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1. ABSTRACT 
 

Folliculogenesis is a complex process involving 
dramatic morphological and functional changes in 
granulosa and theca cells. This process is sequential and 
dictated specifically by tightly regulated response to 
endocrine hormones and intra-ovarian regulators. In 
mammalian ovaries, only a few number of presented 
follicles in a fetal ovary can reach ovulatory status during 
follicular development; more than 99% of the follicles in 
the ovary undergo a degenerative process known as 
“atresia” induced by apotosis. It is characterized by distinct 
biochemical and morphological changes such as DNA 
fragmentation, plasma membrane blebbing and cell volume 
shrinkage.  Apoptosis in ovary is regulated by a number of 
endocrine, locally produced intracellular mediators in a 
stage-specific and time-dependent manner. New knowledge 
of hormones and cell factors which regulate granulosa cell 
or oocyte apoptosis and their possible signaling pathways 
underlying intracellular events has made important 
contributions in advancing our understanding mechanism 
of follicular atresia. 

 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Apoptosis, also named programmed cell death, is 
a necessary process in a living organism to maintain proper 
development, and eliminate cell damage or excess (1, 2). In 
embryogenesis, for example, the fetus to form fingers and 
toes is needed by removing the tissue between them. It is 
also necessary for body to destroy cells that threatening 
integrity of organism (3). Over a century ago, there was no 
“term” for “apoptosis” or “programmed cell death”. The 
earliest description of the physiological cell death 
recognized as distinct from pathological tissue destruction 
was derived from morphological evaluations (2). Later, a 
series of criteria were set up to identify the programmed 
cell death (4). 

 
 Apoptosis is an active form of programmed cell 

death, which is characterized by distinct biochemical and 
morphological changes, such as DNA fragmentation, 
plasma membrane blebbing and cell volume shrinkage. The 
characteristic structural and molecular events of apoptosis 
distinguish from necrosis, which is a group of cells die at 
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same time (4). Apoptosis always occurs in a single cell 
surrounded by viable cells. In multicellular organisms 
physiologically removing cells by apoptosis is a mandatory 
process in maintenance of homeostasis of individual. 
Apoptosis occurs in embryonegesis, embryo development 
and in various adult tissues, including reproductive tracts.  

 
Generally it is thought there are two pathways 

for regulation of cell apoptosis: the extrinsic or death 
receptor pathway and the intrinsic or mitochondrial 
pathway (5, 6). In death receptor pathway, apoptosis is 
triggered by the binding of cell death receptors (Fas, TNFR 
etc.) located in the plasmic membrane with their 
complementary death activator (FasL, TNF etc.). The 
binding of death receptor and activator induces receptor 
accumulation and formation of a death-inducing signal 
complex (DISC). This complex recruits and activates a 
number of apoptotic executors, such as procaspase-8 (7-
10). Activated caspases-8 also can cleave Bid, increasing 
its pro-death activity and translating it to mitochondria, 
where it causes the mitochondrial cytochrome c release. 
Both of these two pathways occur in gonads and uterus. 

 
Apoptosis is an essential physiological process, 

by which tissues function normally. A balance of cell 
proliferation, differentiation and apoptosis plays an 
important role in a healthy organ, and any imbalance of the 
processes can lead to organ dysfunction and developmental 
abnormalities. Apoptosis in ovary is regulated by a number 
of endocrine, locally produced mediators. However, the 
signaling pathways underlying the intracellular events 
induced by these regulators are not clear. This chapter was 
focused on cell apoptosis in ovary by reviewing available 
data published in the recent literature, including our recent 
publications in the fields. The review would also address 
new knowledge of hormones and cell factors as well as 
their possible signaling pathways underlying the 
intracellular events, which regulate somatic and germ cell 
apoptosis in the gonad.                                                                                                                                                                                                        
 
3. APOPTOSIS DURING FOLLICULAR 
DEVELOPMENT  
 
3.1 Follicular development 

During embryogenesis, primordial germ cells 
migrate from yolk sac through dorsal mesentery of hindgut 
to genital ridge, and the somatic cells derive from 
mesenchyme of genital ridge. Both of germ cells and 
somatic cells proliferate till each germ cell is enclosed by 
one layer somatic cells, named follicular epithelial cells�to 
form primordial follicles. After mitosis occurred in somatic 
cells, the germ cells undergo first meiotic division, called 
primary oocytes. The primary oocytes become arrested in 
the diplotene stage of meiosis, until the primordial follicles 
start to grow and finally reach ovulatory stage.  

 
Folliculogenesis is a complex process involving 

dramatic morphological and functional changes in 
granulosa and theca cells. This process is sequential and 
dictated by specifically, tightly regulated response to 
endocrine hormones and intraovarian regulators. They 
control follicular development by determining which of the 

growing follicles continue to develop and differentiate, and 
which become atretic. Mammalian ovaries contain 
thousands of thousand primordial follicles that are the only 
source of gametes during the entire reproductive life. 
However, there is study provides evidence that challenges 
the validity of the belief, the results showed bone marrow 
and peripheral blood as potential sources of female germ 
cells, that could sustain oocyte production in adulthood (11, 
12). Primordial follicle consists of an oocyte surrounded by 
a single layer of flattened pre-granulosa cells. The 
primordial follicles may survive more than 50 years in 
woman ovary. Once a group of primordial follicles begin to 
grow, they will develop and differentiate either into 
dominant follicle (s) and ovulate, or undergo atresia at 
various stages of development. During onset of primordial 
follicle growth, flattened pre-granulosa cells become 
cuboidal and begin to proliferate. The enclosed oocyte 
begins to grow at the same time (13, 14). It is interesting to 
note why and how some primordial follicles are capable of 
starting to grow while their neighbor sisters remain 
quiescent. The signal (s) for selection of primordial follicle 
growth is not clearly known.  

