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1. ABSTRACT 

 
Lung cancer is a highly environmental disease, 

but cancer researchers have long been interested in 
investigating genetic susceptibility to lung cancer. This 
paper is a historical review and provides updated 
perspectives on lung cancer susceptibility research. The 
recent introduction of easier genotyping methods and the 
availability of an almost complete human genome database 
facilitated the association study to thousands of cases and 
controls for millions of genetic markers. Discoveries in the 
field of behavior genetics, that is, the genetic aspects of 
smoking behavior and nicotine addiction, unexpectedly 
indicated that polymorphisms in the human central nervous 
system play an important role in eventually leading to lung 
cancer. These findings were achieved by using 
comprehensive approaches, such as a genome, 
transcriptome, or proteome approach, and the studies were 
often conducted without a hypothesis. Another–omics 
approach, the “adductome” or “exposome” approach to 
how life style information can be integrated into the 
framework of genetic association studies, has recently 
emerged.  These new paradigms will influence the area of 
lung cancer risk evaluation in genome cohort studies.  

 
 
 
 
2. INTRODUCTION 

 
The genetic aspects of the etiology of lung cancer 

have been considered less important, because the urban vs. 
country, male vs. female, and smoker vs. non-smoker 
differences in its incidence, twin studies, and immigration 
studies taken together have indicated that the etiology of 
lung cancer is largely environmental (1). On the other hand, 
in animal carcinogenesis studies Kouri et al. found that the 
inducibility of aryl hydrocarbon hydroxylase is associated 
with susceptibility to induction of lung cancer by 3-
methylcholanthrene (2), and in 1984, Ayesh and Idle 
published a study showing that debrisoquine hydroxylase 
activity was higher in lung cancer patients than in healthy 
controls. Debrisoquine was a popular anti-hypertensive 
drug used in Europe at the time (3). The work by Ayesh 
and Idle pioneered the field of pharmacogenetics, and 
carcinogenesis researchers started to investigate genetic 
susceptibility to environmental cancers to test the 
hypothesis that the cancer susceptibility of people exposed 
to certain environmental carcinogens varies with their 
genetic capacity to handle (activate, detoxify) xenobiotics.  
The discipline of molecular epidemiology of human cancer 
combined with dosimetry studies to assess individual 
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exposure to particular environmental carcinogens 
burgeoned (4-7). 

 
3.  CANDIDATE GENES FOR INCREASED LUNG 
CANCER SUSCEPTIBILITY 
 
3.1.  Polymorphisms in carcinogen-activating enzymes 
and lung cancer susceptibility  

After Ayesh’s work on individual differences in 
metabolizing debrisoquine (debrisoquine hydroxylase), 
genes responsible for xenobiotic metabolism were cloned, 
and a nomenclature system was devised according to the 
new cDNA sequences that were being isolated on an almost 
daily basis during that period.  

 
Individual differences in the cytochrome P450 

family of genes, the most important family of genes 
encoding enzymes that are responsible for the metabolism 
or activation of various environmental chemicals in cells, 
were extensively investigated by using the polymorphisms 
of these genes, which had just started to be discovered and 
to accumulate.  An enzyme that activates polyaromatic 
hydrocarbons (PAHs) to their nucleophilic forms, CYP1A1 
(cytochrome P450, family 1, subfamily A, polypeptide 1), 
was studied most extensively in regard to lung cancer 
susceptibility, especially tobacco-related lung cancer 
susceptibility. Kawajiri first reported identification of a 
polymorphism near the CYP1A1 locus (actually an Msp I 
polymorphism in the 3’ flanking region; m1, 4646903) and 
its relation to lung cancer susceptibility (8). Since the 
polymorphism first proposed was in the non-coding area of 
the gene, the mechanistic rationale was obscure. 
Subsequently, however, a more convincing polymorphism, 
an amino acid substitution polymorphism (m2, Ile462Val in 
exon 7, the substrate binding region, A2455G; rs1048943 
according to current nomenclature) linked to the Msp I 
polymorphism (m1, rs4646903), was discovered (9). 
Follow-up studies of Japanese, Okinawan, and Brazilian 
subjects, in addition to Caucasian subjects, were conducted 
(10-14), and the association between the single nucleotide 
polymorphism known as reference SNP rs1048943 and 
tobacco-related cancer susceptibility was replicated in some 
but not all of the studies.  Actually, the overall results of the 
follow-up studies on the association between lung cancer 
and rs1048943 were less convincing than reported earlier, 
because the associations were not always replicated. To 
begin with, since the prevalence of the minor, presumably 
high-risk allele of CYP1A1 was found to be very low in 
non-Asians, very large populations were required to obtain 
a modest increase in odds ratio in non-Asian populations, 
for example, in Scandinavians. Next, the correlation 
between the CYP1A1 polymorphism and lung cancer 
seemed to exist only in regard to tobacco-related lung 
cancer according to the hypothesis that tobacco-related 
carcinogens induce tobacco-related cancers via this allele 
that has higher carcinogen-activating capacity.  Obviously, 
rigorous study designs that integrate the histological type of 
the lung cancer in the case and smoking history and other 
confounding factors of cases and controls require much 
more labor and time, especially in populations where the 
frequency of the high- risk allele is lower. It was only later 
that a pooled analysis revealed the association between the 

