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1. ABSTRACT 
 

Histamine is one of the most versatile biogenic 
amines targeting a variety of cells through extra- and 
intracellular binding sites and specific receptors, which trigger 
different signal transduction pathways. It has been associated 
with cell growth ever since G. Kahlson demonstrated that its 
synthesis was increased in rapidly growing tissues of plants 
and animals. He proposed that the newly formed amine, as 
opposed to its stored counterpart, might play a major role in 
growth processes. Later on, a number of investigators 
provided evidence for the contribution of histamine to the 
expansion of normal and malignant cells, whether of 
hematopoietic origin or not. These studies have generated 
conflicting results, revealing growth-promoting as well as 
inhibitory effects, most likely because the final outcome of 
exposure to histamine depends on the signaling pathways 
triggered by distinct receptors and their differential 
distribution among the target population. The purpose of the 
present review is to outline our current understanding of the 
regulatory functions of histamine during growth and 
differentiation of hematopoietic progenitors, focusing on 
those mediated through its H4 receptor. 

 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

The term hematopoiesis designates a complex 
process of proliferation and/or differentiation leading from 
stem cells to the formation of all mature blood cells through 
a series of lineage commitment stages controlled by 
specific transcription and growth factors as well as 
stimulatory or inhibitory signals from the stroma (1). 
Recent studies have established that molecules of the 
neural-immunological axis, such as biogenic amines, can 
also take part in this complex network (2,3). Indeed, the 
bone marrow is not only highly innervated with both 
nonmyelinated and myelinated fibers (4), but also expresses 
a number of neurotransmitter G-protein-coupled receptors 
(5) through which hematopoietic progenitor cells can be 
targeted. In support of a regulatory function, it has been 
reported that catecholaminergic neurotransmitters regulate 
migration and repopulation of human hematopoietic 
progenitor cells (6) and that serotonin is able to stimulate 
their expansion (7). 
 

It has been known for a long time that increased 
histamine formation is associated with growth processes in 
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plants (8) and animals (9). Furthermore, the histamine-forming 
enzyme histidine decarboxylase (HDC) is expressed at high 
levels in fetal liver (10, 11), which together with the 
concomitant expression of specific receptors supports a 
potential contribution of histamine to the modulation of 
hematopoiesis. Such a function has been repeatedly assigned to 
H1 (H1R) and H2 (H2R) histamine receptor subtypes during 
early steps of inducible hematopoiesis, while a possible 
implication of the H4 receptor (H4R) has been considered only 
recently. The preferential expression of this receptor subtype in 
the bone marrow is consistent with its intervention during 
hematopoiesis. Furthermore, more selective and potent 
receptor ligands are now available or about to be developed to 
address this issue. Indeed, the use of specific pharmacological 
tools will be a prerequisite in unraveling the complex 
interactions through which histamine can modulate 
hematopoiesis. In the following we will summarize the data 
that support a regulatory function of histamine during 
inducible hematopoiesis in both murine and human systems, 
focusing on H4R-mediated activities.  
 
3. MODULATION OF HEMATOPOIESIS BY 
ENDOGENOUS AND EXOGENOUS HISTAMINE 
 

We have established some time ago that 
histamine is newly synthesized in the bone marrow during 
skin allograft rejection or expulsion of the nematode 
Nippostrongylus brasiliensis (13,14). Later on, interleukin 
(IL)-3 and granulocyte-macrophage colony-stimulating factor 
(GM-CSF) were identified as major inducers of this biological 
activity and characterized the histamine-producing cells as 
basophils (15-17). Addressing the physiological role of 
endogenous medullary histamine, we found that it was 
requisite for IL-3-induced entry of stem cells (CFU-S: cells 
forming colonies in the spleen of irradiated recipients) into cell 
cycle (18,19), which failed to occur in the presence of a 
specific HDC inhibitor.  
 