 
Growth of granulosa cells in the follicle is a key 

process in initiation and development of primordial follicle. 
The early growth stage of primary follicles (with mono-
layer cuboidal granulosa cells) and secondary follicles 
(with stratified granulosa cells but without antrum) is 
characterized by a dramatic increase in proliferation of 
granulosa cells, identified in the rapid increase in number 
and size. Subsequently, granulosa cells separate from each 
other resulting in formation of follicular antrum, which is 
called antral follicle. Meanwhile, meiosis restarts in 
secondary oocyte, germinal vesicle (GV) disappearance, 
called GV breakdown (GVBD), and the first polar body 
divides. At last, the selected follicle burst, and the oocyte is 
ovulated, the rest of follicular cells further differentiate into 
a new endocrine organ, called corpus luteum (15).    

 
3.2 Follicular atresia 

In newly formed embryonic ovary, the germ cells 
leave mitotic cycle, and begin with meiotic divisin, the 
meiotic division of the oocytes become arrested in the first 
prophase (16). During both mitosis and meiosis, large 
numbers of germ cells are culled from the ovary for as yet 
unknown reasons, resulting in less than one-third of the 
total number of potential germ cells being endowed in the 
ovary within primordial follicles shortly after birth (17, 18). 
In human fetal ovaries, the maximum number of germ cells 
observed in 5 month of pregnancy is about 6.8×106. At 
birth, the number of germ cells in the primordial follicles 
has decreased markedly to less than 20% of the maximum 
number, due to apoptosis of germ cells occurring before 
formation of ovarian follicles (19). Detailed analyses of 
germ cell degeneration in rodent and human fetal ovary 
suggest that there are several discrete waves of germ cell 
loss occurring, such as attrition of dividing oogonia, 
degeneration of pachytene stage oocytes, and loss of 
diplotene stage oocytes (17-19).  

 
Although male mammals generally retain 

germline stem cells for spermatogenesis in testis 
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throughout their adult life, oocyte production in most of 
female mammals is believed to cease before birth (16, 18, 
20-22). The central concept of reproductive biology “basic 
biological doctrine that during the life of the individual 
there neither is nor can be any increase in the number of 
primary oocytes beyond those originally laid down when 
the ovary was formed” (23). But the belief of the concept 
has been challenged by Tilly et al, based on the data of 
rates of oocyte degeneration and clearance, as well as the 
chemical 9,10-dimethylbenz (α) anthracene (DMBA) 
induced synchronization of atresia in mouse ovary. They 
have demonstrated that in addition to existence of 
proliferative germ cells that sustain oocyte and follicle 
production in the postnatal mammalian ovary, the 
transgenic female mouse bone marrow may be also a 
potential source of germ cells to sustain oocyte production 
in adulthood (11, 12). However there is no evidence to 
determine whether those oocytes can fertilize normally and 
develop into viable offspring. Most ovarian follicles 
(>99.9%) present at birth never reach ovulatory status, but 
undergo atresia at various time point along this extended 
developmental pathway. 

 
Apoptotic process follows a particular pattern 

during different phases: in fetal ovaries, most of apoptotic 
activity was detected in germ cells; while in adult quiescent 
cortical follicles apoptosis was occurred originating from 
both oocyte and granulosa cells. It has been demonstrated 
that it is the oocyte which initiates the apoptotic process 
and induces the follicular atresia. The process always 
begins from the oocyte and then extends to the surrounding 
follicular cells leading to the growing follicle atresia. (24). 
Thus, it seems that the apoptotic signals can communicate 
from a single cell to all over the other cell types inside the 
follicle. Finally, the whole follicular structure has become 
atretic, while the surrounding stromal cells remain viable. 

 
It is interesting that although in the growing 

follicles, follicular atresia is mainly induced by granulosa 
cells, there species-specific difference in the apoptotic 
process was observed. The initiation area of granulosa cell 
apoptosis is different among species, it is therefore 
suggested that different local mechanisms to regulate 
apoptotic process may be present (25-27). For example, at 
the earliest stage of follicular atresia, the apoptotic 
granulosa cells are randomly scattered in ovaries of 
rodents; while in bovine ovary, apoptotic granulosa cells 
are located on outer surface of follicular wall; and in 
porcine ovary, apoptotic granulosa cells are located on 
inner surface of granulosa layer. Moreover, during early to 
middle stages of follicular atresia, there is no apoptotic 
cells observed in the theca external layer, although 
detachment and degeneration of granulosa layer, 
fragmentation of basement membrane, and the apoptotic 
endocrine cells in theca internal layer were observed. 
 
