 
birth to pups with lower birth weight and reduced β-cell 
mass and function compared to controls.(3; 141) Plasma 
taurine was lower in LP dams and their fetuses, and taurine 
supplementation to the LP dams during pregnancy 
normalized β-cell mass and insulin secretion.(95; 141; 142) 
However, fetal and pup body weights were not 
corrected.(141) Despite the persistently low body weights in 
the LP fetuses and pups, which in this particular model is 
almost certainly due to deficiency of other amino acids, the 
improvement in β-cell mass and function with taurine 
supplementation has important potential implications for the 
design of future therapeutic interventions. This is supported 
by work in a second rat model of IUGR in which uterine 
artery blood flow is decreased at the end of gestation. In this 
model prenatal maternal taurine supplementation increased 
postnatal growth and weight in both IUGR and control 
groups.(143) Thus, coupled with the appropriate provision
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Figure 6. Mechanisms by which leucine activates protein 
synthesis. Through exact mechanisms remain unclear, 
leucine has been proposed to increase m TOR activity by 1) 
increasing the binding of Rheb-GTP to mTOR, 2) 
increasing the activity of MAPAK3, 3) mediating VPS34 
action, and 4) decreasing the binding of PRAS40, a 
repressor of MTOR signaling. 

 
of nutrients, fetal taurine supplementation has the potential 
to improve β-cell function and insulin secretion allowing for 
the necessary increase in fetal anabolic hormones to 
improve fetal growth.  
 
7.3. Leucine 

Leucine has a stimulatory effect on muscle 
protein synthesis during fetal and postnatal life by serving 
as a substrate for synthesis of new proteins, stimulating 
concurrent increases in insulin concentrations, and acting to 
directly stimulate translation initiation pathways. Studies 
using in vitro myocyte cultures and ex vivo muscle explants 
were the first to demonstrate the potent effects of BCAA in 
stimulating muscle protein synthesis.(144; 145) They do so 
to a similar degree as a full complement of mixed amino 
acids and more so than mixtures of amino acids that lack 
BCAA.(146-148) Of the BCAA, leucine has the greatest 
capacity to increase muscle protein synthesis through 
signaling pathways involving the mammalian target of 
rapamycin (mTOR). mTOR regulates the initiation of 
mRNA translation by increasing the phosphorylation of 
p70S6 kinase and 4E-BP1. When myocytes in culture were 
exposed to individual amino acids, leucine had the greatest 
capacity to upregulate mTOR and phosphorylate 4E-BP1 
and p70S6 kinase.(149) In vivo studies in postnatal animals 
and adult humans have shown the potent effects of leucine, 
whether administrated intravenously or orally, in 
upregulating mTOR signal transduction and promoting 
muscle protein synthesis.(101; 111; 150-154) Exactly how 
leucine functions to upregulate mTOR activity is unknown, 

though recent work has improved our understanding of 
these mechanisms.(155; 156) Briefly, TORC1 (TOR 
complex 1) is a nutrient regulator comprised of several 
subunits including but not limited to mTOR (protein 
kinase), Rheb (RAS homolog), raptor (regulatory associated 
protein), and PRAS40 (repressor of mTOR activity). Amino 
acids might function to increase the binding of Rheb-GTP to 
mTOR, increasing the activity of mTOR.(157) Most 
recently, Vps34 (a class 3 PI3K), and MAP4K3 (a unique 
MAP kinase) and PRAS40 have been shown to sense amino 
acids and signal to mTOR (Figure 6).(158-160) 
 