CYP1A1 polymorphism and lung cancer, both squamous 
cell carcinoma and adenocarcinoma, in a Caucasian 
population (15). 

 
Another group of Japanese researchers 

investigated the relationship between CYP2E1 
polymorphisms and lung cancer susceptibility in a Japanese 
population (16, 17), and CYP2E1 polymorphisms were 
subsequently investigated in various populations (18-20). 
Since CYP2E1 is involved in the activation and metabolism 
of alcohols and nitrosamines (presumed carcinogens in 
food in addition to tobacco smoke), the research was 
directed at gastrointestinal cancers. An interaction between 
CYP2E1 polymorphism and dietary meat and vegetable 
intake was reported in colorectal cancer (21). On the other 
hand, in the field of tobacco-related lung carcinogenesis, 
Kato et al. measured 7-methyl-dGMP (deoxyguanosine 
monophosphate), N-nitrosamines, and PAH-dGMP adducts 
in human autopsy lungs and correlated the amounts of 
various adducts derived from tobacco smoke, 
environmental tobacco smoke, and exposure to products of 
combustion of substances other than tobacco, e.g., products 
of combustion in occupational settings and fuel combustion 
products) with genotypes of CYP2E1, CYP2D6, CYP1A1, 
and GSTM1  (22). Their study revealed that higher 7-
methyl-dGMP adduct levels were associated with the 
presence of CYP2E1 minor alleles. 

 
CYP2A6 is thought to be responsible for 

nitrosamine and nicotine metabolism and has been another 
important target of research on CYP family gene 
polymorphisms (23). A group led by Kamataki investigated 
hundreds of lung cancers in Japan and discovered that a 
deletion- type polymorphism at the CYP2A6 locus reduces 
the risk of lung cancer (24, 25). CYP2A6 is located adjacent 
to its pseudogene, and identification of the deletion is 
sometimes technically demanding, but introducing this kind 
of genotyping by means of SmartAmpTM technology into 
clinical settings, such as outpatient clinics with a smoking 
cessation program, is now being widely considered (26, 
27).  

 
3.2.  Polymorphisms of genes responsible for 
detoxification and conjugation of carcinogen 
metabolites 

Glutathione-S-transferases (GSTs) are the most 
extensively studied class of enzymes that are characterized 
by individual differences in detoxifying activity. The 
deletion type polymorphism (null type) was well known 
long (28-30) before extensive copy number analysis of the 
entire human genome revealed the presence of tremendous 
insertion/deletion polymorphisms and copy number 
variations in the human genome (31). Combinations of 
polymorphisms of genes responsible for detoxification of 
carcinogens and for activation of procarcinogens were used 
to evaluate the cancer risk of individuals. Information on 
life-style factors that increase cancer proneness (e.g., 
smoking) or that some evidence indicates may be cancer-
protective  (e.g., consumption of green tea) was also 
included in multifactorial analyses of the gene-
environmental interactions of the polymorphisms of the 
genes described above (12, 32, 33). 
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3.3.  Repair-gene polymorphisms and lung cancer 
susceptibility 

The canonical "carcinogen and consequent 
mutation theory" states that the ultimate carcinogen binds 
to DNA, thereby producing a DNA adduct that induces a 
base-pair replacement (mutation) in the next cycle of DNA 
replication, unless the DNA adduct is removed or the cell 
dies. Humans have a huge redundant system to repair such 
DNA damage (34, 35). 