4. HORMONAL REGULATION OF OVARIAN CELL 
APOPTOSIS  
 

Physiological death of a cell is usually under 
control of multiple extracellular factors, and the balance of 
survival and apoptotic signals determines a cell fate. 

Follicular cell apoptosis is regulated by multiple hormones, 
including pituitary hormones as well as local growth 
factors, cytokines, and steroids (28, 29). Diverse hormones 
and growth factors can act as survival factors to inhibit 
apoptosis, or as apoptotic factors to induce cell demise, 
such as Fas ligand, tumor necrosis factor (TNF)-α, 
interleukin-6, and gonadotropin-releasing hormone (GnRH) 
(30-35), through endocrine, paracrine and autocrine 
mechanisms. The factors that regulate apoptosis in diverse 
tissues appear to be tissue-specific. In ovary, the action of 
these factors is dependent on the stage of follicular 
development as shown in Figure 1.  
 
4.1 Primordial follicles     

In primordial follicles, oocyte apoptosis is likely 
responsible for follicular degeneration. FSH is important 
for follicular development, however, FSH is unlikely to 
exert a direct action on primordial follicles because FSH 
receptors have not yet developed at this stage (36, 37). In 
fact, follicles do not express functional FSH receptors until 
the secondary stage of follicular development (36-38). 
Stem cell factor (SCF) is important for survival of 
primordial follicles in fetal as well as postnatal ovaries by 
preventing oocytes from apoptosis (39, 40). Another 
oocyte-derived factor which is important for survival of 
small follicles is growth and differentiation factor 9 (GDF-
9). In mice lacking GDF-9 follicles do not develop beyond 
the primary or early secondary stage (41). Just recently we 
have demonstrated that androgen receptor (AR) and 
Foxo3a was expressed in 2 day-old mouse oocyte, 
treatment of the cultured ovaries with testosterone induced 
the ovarian Foxo3a phosphorylation and primordial 
follicular growth and development via PI3-K/Akt signal 
pathway. In contrast, the oocyte GDF9 was down-regulated 
by the androgen at late stage of culture via the same signal 
pathway. Therefore we suggested that intra-ovarian 
hyperandrogenism might be the main culprit for 
excessively growing follicle by inducing the Foxo3a 
exclusion from oocyte nucleoli and for follicular arrest by 
directly down-regulating GDF9 expression.  
 
4.2 Preantral follicles 

It has been reported that FSH is important for 
development of preantral follicles in vivo, and FSH can 
also enhance expression of steroidogenic enzymes (43, 44). 
Decrease of circulating gonadotrophins through 
hypophysectomy (45) or blockade of luteinizing 
hormone/follicle stimulating hormone (LH/FSH) surge (46) 
lead to massive atresia of pre-ovulatory follicles on the day 
of pro-oestrus. The hormonal regulation of apoptosis in 
granulosa cells during follicular atresia appears very 
complex, and probably involves a classic cell crosstalk of 
oocyte – granulosa cells - theca-interstitial cells, as well as 
interaction among the cells at different stage of follicular 
development (47-49). For example, when the preantral 
follicles isolated from 12-14 day old rats were cultured in 
serum-free medium, a spontaneous onset of apoptosis was 
observed in the granulosa cells, similar to that in 
preovulatory follicles. FSH, as well as its downstream 
mediator cAMP could not inhibit apoptosis of the 
granulosa cells in the cultured preantral follicles (50). This 
finding suggests that the action of gonadotrophins on 
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granulosa cell 

 
 

Figure 1.  Progress of granulosa cell growth, differentiation and atresia. From the activation of the primordial follicle growth to 
selection of secondary follicle, growth factors appear to exert important effects on the growth and differentiation of granulosa cell 
(GC). Many factors, such as NGF, EGF, and GDF-9/bFGF as well are found to stimulate the initiation of primordial follicles. 
FSH receptor (FSHR) has been found in granulosa cells at primary stage, however, preantral follicle development is regulated 
predominantly by factors produced locally within ovary or follicle. FSH is not a necessary survival factor in the early developing 
preantral follicles. Progression of the antral follicle stage is the most critical stage of follicle development in vivo.GCs at this 
stage have acquired functional FSH receptors�their proliferation and differentiation are driven mainly by FSH and LH (at the 
preovulatory stage), and modulated by other extrinsic and locally produced factors which may have both stimulatory and 
inhibitory action on GC, such as inhibin. Inhibin was first identified in ovarian follicular fluid and demonstrated its ability to 
suppress FSH secretion. Apoptosis occurs at each stage of follicular development in the control of the indicated factors. 
Reproduced with permission from (154). 

 
apoptosis may be mediated via other gonadotrophin – 
sensitive cells, such as cells in follicles at a later stage of 
development, rather than directly on the preantral follicles.  
Besides gonadotrophins, locally produced survival factors 
may also play important roles in regulation of follicular 
atresia. Sex steroids have been demonstrated to be essential 
important ovarian factors for follicle development (51). In 
human, ovine or porcine ovaries estradiol production by 
atretic follicles was lower, while androgen production was 
higher (52-54). However, in rat and hamster ovaries, the 
production of both estrogen and androgen decreased in 
atretic follicles (46, 55-57). In general, changes in 
steroidogenesis can be observed prior to morphological 
signs of atresia (46, 55, 58). Liu et al have demonstrated 
that endogenously-produced estrogen in the developing 
follicles synergistically with FSH can enhance the 
aromatase activity and differentiation of LH receptors�and 
is essential for follicular differentiation and dominate 
follicle formation. Decrease in endogenously estrogen in 
the follicle may lead to its atresia (59, 60).  