Given its ability to independently stimulate 
muscle protein synthesis, leucine may be considered as a 
nutritional therapy to promote lean mass growth in the 
IUGR fetus during pregnancy. The human IUGR fetus and 
neonate are characterized by reduced lean mass.(161-163) 
Adults who were born with low birth weight for gestational 
age have persistent reductions in muscle mass, reduced 
muscle to fat ratios, and reduced muscle strength.(164-170) 
Postnatal growth rates and body composition after growth 
restriction in utero have been explored in sheep models that 
create placental insufficiency and IUGR. These studies have 
shown that reduced lean body mass persists beyond the fetal 
and neonatal period despite a period of accelerated postnatal 
growth from increased insulin sensitivity, indicating 
preferential adipose tissue growth and limited lean mass 
growth.(171-175) Similarly, rapid postnatal growth in 
infants during the first 3 months of life is a risk factor for 
developing obesity as early as three years of age.(176) 
Future studies are imperative to fully understand optimal 
tissue-specific growth rates during and after fetal exposure 
to IUGR and, importantly, how nutritional therapies with 
leucine or other amino acids might maximize lean mass 
growth early in life. 
 

Not only can leucine stimulate acute fetal 
insulin secretion and muscle protein synthesis, it also 
regulates β-cell mass (Figure 7). Like in muscle, mTOR 
mediated signaling is also critical in regulating growth and 
proliferation in the β-cell. Leucine activates mTOR in the β-
cell via its own oxidative metabolism and by stimulating 
glutamate metabolism.(177; 178) β-cell proliferation and 
establishment of normal β-cell mass and size is dependent 
on mTOR signaling.(179; 180) As we consider prenatal 
and/or postnatal therapy with leucine to improve lean mass, 
β-cell function, and overall fetal growth, future studies are 
needed to define the adaptations that evolve in the fetal 
skeletal muscle and β-cells in response to nutrient restriction 
and the responsiveness of those adaptations to increased 
fetal leucine concentrations. 
 
8. CONCLUDING REMARKS AND FUTURE 
DIRECTIONS FOR AMINO ACID 
SUPPLEMENTATION 
 

Due to the potent growth promoting effects 
of amino acids discussed in this review, maternal protein 
supplementation during IUGR pregnancy to improve fetal 
growth remains an attractive option. However, adverse fetal 
outcomes observed in several clinical studies highlight the 
need to fully understand the mechanisms by which



Amino Acid Supplementation in IUGR 

436 

 
 

Figure 7. Mechanisms by which leucine might improve 
fetal growth. 

 
additional amino acids in the maternal diet are transferred to 
the fetus and how the fetus handles the protein load. 
Initially, we need to understand how an external supply of 
amino acids provided directly to the fetus affects fetal 
protein metabolism,  hormonal profiles, and growth. This 
can be done with chronic, direct intravenous fetal infusions 
using animal models of normal and IUGR pregnancy. This 
method allows for detailed analyses of the in vivo fetal 
metabolic, physiological, and endocrine responses to amino 
acid infusion. Cellular and molecular responses to the 
infusion at the level of individual tissues and organs can 
also be evaluated. Intra-amniotic amino acid 
supplementation should be considered, as this delivery 
method bypasses a poorly functioning placenta in IUGR and 
circumvents the problem of reciprocal inhibition of amino 
acid transport to the fetus.(71) Only after beneficial growth 
responses as a result of direct fetal amino acid 
supplementation have been documented can strategies for 
maternal supplementation be undertaken.  Maternal studies 
in normal and IUGR pregnancies will require experimental 
designs that can evaluate the effects of a maternal protein 
supplement on placental amino acid metabolism. 
Furthermore, a thorough understanding of the mechanisms 
by which amino acids are transferred from the mother to the 
fetus and how the fetus uses amino acids for proper growth 
is necessary. These studies are critical to effectively provide 
a balanced complement and a safe dose of amino acids to 
the fetus that will improve fetal growth during an IUGR 
pregnancy. Finally, individual amino acid supplementation 
during pregnancy might be beneficial. Taurine, arginine, 
and leucine all have the potential to promote favorable fetal 
growth by promoting improved placental and fetal 
perfusion, tissue-specific growth and metabolism, or 
through mechanisms yet to be discovered. Due to the lack of 
currently accepted therapies to improve the outcomes for 
IUGR pregnancies, nutritional therapies to maximize fetal 
growth and well-being during IUGR pregnancy deserve 
further study.  
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