 
A classical example of a link between a defect in 

repair genes and human cancer is xeroderma pigmentosum, 
which comprises at least 9 different diseases, each with its 
own responsible gene (36-38). However, the most 
extensively studied gene from the standpoint of human 
genetic susceptibility to cancer is hOGG1, a base excision 
repair gene that removes 8-oxo-guanine (7,8-dihydro-8-
oxoguanine) opposite cytosines.  Soon after the isolation 
and characterization of hOGG1 by several groups (39-
42), a nonsynonymous variation Ser326Cys (rs1052133) 
was identified (43), and the first case-control association 
study of human lung cancer was performed (44). It was 
a small study, and many studies, pooled studies, and 
meta-analyses of different populations  followed (45-
50). One report proposed a mechanistic basis for the 
contribution of the minor variant 326C to carcinogenesis 
(51). Since the original hypothesis was based on the 
reasoning that oxygen free radicals damage DNA, which 
results in mutations if DNA repair is inadequate, and the 
mutations in turn lead to a predisposition to cancer, 
especially in the organs often exposed to damage by 
reactive oxygen species, such as the lungs of smokers. 
The inference would be that tobacco-related cancer is 
more significantly correlated with the polymorphism 
than non-tobacco-related cancer. Actually, the first 
paper to describe an association between OGG1 and 
lung cancer reported finding a positive correlation 
between OGG1 polymorphism and squamous cell 
carcinoma of the lung (44). However, a meta-analysis of 
studies in which there were high numbers of cases of 
adenocarcinoma of the lung indicated a possible 
association between the OGG1 Ser/Cys polymorphism 
and adenocarcinoma, too (50). 

 
Another issue raised by 

many researchers is ethnic differences, e.g., with respect 
to the CYP1A1 Ile426Val polymorphism (rs1048943). A 
meta-analysis of a total of 6375 cases and 6406 controls 
revealed an association between the CYP1A1 Ile426Val 
polymorphism (rs1048943) and lung cancer in Asians 
alone (45). The meta-analysis did not mention any 
interaction with the histological subtypes of the lung 
cancers, whose subtyping is sometimes very subjective 
and affected by severe inter-observer bias despite 
widespread standardization as in the WHO 
classification, and not all of the studies included in the 
meta-analysis contained complete smoking histories. 
The conclusion of the meta-analysis that “careful 
matching should be considered in future larger genetic 
association studies that include multiple ethnic groups” is 
quite obvious. 

Another polymorphism in repair genes that has 
been studied extensively in an epidemiological framework 
is xeroderma pigmentosum group D (XPD) or excision 
repair cross-complementing rodent repair deficiency, 
complementation group 2 (ERCC2). XPD, i.e., ERCC2, is a 
well- characterized DNA helicase that is required for 
nucleotide excision repair of bulky DNA lesions (larger 
than adducts like 8-oxoguanine). A relatively rare missense 
variant, Lys751Gln (persons with the Lys/Lys genotype are 
less able to repair DNA), was discovered (52), and 
although no association with lung cancer was found in an 
earlier study (53), a significant difference between cases 
and controls was found in a Chinese study (54, 55). In 
contrast to the first report by Lunn et al., the Gln allele was 
found to be a high-risk allele in another Chinese lung 
cancer case-control set (56). However, the Asp312Asn 
polymorphism did not appear to affect DNA repair in the 
first study (52), but the results of the next study suggested a 
negative effect on DNA repair capacity in the homozygous 
Asn/Asn genotype (57). A meta-analysis of 9 papers in 
2005 found no clear correlation between XPD 
polymorphism and lung cancer (58). 

 
In 2008, an international 

lung cancer consortium analyzed the previous papers on 12 
repair genes and their 18 polymorphisms and lung cancer 
susceptibility, and the consortium concluded that OGG1 
Ser326Cys, TP53 Arg72Pro, XRCC3 Thr241Met, and XPD 
Lys751Gln were weakly associated with increased lung 
cancer susceptibility (47)(Table 1). The consortium 
suggested that further data pooling and a genome-wide 
association study approach were needed. 
 