 
In-situ analysis of DNA fragmentation on 

histological sections of ovaries has demonstrated that 
apoptosis induced by estrogen withdrawal in 
hypophysectomized rats is confined to the granulosa cells 
in early antral and pre-antral follicles, but no increase in 
DNA breakdown in primordial and primary follicles was 
demonstrated (51). ERαβ double knock-out mice are 

infertile because of follicular arrest (61, 62). Nevertheless, 
early follicular growth and development can also occur in 
these mice, even though mature Graafian follicles do not 
form.  

 
In contrast to estrogen, which inhibits granulosa 

cell apoptosis, androgen promotes the cell apoptosis (28). 
In vivo, treatment with androgen causes a dose- and time- 
dependent decrease in ovarian weight (63, 64) and an 
increase in morphological signs of atresia in estrogen – 
treated hypophysectomized rats (64).  

 
Other locally produced growth factors, including 

keratinocyte growth factor (KGF), fibroblast growth factor 
(bFGF) are also important for survival of preantral follicles. 
KGF, a member of FGF family which produced by thecal 
cells and receptors of that are present in granulosa cells, 
suppresses apoptosis in cultured rat preantral follicles (65).  
Similar effect of FGF on apoptosis has also observed in 
cultured preantral follicles (65).  
 
4.3 Early antral follicles 

In human and rodent, the early antral stage of 
follicle development is the most critical stage. At this stage 
a functional FSH receptor is expressed in the granulosa 
cells, and follicle survival becomes mainly dependent on 
FSH stimulation (13). FSH is able to suppress apoptosis by 
up to 60%, but its action was partially reversed by insulin 



Ovary apoptosis 

684 

 
 

Figure 2. A representative diagram showing involvement of interaction between granulosa cell and theca cell in estrogen 
production in the follicle. Under the regulation of LH, the theca cell (TC) synthesizes androgen, but it can be not converted into 
the estrogen because of lacking P450arom in TC; while the granulosa cell (GC) under the action of FSH (also by LH at the late 
stage) synthesizes progesterone, the later, however can not be converted further into androgen because of lacking the necessary 
converting enzymes in GC, although GC has the P450arom, but can not synthesizes estrogen by itself. Progesterone produced by 
GC can be used by TC to convert androgen, while GC is capable of using the androgen produced by TC to convert into estrogen. 
The interaction of TC and GC in the follicle is a prerequisite for estrogen biosynthesis in the ovary and may produce the highest 
level of estrogen in the PMSG-treated follicles. Drawing reproduced with permission from (90). 

 
growth factor (IGF) binding protein IGFBP-3, suggesting 
that some of the physiological effects of FSH may be 
mediated by IGF  (66). Local production of IGF-I plays an 
important intra-ovarian role in augmentation of 
gonadotrophin stimulation of follicle differentiation. (67, 
68). IGF and its binding protein (IGFBP) are important for 
oocyte maturity, and granulosa cells differentiation during 
follicle development. Gene expression for IGF-binding 
protein in granulosa cells definitely differed between 
normal women and women with polycystic ovary 
syndrome (69-72). IGFBP-4 and -5 are produced by rat 
granulosa cells (73, 74). FSH treatment increases IGF-I 
production (75, 76), but decreases IGFBP secretion in 
ovaries (77). High concentrations of IGFBP have been 
detected in atretic human follicles of both normal and 
polycystic ovarian syndrome patients (78, 79). In situ 
mRNA analysis has further demonstrated presence of 
IGFBP in atretic�but not in healthy follicles (74). IGF-I,  
as well as FSH prevent spontaneous onset of apoptosis in 
cultured follicles (47), however, they can not prevent 
apoptosis in isolated granulosa cells, in spite of presence of 
their receptors on the granulosa cells (80), indicating that 
theca cells may be important for mediating the suppressive 
effect of IGF-I and gonadotrophins on apoptosis.   

 
The mechanisms controlling the follicular 

growth involve the interaction between local growth factors 
which are expressed throughout development and extra-
follicular factors. A large number of follicular growth 
factors, such as member of bone morphogenetic family, 
BMP-15, epidermal growth factor (EGF) and growth 
differentiation factor-9 (GDF-9) control the initiation of 

follicular growth and early preantral development. During 
antral follicle development, the oocyte secretes factors that 
stimulate granulosa cell proliferation and differentiation, 
modulate apoptosis and suppress progesterone production, 
thereby preventing premature luteinisation (81, 82). In the 
development competence of in vitro-matured (IVM) 
cumulus oocyte complexes (COCs), epidermal growth 
factor (EGF) has been proved functionally mimicked the 
action of FSH and could completely replace FSH for 
nuclear maturation, specific inhibition of EGF receptor 
(EGFR) inhibited both EGF- and FSH-induced meiotic 
resumption (83-87). Besides of EGF, growth hormone 
(GH), IGFs and IGFBPs also play an important role in 
preantral follicle growth through their binding with GH 
receptor, which are located both in the oocyte and follicular 
somatic tissues. In vitro studies and knockout experiments 
shows GH stimulates the development of small antral 
follicles to gonadotrophin-dependent stages, as well as 
maturation of oocytes. In antral follicles, IGFs stimulate 
granulose cell proliferation and steroidogenesis in most 
mammals (88, 89).  
 