This result is in agreement with a previous report by 
J. Byron, who showed that 4-methylhistamine, considered a 
specific H2R agonist at the time, promoted CFU-S cycling 
(20). We came to a similar conclusion regarding bone marrow-
derived histamine, since H2R antagonists abolished this typical 
biological activity of IL-3 (18). The finding that 
extramedullary hematopoietic recovery after gamma 
irradiation is impaired in HDC-deficient mice (21) provides an 
additional argument in favor of a growth-promoting function 
of endogenous histamine during inducible hematopoiesis. 
However, these data need to be reappraised considering the 
preferential expression of the H4R in the bone marrow, in 
particular with respect to the cell cycle arrest in CFU-S 
ascribed to H1R activation (22) and the effect on other more 
lineage-committed progenitor cells.  
 
4. EVIDENCE FOR FUNCTIONAL H4R 
EXPRESSION IN HEMATOPOIETIC PROGENITOR 
SUBSETS 
 
4.1. H4R expression in murine and human 
hematopoietic progenitor cells 

Until now the H4R has been chiefly investigated 
as a potential pharmacological target for anti-inflammatory 

therapy (23), given its originally reported functions, i.e. 
recruitment of immune cells, such as eosinophils, mast 
cells, neutrophils and dendritic cells (24-28), mediator 
release and exacerbation of inflammatory diseases like 
experimental allergic asthma (29,30). However, the fact 
that the H4R is detected most easily in the bone marrow 
supported a possible expression in the progenitor 
compartment of this organ (31). This is effectively the case, 
as assessed not only by RT-PCR, but also by flow 
cytometry analysis that revealed a progressive increase in 
the percentage of positive cells from total to the most 
primitive c-kit+Sca1+ bone marrow cells, reaching over 
70% and more than 90% among sorted human CD34high 
cells (32). Conversely, whatever their degree of 
purification, hematopoietic progenitors do not express the 
H3 receptor (H3R) subtype. This is an important point, 
because of the high degree of homology between the two 
receptors and the fact that most H4R ligands used so far 
recognized both subtypes (33).  
 
4.2. H4R-mediated blockade of growth factor-induced 
entry of hematopoietic progenitors into cell cycle 

Hematopoietic progenitor cells are mostly 
quiescent during steady state (34), entering the cell cycle 
only upon stimulation. Activation of the H4R by agonists, 
such as clobenpropit, a partial agonist, initially developed 
as an H3R antagonist, before exposure to growth factors 
leads to a drastic decrease in the percentage of cycling cells 
from around 50 to 10%. This inhibition is not followed by 
apoptosis, as assessed by Annexin-V staining and a return 
to cell cycle progression after removal of H4R agonists and 
re-exposure to growth factors. Several experimental 
approaches, such as tracking of cell divisions after CFSE 
staining, cell cycle analysis after incorporation of 
fluorescent dyes into DNA and cell counts, confirmed that 
H4R stimulation blocks progenitor cell proliferation and/or 
differentiation by preventing G1/S cell cycle transition 
(Figure 1). It does so not only by downregulating cyclins 
D3 and E that are essential for passing this restriction point, 
but by modulating the transcription of many other genes 
involved in cell cycle regulation (32).  
 

H4R agonists inhibit both myeloid (CFU-GM) 
and lymphoid (CLP) colony formation in the standard 
methylcellulose assay, indicating that the receptor is 
functional in primitive populations. A comparable 
inhibition occurred in a proliferation assay set up with 
different growth factor cocktails to reveal myeloid and 
erythroid progenitors, based on luminescence readout (32). 
 
5. H4R SIGNALING  
 
5. 1. cAMP/PKA-dependent cell cycle arrest in response 
to H4R activation 

As reported for other cell types, H4R signaling in 
murine hematopoietic progenitors is initiated by coupling 
to the Pertussis toxin (PTX)-sensitive Gi/o protein 
(31,33,35). It is followed by downregulation of adenylyl 
cyclase and a decrease of cAMP that is critical for cell 
cycle arrest. H4R signaling through cAMP has mainly been 
reported for transfected cells so far, while in mature 
primary cells Ca2+ appears to be the chief second 



Modulation of hematopoiesis through histamine receptor signaling 

469 

 
 