3.4.  Oncogene and suppressor gene polymorphisms, 
and other genetic and epigenetic variations to modify 
lung cancer susceptibility   

Some of the inter-individual variation of the 
genes tightly involved with human carcinogenesis has 
also been a topic enthusiastically investigated. The 
champion of this category would be an Arginine-Proline 
polymorphism in the exon 4 of TP53 (Arg72Pro, 
rs1042522).  A comprehensive meta-analysis consisting 
of 302 case-control studies of cancers of all the organs 
suggested the contribution of this polymorphism 
depends on anatomic site of cancers (59).  A meta-
analysis consisting of 7495 lung cancer cases and 8362 
controls based on 23 studies concluded that Pro allele is 
a low penetrant risk factor for developing lung cancer 
(60). Among the oncogenes, K-RAS is often mutated in 
lung cancer (61) and has been suggested to be 
responsible for genetic susceptibility to mouse 
pulmonary adenoma (62). In human lung cancer, the 
SNP around the K-RAS locus was not known to be 
associated to lung cancer susceptibility, so far.  

 
Recently, frequent somatic methylatin of LKB1 

in human lung cancer was found especially in Caucasian 
lung cancer and it is elusive this phenomenon is related to 
some genetic predispositions (63). Some of the germline 
variants in methyl-group metabolism genes are reported to 
be associated with somatic methylation profile of several 
genes including LKB1 in lung cancers (64).  
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Table 1.  Genetic polymorphisms most extensively evaluated for lung cancer susceptibility1 
Gene name Rs number Variation class Polymorphism Rationale2 References3 

CYP1A1 rs1048943 SNP Ile463Val substrate binding domain 10 
CYP2A6           deletion  loss of function 24 
CYP2E1 rs2031920 SNP C/T promoter site 22 
GST-M1  deletion  loss of function 28 
OGG1 rs1052133 SNP Ser326Cys altered activity 44 
XPD rs13181 SNP Lys751Gln repair capacity 46 

XRCC3 rs8615339 SNP Thr241Met adduct level 46 
TP53 rs1042522 SNP Arg72Pro E6/ubiquitin-mediated degradation 60 

1Note: “most extensively investigated” does not mean the greatest contributing risk toward lung cancer occurrence, 2Assumed 
rationales. Some of them remains controvertial, 3Only one reference number is shown here for each gene. 

 
Involvement of the genes 

which often somatically mutated or methylated in lung 
cancers are expected to explain some of lung cancer risk 
(65). However, the epigenetic change passable to the next 
generation (epimutation) was not found in lung cancer (66).    

 
In addition to the SNPs in the genes mentioned 

above, any SNPs in the loci of the genes associated with 
human carcinogenesis have great potential in terms of 
possible contributions of efficient identification of lung 
cancer risk. Actually genome-wide association study 
disclosed an association of TP63 polymorphism and 
adenocarcinoma of the lung (67). 

 
4. THE ERA OF THE GENOME-WIDE 
ASSOCIATION STUDY (GWAS) 
 

 The first GWAS on lung cancer susceptibility 
was published in 2007 (68). DNA from 100 cases and 100 
matched controls was used, presumably to minimize cost. 
The experiments were performed on the Affymetrix (Santa 
Clara, CA) GeneChip platform by applying the human 
mapping 50K Xba240 and Hind240 arrays according to the 
manufacturer’s protocols (68). The study identified 38 
SNPs that might be associated with increased lung cancer 
susceptibiltiy. By current standards, the small numbers of 
samples used to conduct the investigation and the 
economical strategy of using pooled DNAs were very 
modest. The authors were aware that the 100K chip did not 
contain some of the SNPs that had already been reported to 
be associated with lung cancer.  Several large-scale studies 
were published in the spring of the following year (47, 69-
72), and they had investigated more than 300,000 SNPs 
(Illumina HumanHap300 v1.1 BeadChips) in case-control 
sets of more than 1000 pairs. Moreover, all of the studies 
included replication study sets that consisted of additional 
thousands of case-controls. Amazingly and interestingly, 
the loci indentified encoded nicotinic acetylcholine 
receptors (chromosome 15q25.1) that had been thought to 
be related to smoking behaviors. The rs10151730, 
rs8034191, and rs16969968 (Asp398Arg substitution 
polymorphism of CHRNA5) polymorphisms were 
significantly associated with lung cancer in people of 
European descent. A study of Icelanders (72) revealed the 
important finding that the rs1015730 locus was related to 
nicotine dependence, lung cancer, and peripheral arterial 
diseases.  Late the same year, another locus was identified, 
based on an additional 3000 or so cases-controls (73). This 
study corroborated the previous studies that showed an 
association with chromosome 15q25 loci, especially with 
the rs1015730 locus, identified as rs402710 and rs2736100, 