4.4 Preovulatory follicles 

At the preovulatory stage, both granulosa and 
theca cells in the follicle express LH receptors and are able 
to respond to impending LH surge. It has been reported that 
FSH and LH both suppressed the degree of apoptosis in 
isolated preovulatory rat follicles (47). At this stage, 
interaction of granulosa cells and theca cells produces the 
highest estrogen in the follicle, as shown in Figure 2, that 
may be important for preventing the selected dominate 
follicle atresia and going to ovulation (90).  



Ovary apoptosis 

685 

Endogenous IGF-1 also partially mediates 
suppression of apoptosis by gonadotrophins. LH 
receptor stimulation results in an increase in IGF-1 
mRNA content in cultured preovulatory follicles, while 
IGFBP-3 results in a dose-dependent decrease in the 
apoptosis suppressive effect by LH receptor stimulation 
(47). Besides of IGF-1, cytokine IL-1β mediates part of 
apoptosis suppressive effect of gonadotrophins in rats, 
while IL-1β receptor antagonist partially decreases 
effect of gonadotrophins (91). Insulin is another survival 
factor for cultured rat preovulatory follicles. Although 
insulin has no effect on isolated preovulatory rat 
granulosa cells, it can decrease sensitivity of cultured 
follicles to apoptosis, suggesting involvement of other 
ovarian cells (80). EGF, bFGF, and GH suppress 
apoptosis effectively in follicles at preovulatory stage. 
 
4.5 Periovulatory follicles 

Follicles that survive to periovulatory stage are 
dependent on endogenous LH surge. After LH surge, 
follicles are less susceptible to atresia than those are at 
earlier stages (92). Inhibition of LH surge by 
hypophysectomy or pentobarbital treatment causes follicles 
to degenerate (93, 46). The suppression of LH to apoptosis 
is partly mediated by endogenous production of pituitary 
adenylate cyclase-activating polypeptide (PACAP) (94).  

 
Shortly after LH surge, expression of nuclear 

progesterone receptor is induced in both rat and human 
granulosa cells, which coincides with apoptosis suppressive 
effects of progesterone. In rat, expression of progesterone 
receptors is transient, while in human, it is prolonged (95, 
96). Progesterone functions as a regulator of apoptosis via 
its nuclear receptor at periovulatory follicles (92). Mice 
lacking both isoforms of the progesterone receptor (A and 
B) are anovulatory, indicating that progesterone has a direct 
effect in ovary (97, 98). Progesterone regulates expression 
of the genes, such as PACAP, and its receptor PAC1 (99, 
100). In immature and preovulatory stage (before LH 
surge), progesterone attributes an apoptosis-inhibiting 
effect via a GABA receptor-like receptor, but that seems 
not related with apoptosis (92).  
 
5. APOPTOSIS IN COUPUS LUTEUM  
 

The corpus luteum (CL) is developed by 
extensive cellular reorganization and neovascularization 
of remnants of evacuated follicle following ovulation. 
CL is a transient endocrine organ that secretes 
progesterone to support early pregnancy. If implantation 
is unsuccessful, luteolysis is initiated. In both rodent and 
primate, development of CL is a rapid process with very 
high cellular turnover (101-103). A CL is usually 
developed within hours in rat and mouse, and within 
days in monkey and human. A mature CL receives the 
greatest blood supply per unit tissue in the whole body 
(103). However, if the implantation is unsuccessful, the 
functional phase of the CL is terminated and luteolysis 
is initiated. Associated with these repetitive cycles of 
luteal development and regression is an extensive 
connective tissue remodeling and extracellular matrix 
degradation (104, 105).  

It has been reported that CL function is regulated 
by various bioactive substances, such as gonadotropins, 
steroids, and growth factors. CL regression can be initiated 
by the release of PGF2α from uterus. PGF2α inhibits the 
gonadotropin-stimulated CL progesterone production, after 
the initial decrease in the steroidogenesis, more chronic 
effects of PGF2α take place, including loss of gonadotropin 
receptors and disruption of the cytoskeleton, and preventing 
progesterone secretion, eventually followed by 
morphological changes in the steroidogenic cells, and loss 
in both size and weight of CL (106). Another important 
factor initiating CL regression is prolactin secretion in the 
estrous cycles (107). Using a chemical drug to block 
prolactin secretion, corpora lutea are increased by weight 
(108). Furthermore, chemical blockade of the proestrous 
prolactin surge diminishes apoptosis in the regressing 
corpora lutea (109). 