Figure 1. Schematic representation of the signal transduction pathway induced by histamine H4 receptor (H4R) activation in 
hematopoietic progenitor cells (sorted CD34+ cells). H4R ligation triggers coupling to Gi/o protein followed by downregulation of 
adenylyl cyclase (AC) and decrease of adenosine 3’:5’-cyclic monophosphate (cAMP), which is followed by decreased protein 
kinase A (PKA) activity, resulting in decreased cyclin D and E expression and maintenance of p21, probably relayed by cAMP 
response element-binding (CREB).  = maintained expression.  

 
messenger (24,26). Further downstream, cAMP-dependent 
PKA transduces the signal since cell cycle arrest is 
mimicked by a specific inhibitor of this enzyme. Erk 
expression was not modified by exposure to H4R agonists, 
notwithstanding the increased evidence for a crosstalk 
between cAMP and the ERK/MAPK pathway (36). It is 
therefore most likely that decreased cell cycling is 
promoted through PKA/CREB signaling, as proposed 
previously (37). 
 
5. 2. Cell cycle arrest through H4R-induced 
maintenance of p21Cip1/Waf1 expression  

Passing the restriction point between G0/G1 and S 
in response to growth factor stimulation requires decreased 
expression of cyclin-dependent kinase inhibitors. H4R 
activation prevents the downregulation of one of these 
inhibitors, namely p21Cip1/Waf1, a cell cycle regulator with 
important functions in self-renewal, differentiation and 

apoptosis of progenitor cells (38). By contrast, the 
expression of p27Kip1 that has been associated with the 
regulation of growth and/or differentiation of more lineage-
restricted progenitor cells (39) was diminished in the same 
conditions. However, it is generally agreed on that both 
mediators need to be suppressed to ensure the entry of 
hematopoietic progenitor cells into cell cycle (40), as the 
maintenance of one compensates for the loss of the other.  
 
6. H4R-INDUCED CELL CYCLE ARREST AS A 
MEANS OF MYELOPROTECTION 
 
6.1. H4R-mediated in vitro and in vivo protection of 
hematopoietic progenitor cells against the toxicity of 
anti-cancer drugs  

The reversibility of the cell cycle arrest together 
with the lack of apoptosis qualified the H4R as a potential 
pharmacological target to protect clonogenic cells from the 
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hematotoxicity of anti-cancer drugs, which limits the 
benefit of chemotherapy (41). Several methods are 
currently applied to prevent these complications, such as 
autologous bone marrow transplantation at high-dose 
chemotherapy (42) or treatment with growth factors like 
G-CSF or Epo to alleviate neutropenia or to prevent 
anemia, respectively (43, 44). Yet, even though the 
period of hematopoietic recovery is shortened by these 
treatments that allow a more intensive drug regimen, 
they are difficult to handle and not devoid of side 
effects. It has also been suggested that growth factor 
administration post chemotherapy may deplete the stem 
cell compartment and give rise to genomic alterations, 
even though these issues remain controversial (45, 46). 
For all these reasons a preventive intervention to protect 
rather than regenerate hematopoietic progenitors would 
obviously be preferable.  

 
Previous studies have attempted to render 

hematopoietic cells resistant to anti-neoplastic drugs by 
slowing down their cell cycle progression, while 
improving anti-tumor activity by dose intensification 
(47-50). Some of these cell cycle inhibitors have proved 
quite effective in vitro or in murine in vivo models 
(48,49), but turned out to be less beneficial in 
preclinical trials because of a number of side effects 
(50). A myeloprotective effect has also been reported 
for catecholamines (51), while Broxmeyer et al. 
established that chemokines act in synergy to decrease 
the percentage of progenitors in S phase, thus 
accelerating hematopoietic recovery (52). It is not clear 
so far whether this effect is direct or indirect and how 
chemokine receptors are distributed in different 
hematopoietic progenitor subsets.  
 