which the investigators claimed, were independent, and the 
nearby genes were TERT and CLPTM1L, respectively.  
Another study, published at almost at the same time, 
identified two loci at 6p21 and an additional polymorphism 
in the CLPTM1L gene locus (intron 13, rs401681) (74).  

 
The presumed risk-alleles above were tested in 

lung cancer cases in which there was a family history of 
lung cancer (75). At the same time, the group that reported 
finding an association between CHRNA5-A3  (rs1051730 
and rs803419) and lung cancer (69) discovered that these 
genotypes were also associated with both nicotine 
dependence and lung cancer causation (76). 

 
Many replication studies on the relationship 

between CHRNA5-A3 loci, nicotine dependence, and lung 
cancer were published in the next several years.  Amos et 
al. reported associations between multiple loci (including 
rs169698) and increased risk of lung cancer in African 
Americans, instead of smoking (behavioral) phenotype 
(77). Wu et al. identified three novel SNPs 
(rs2036534C>T, rs667282C>T, rs12910984G>A, and 
rs6495309T>C) that are common in Asians and are related 
to smoking behavior and increased lung cancer risk in a 
Chinese population (78). Shiraishi et al. even demonstrated 
a possible contribution of three SNPs around the CHRNA5 
locus to lung cancer risk in Japanese, whose prevalence of 
minor alleles at the three loci (rs8034190, rs16969968 and 
rs1051730) is very low (79). 

 
The above genome-wide studies and a later one 

recruited thousands of case-controls in several populations, but 
the overall contributions of the genotypes accounted for only 
1% of the excess familial risk of lung cancer (80). The authors 
of the later study claimed that a larger sample of DNAs from a 
series of lung cancer cases and controls with records of 
smoking behavior would be necessary in addition to the 
currently or previously collected DNAs in order to identify 
genes associated with increased risk of lung cancer (71)! 

 
GWASs conducted in the last several years have 

demonstrated that new technology enables hundreds of SNPs 
to be processed in thousands of cases without a set of working 
hypotheses (81). The susceptibility alleles that have been 
discovered with the new technology by GWASs are common 
(present in 10% or more of Caucasians). Each allele makes a 
small contribution, and the odds ratios calculated for the high-
risk genotypes are usually less than 1.3. The pursuit of lung 
cancer susceptibility genes by GWASs has been same as the 
pursuit of susceptibility genes for other diseases by GWASs. 
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Figure 1. Presumed steps and genetic influences in the path from smoking to lung cancer.  (Modified from (101). Amos CI, Spitz 
MR, Cinciripini P: Chipping away at the genetics of smoking behavior.) 1. Smoking initiation, 2. Smoking dosage, 3. Smoking 
cessation, 4. Difficulty quitting smoking, 5. Smoking dependence (cigarettes smoked per day), 6. A missing link in the 
mechanism of lung carcinogenesis in never smokers.  

 
However, probably because lung cancer is a very 

environmental disease, as previously mentioned, based on 
current theoretical inferences, only three genes are suspected of 
being lung cancer susceptibility genes, far fewer than in more 
genetic cancers (prostate cancer, for example, in which the 
number is estimated to be 30). In view of the largely 
environmental nature of lung cancer and the fact that there are 
expected to be fewer genetic components than in other 
cancers, an extra twist in the strategy will be necessary to 
zero in on lung cancer susceptibility genes. For example, 
the next association study must include stratification of 
lung cancers according to smoking history in addition to 
ethnicity and histological type (82, 83). On the other hand, 
smoking itself is now considered a highly genetically 
controlled behavior. The genetic aspect of smoking 
behavior is addressed in the next section. 
 