 
Luteal regression is a complex process that 

involves two phases. The first phase, named functional 
regression which means the functional ability of corpus 
luteum to sustain pregnancy lost at this stage, is defined as 
termination of secretion of appreciable quantities of 
progesterone (110) and occurs during the 4- to 5-day 
estrous cycle. The second phase, called structural 
luteolysis, is defined as the complete morphological 
regression of corpus luteum mainly by cell apoptosis. A 
great decrease in weight and size occurs at this stage. The 
latter process is executed long after the initial decline in 
progesterone secretion and corpus lutea may remain in the 
ovary throughout several estrous cycles before their 
complete dissolution (111, 112). The main mechanism 
involved in reduction in size and weight of corpus luteum is 
removal of luteal cells by apoptosis and subsequent 
phagocytosis (113, 114).  

 
Our serious experiments in monkey, rat and 

mouse have demonstrated involvement of matrix 
remodeling proteases in the processes of tissue remodeling 
during CL formation and luteolysis. Matrix remodeling 
proteases includes plasminogen activator (PA) (115, 116) 
and matrix metalloproteinase (117-123) system. Our 
experiment results suggest that coordinated expression of 
tissue type plasminogen activator (tPA) and its inhibitor 
type-1 (PAI-1) in corpus luteum at late stage of CL 
development in primate, rat and mouse induces CL 
regression, leading to luteal cell apoptosis (115, 116, 124). 
In addition to the PA system, recent evidence suggests that 
the luteal tissue remodeling is also regulated by 
MMP/TIMP system (117). The TIMPs have been reported 
to stimulate cell growth, impact angiogenesis, and induce 
cell apoptosis (125-127). Recently we demonstrated that 
coordinated expression of MMP-2, -14 and TIMP-1, -3 
may have a potential role in the CL formation and the 
function, while the interaction of MMP-2, -9, -14 and 
TIMP-1, -2, -3 might also play a role in CL regression at 
the late stage of CL development in the primate (127). 

 
At early and late stages of CL development an extensive 
tissue remodel and cell apoptosis occur. Using VEGF and 
its receptors as well as StAR as the marker molecules of 
CL function, we have designed experiments 
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to look at the possible effect of cytokines and RU486 on 
CL regression and apoptosis (128-133). As compared to the 
control, a single administration of RU486 significantly 
increased VEGF expression in the CL during early 
pregnancy in monkey. However, twice administration of 
RU486 significantly declined the single-RU486-induced 
VEGF expression (p=0.005), the mechanism, however is 
not known.  

 
IFN-γ can inhibit progesterone production of 

luteal cells (128, 129, 132, 133) and induce luteal cell 
apoptosis in varies species including human (134, 135). 
After treatment of monkey with IFN-γ, as compared to the 
control, the sharp endothelial cells in the CL altered into 
round. However, unlike TNF-α treatment, the VEGF levels 
did not increase after administration of IFN-γ. These results 
suggest that endothelial cells might be going to degenerate, 
IFN-γ may induce angiolysis in the primate CL even at the 
early state of CL development. Thus, IFN-γ could promote 
luteal degression by inducing the cell apoptosis in the 
primate.  
 

Evidence in recent years has shown that caspase-
3 exerts an important role in luteal cell apoptosis of bovine 
and cattle (136, 137). It has also reported that activation of 
protein kinase C (PKC) signal pathway and cAMP 
accumulation could protect bovine luteal cells from 
apoptosis by suppressing caspase-3 mRNA expression 
(138).  
 
6. SIGNAL PATHWAYS OF THE FACTORS IN 
REGULATING APOPTOSIS IN OVARY 
 

Selection of apoptosis or survival of granulosa 
cells and oocyte is a critical process in determining the fate 
of follicular development. In mammals, at least 60 different 
proteins and signaling molecules have been identified as 
constituents of intracellular framework that governs 
apoptosis. Although a number of endocrine and paracrine 
factors have been shown as survival or apoptosis-inducing 
factors in these cells in vivo or in vitro (139, 140), their 
molecular mechanisms and the underlying intracellular 
events are not completed illuminated. Several intracellular 
signaling pathways have been linked directly to promoting 
granulosa cell or oocyte survival, including pathways such 
as gonadotrophin- and vasoactive intestinal peptide (VIP)-
induced cAMP formation (48, 141), mitogen-activated 
protein kinase (MAPK) (142), and phosphoinositol-3-
kinase-Akt (143, 144). PI3K/Akt pathways play an 
important role in mediating anti-apoptotic action of SCF in 
oocytes of primordial follicles. Jin et al (39) demonstrated 
that the anti-apoptotic effect of SCF on oocytes was 
significantly inhibited by the PI3K inhibitor (Figure 3). 
Moreover, PI3K inhibitor could also revere the effect of 
SCF on the expression of Bcl-xL and Bax (Figure 4). 
MAPKs activation is a key event in many cellular 
processes, including proliferation, differentiation, and 
apoptosis (145). There are three main classes of MAPK: 
Erks, c-Jun amino-terminal kinases (JNKs), and P38 
proteins (146-148). Erks are important mediator of many 
factors, such as FSH (149), SCF (150). Inhibition of Erks 
activity with PD98059 distinctly reduces FSH-induced 

DNA synthesis in immortalized granulosa cells and over-
expressing a recombinant novel growth factor type 1 
receptor for FSH. Study on granulosa cells isolated from 
equine chorionic gonadotropin-primed immature rats 
revealed that activities of Erks,MEK kinase and Raf-1 were 
reduced with a concomitant decrease in phosphorylation 
level of the proapoptotic factor, Bad, prior to onset of 
granulosa cells apoptosis (142). Another important signal 
molecule stimulated by FSH is cyclic AMP (cAMP), 
signaling via cAMP enhances resistance of hen granulosa 
cells to apoptosis. Blocking cellular phosphodiesterase 
activity in forskolin-stimulated primary granulosa cells by 
isobutylmethylxanthine, which maintains high level of 
intracellular cAMP, led to further enhancement of cell 
death (141, 48).  