A potential therapeutic application of H4R 
agonists as a means of myeloprotection during 
chemotherapy was consistent with in vitro experiments, 
which showed that following H4R activation the proportion 
of murine and human clonogenic progenitors that survive 
treatment with anti-cancer drugs like cytarabine (AraC) or 
5- fluorouracil (5-FU) is significantly increased. It was also 
supported by the induction of cell cycle arrest in 
hematopoietic progenitor cells in vivo in mice having 
received repeat injections of H4R agonists. In a model of 
chemotherapy with the cell cycle-dependent drug AraC, the 
aplasia appearing 2 days post-treatment was significantly 
reduced by a prior exposure to the partial H4R agonist 
clobenpropit and clonogenic progenitor frequencies in the 
bone marrow were maintained. The agonist did not modify 
either of these parameters per se and had no other adverse 
effects. In further support of a potential clinical usage, H4R 
activation in vivo provided also a partial protection of 
clonogenic cells against cyclophosphamide, a mobilizing 
agent that is only partially cell cycle-dependent (32). 
 
6. 2. Lack of H4R expression and function in common 
carcinoma cell lines 

Treatment with H4R agonists during 
chemotherapy can only be envisaged if it does not impair 
the anti-tumoral cytotoxicity. It is obvious that in a clinical 
setting H4R expression in cancer cells should be verified in 

each patient before treatment and avoided when positive. 
Note that the studies investigating the effect of H4R 
activation on tumor cell proliferation have given rise to 
conflicting results until now. For example, in the MDA-
MB-231 breast cancer cell line H4R activation has been 
shown to result in G0/G1 cell cycle arrest followed by 
apoptosis (53), while in another report histamine receptor-
mediated cell cycle arrest occurred in G2/M, once again 
followed by apoptosis and enhanced radio-sensitivity, 
which would increase the therapeutic efficiency rather than 
protect malignant cells (54). It has also been proposed that 
H4R expression is downregulated in colorectal tumor cells 
(55), as compared with healthy tissue, which underscores 
once again the requirement of individual tests. 
 

We failed to confirm the expression of H4R in 
the colon carcinomas, HT29 and HCT116, and the 
mammary carcinoma MDA-MB-231. In accordance with 
this result, we found that the H4R agonist clobenpropit 
affected neither the proliferation of these malignant cells 
nor their sensitivity to in vitro treatment with the 
antineoplastic drug 5-FU, which raises the question of the 
reliability of results obtained with long-established cell 
lines. 
 
7. CONCLUSIONS AND PERSPECTIVES  
 

In conclusion, in addition to its pro-inflammatory 
functions in terms of chemotaxis and cytokine production, 
H4R activation affects hematopoiesis by inhibiting cell 
cycle progression in progenitor cells. For the time being, 
we do not understand the relevance of this activity in 
pathological situations, such as helminth infection, that lead 
to the generation of high histamine levels in hematopoietic 
organs. It is possible that the cell cycle arrest mediated 
through the H4R facilitates the mobilization of 
hematopoietic progenitor cells to extramedullary sites, as 
proposed by a previous study (56). Knowing that bone 
marrow cells express H1R, H2R and H4R subtypes, we 
postulate that newly synthesized medullary histamine might 
preferentially target the H4R on progenitors with short-
term repopulating activity, while promoting the 
proliferation of more primitive stem cells through 
activation of the H2R. This would be a means of 
replenishing the lineage-committed compartment depleted 
by mobilization.  
 

The reversible cell cycle arrest in response to 
H4R activation provides a potential therapeutic strategy to 
alleviate the side effects of chemotherapy by decreasing the 
myelotoxicity of anti-cancer drugs. According to our 
results, the cell cycle arrest will protect mainly the 
progenitors that ensure short-term hematopoietic recovery, 
while the quiescent stem cell population will not be 
affected, being insensitive to the toxicity of the cell cycle-
dependent drugs (57). Hence, our approach will limit the 
period of aplasia by accelerating reconstitution from more 
lineage-restricted clonogenic progenitors without impairing 
the efficiency of the anti-cancer treatment. These clinical 
perspectives, which might eventually facilitate 
chemotherapy dose and schedule intensification, call for the 
development of new, more selective H4R agonists. 
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