 
It has been reported that the regulated 

phosphorylation of Tyr residues is a major control 
mechanism for the processes as diverse as cell survival, 
proliferation, differentiation, and metabolism. The 
opposing activities of protein tyrosine kinases (PTKs) and 
PTPs accurately regulate protein phosphor-Tyr (pTyr) 
levels (151, 152). Several reports indicated that PTKs play 
important roles in regulating intracellular events of 
granulosa cells after stimulation with various factors (47, 
66, 80, 153). For instance, EGF, IGF/insulin and bFGF 
prevent spontaneous onset of apoptosis in cultured 
granulosa cells by activating their respective tyrosine 
kinase receptors (47, 80). IL-1β acts through cytoplasmic 
PTKs, called Janus kinases (JAKs), that is an effective 
survival factor for preovulatory follicles in vitro (66). Other 
signal molecules, such as Ca2+, protein kinase C, heat-
shock proteins may also involve in transduction of factors 
regulating the apoptosis in ovary.  

 
Using DNA 3’-terminal labeling, 

immunohistochemistry, in situ hybridization we 
comparatively examined the correlation expression of 
inhibin, LH receptor in granulosa cells, and the tPA activity 
in oocytes at the same section of the follicle. High level of 
tPA mRNA in oocytes was detected at early stages of 
follicular development, but tPA protein activity in the 
oocyte was not detected until the onset of meiosis 
maturation at late stage of follicular development triggered 
by the LH surge. The high level expression of inhibin in 
GC observed in the early stage follicles may play an 
essential role in preventing the tPA mRNA translation into 
its protein in the oocytes. Once inhibin expression 
decreases in the GC of developing follicles at early stage, 
the increasing tPA protein activity in the oocyte may 
induce certain morphological changes in the oocyte similar 
to GVBD, leading to the oocyte apoptosis and the follicle 
atresia in the under-developed follicles. Based on this 
finding, we have proposed a mechanism of follicular atresia 
originating from oocyte apoptosis (Figure 5) (154, 155) 
 
6.1 Intracellular molecular mechanism of ovarian cell 
death 

Although there are many different hormonal 
signals to regulate apoptosis in ovary, the intracellular 
cascade of events appears to share common features 
(Figure 6.). Bcl-2 system is important in regulation of
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Figure 3. Anti-apoptotic action of SCF on oocytes in cultured ovaries.  (A) Apoptotic nuclei are stained dark using the in situ 3’-
end labeling technique. a�Cultured ovaries without any treatment. Inset is area of higher magnification showing apoptotic 
staining is localized in nuclei of oocytes (arrows). b) Ovaries treated with 100ng/ml SCF for 2 days. c) Ovaries treated with SCF 
plus c-kit antibody. d) Ovaries treated with SCF plus IgG. e). Ovaries treated with SCF plus MEK inhibitor U0126. f) Ovaries 
treated with SCF plus PI3K inhibitor LY294002. g) Ovaries without SCF treatment and incubated with normal serum IgG as a 
negative control. Magnification is 400× (magnification of inset is 1000 ×).   (B).Statistical analysis of apoptotic oocytes in 
ovaries of different treatments. Vertical axis represents the percentage of apoptotic cells over total number of oocytes 
(mean±SEM, n=3) Statistical analysis was performed using ANOVA followed by the Student-New-Man-Keuls multirange test. 
Bars with different letters indicate statistically significant differences (P<0.05). Reproduced with permission from (39). 
 
ovarian cell apoptosis in vivo. Bcl-2 is a proto-oncogene, 
which encodes a membrane-anchored intracellular protein 
to prevent apoptosis induced by various stimuli (156, 157). 
Expression of Bcl-2 has been detected in ovary of many 
species (158, 159). In the transgenic mice over-expression 
of Bcl-2 was detected in the ovary, while the follicular cell 
apoptosis was suppressed, and followed by enhancing 
folliculogenesis and an increased incidence of benign 
ovarian teratoma development, indicating that Bcl-2 
associated regulatory system is operating in the ovary 
(160). In contrast, ablation of functional Bcl-2 through 

targeted disruption of the gene (gene ‘knock-out’) leads to 
significantly fewer oocytes and primordial follicles in the 
postnatal ovary (161). Another member of Bcl-2 gene 
family is Bax, a death-susceptibility gene. The protein of 
Bax was originally identified via its ability to non-
covalently interact with Bcl-2 in cells (162). This 
interaction is thought to blunt Bcl-2 bioactivity and thus 
serve as proapoptotic member. With oocyte in-vitro 
maturation experiment, Bcl-2 mRNA expression is 
significantly higher in cumulus-oocyte-complexes (COC) 
cells associated with mature oocytes than those associated 
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Figure 4. Schematic representation of potential signal pathways elicited by SCF in the oocytes of primordial follicles. SCF elicits 
an anti-apoptotic signal starting from its membrane receptor c-kit. The signal is cascaded downstream through PI3K/AKT 
proteins resulting in the changes in expression of the Bcl-2 family members Bcl-xL and Bax. The expression regulation of Bcl-2 
by SCF might be through other pathway (s) that does not contain the PI3K/AKT module. MAPKs are activated by SCF, but 
unable to propagate the anti-apoptotic signal.  They might affect other aspects of follicular development (see discussions).  +  and 
– are symbols for stimulating and inhibitory effects, respectively. Solid line arrows represent for direct interaction, while broken 
line arrows stands for an indirect action. Upward and downward arrows stand for up- and down- regulation of gene expression. 
Reproduced with permission from (40). 
 
 

 
 
Figure 5. Schematic diagram showing inhibin produced by granulosa cells controls oocyte tPA mRNA translation. Inhibin 
originated from the granulosa cell (GC) inhibits the oocyte maturation by inhibiting tPA mRNA translation in the oocyte. Once 
inhibin expression in GC is decreased, the oocyte tPA mRNA starts to translate into its active protein, the subsequently increased 
tPA activity induces the oocyte GVBD in the dominant follicle leading to the oocyte maturation and ovulation; On the other 
hand, decreases in GC inhibin expression in developing follicle, the oocyte tPA mRNA is triggered to translate tPA protein which 
is capable of inducing its certain morphological changes similar to GVBD in the developing follicle, subsequently leading to the 
oocyte and / or the follicle apoptosis. Reproduced with permission from (153,154). 
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Figure 6. Schematic overview of apoptotic process in granulosa cells.A range of survival factors, for instance, FSH and LH, 
progesterone (P4), estrogen (E2), IGF-1, EGF, bFGF, insulin, and locally produced factors control death of the cell. Survival 
factors utilize a number of signal transduction molecules, such as PI3K/AKT, to regulate the expression of Bcl-2 family 
members. Another important intracellular cysteine proteases are caspases, which are linked both to the initial and final stages of 
apoptosis. Caspases include “initiator” factors, such as caspase-8, and -9, are directed by upstream apoptotic signals and 
downstream “effector” caspases, such as caspase-2, -3 and -7, are activated by initiators and function in the subsequent 
degradation of cellular components. Besides of PI3K/AKT pathway, MEKK/Erks and cAMP are also involved in the cellular 
apoptosis controlling in the ovary. Reproduced with permission from (39,40, 48, 141, 142). 
 
with immature oocytes, and levels of Bax expression 
appear to be positively correlated with apoptosis in each of 
these cell lineages (163-165). Knudson and his colleagues 
(166) noted “a marked accumulation of unusual atretic 
follicles” containing “numerous atrophic granulosa cells 
that presumably failed to undergo apoptosis”. Primordial 
oocytes within the ovaries of Bax null mice were 
completely resistant to apoptosis induced by exposure to a 
widely used chemotherapeutic drug in vivo (167). 
Similarly, granulosa cells within degenerating follicles of 
Bax-deficient mice also appear to be resistant to induction 
of apoptosis (166). A significant defect in primordial and 
primary follicle atresia rates was detected in Bax-deficient 
female mice, leading to a marked reduction in the incidence 
of postnatal oocyte death. Moreover, in aged Bax mutant 
females, defect in oocyte death leads to a dramatic 
prolongation of ovarian life span (168). These results 
support a fundamental role for Bax in mediating apoptosis 
in both oocyte and granulosa cells.   

 
In addition to Bcl-2 and Bax, several other 

members of Bcl-2 gene family have been found expressed 
in ovary and play important role on oocyte survival (169, 
170, 164), such as Bad, which acts as an important pro-
apoptotic ligand by bridging upstream signaling proteins, 

14-3-3 and P11, to the channel-forming anti-apoptotic Bcl-
2 family proteins (171). In the ovary, Bad plays an 
important role in mediating communication from different 
upstream signal transduction pathways to the Bcl-2 
regulated apoptotic decision step. Gonadotropins and other 
upstream survival factors, such as IGF-1 and insulin, 
activate Akt/PKB kinase to phosphorylate Bad to allow 
binding of 14-3-3 proteins, leading to dampening of Bad-
induced cell killing (171-174). Bad phosphorylation has 
been suggested to be an important mechanism by which 
upstream survival factors suppress apoptosis. 
 
7. CONCLUSION AND ESPETIVES  
 

Apoptosis in ovary is a complex, but a regulated 
process, it plays important roles in reproduction under 
various physiological conditions. Dysregulation of cell 
apoptosis in the reproductive tract causes infertility.and 
reproductive diseases.  

 
Apoptosis often begins before birth, and 

continuously throughout reproductive life. Balance of cell 
proliferation and apoptosis plays an important role in a 
healthy organ, any imbalance of these two processes can 
lead to organ dysfunction and developmental abnormalities. 
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To better understand mechanism of cell apoptosis can help 
to find ways to prevent its inappropriate occurrence and to 
improve reproductive health and give more helpful insight 
on treatment of reproductive diseases.  
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