5. SMOKING BEHAVIOR AND LUNG CANCER 
SUSCEPTIBILITY  

 
Smoking by male members of the same family is common 
in many cultures, especially in many traditionally  male 
chauvinistic cultures. Actually, two papers, one published 
in1963 and the other in 2003, stated that familial clustering 
of lung cancer can be explained by familial clustering of 
smokers (84, 85). However, the results of a recent 
simulation study did not support clustering of smokers in 
families as a cause of familial cases of lung cancer (86).  

On the other hand, the heritability of substance dependence, 
including dependence on tobacco (nicotine), has been 
investigated in many populations (87). Nicotine 
dependence is now recognized as a disease according to the 
International Statistical Classification of Disease and 
Related Health Problems (ICD) 10 and is treated in 
smoking-cessation clinics, and various genes have been 
assessed as candidates for genes responsible for nicotine 
dependence (88). Candidate genes related to] dopaminergic 
pathways have attracted the attention of many investigators 
(89), but a genome-wide approach was proposed (90) and 
several ambitious trials have been conducted (91). Saccone 
et al. have found a few chromosomal regions by 
performing a genome-wide linkage analysis and Bierut 
identified several other regions by using high-density SNP 
arrays (92, 93). The results of those studies yielded a very 
long list of candidates for addiction genes (94). Hundreds 
of genes responsible for addiction may play a role in 
tobacco-related carcinogenesis, including in lung cancer. 
Smoking behavior has traditionally been assessed by means 
of several different types of questionnaire, and the most-
widely used questionnaire is the Fagerström Test for 
Nicotine Dependence (FTND) (95). Another test, the 
Tobacco Dependence Screener (TDS), was recently 
developed. The questions in the TDS regarding each 
symptom or trait correspond to the criteria in the ICD -10 
and Diagnostic and Statistical Manual of Mental Disorders 
(DSM-IV) (96). Many other questionnaires have been
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Figure 2. Adductome maps of 4 organs of the same individual. The position of each circle represent the species of the DNA 
adducts, and the size of each circle indicates the relative quantity of each DNA adduct. The adductome map shows that each 
organ contains more than one type of DNA adduct. The profile of adducts varies with the organ in the same individual. The 
profile of the lung adductome map (lower right) shows many kinds of adducts. 

 
devised besides these two, but only a few studies have used 
more than two of the questionnaires to compare their ability to 
detect dependence and detect associations with genotypes, and 
each questionnaire may actually detect different genetic traits 
related to smoking (92, 97, 98).  The Tobacco and Genetics 
Consortium, which consists of 116 researchers, recently 
showed that multiple loci are associated with smoking 
behavior (99), and Liu et al. confirmed that a locus on 
chromosome 15, the promoter region of CHRNA5, is a locus 
responsible for smoking behavior (nicotine addiction) in one of 
the same cohorts, the Oxford-GlaxoSmithKlein cohort (100). 
Interestingly, the Consortium identified BDNF, which is 
related to various neurological functions in humans, as an 
initiation gene, and DBH, an important gene related to the 
dopaminergic pathway, as a continuation (failure to stop 
smoking) gene. These findings prompted the Consortium to 
devise a flowchart showing the pathways from the start of 
smoking to the development of lung cancer (101). (Figure 1)  
This concept that a genetically determined smoking behavior 
pattern is the origin of human lung cancer as depicted in Figure 
1 is obviously an oversimplification, but it warrants 
verification in various populations and in various SNPs of the 
candidate genes.   

 
6.EXPOSURE ASSESSMENT AND LUNG CANCER 
SUSCEPTIBILITY  

 
The susceptibility of an individual to lung cancer 

depends more on the extent to which the individual has 
been exposed to carcinogens than on the pattern of gene 
expression in each of the individual’s organs (lung, brain, 
etc.). Estimating how many possible carcinogens are in the 
body is a challenge, because the tissue samples are usually 
inadequate, and we do not know exactly what kind of 
chemicals might be present. The history of painstaking 
isolation and synthesis of chemicals that cause cancer in 
animals since Yamagiwa succeeded in inducing skin cancer 
by painting tar on a rabbit’s ear (102) revealed that 
numerous chemicals that were products of combustion, 
endogenous oxidation, and generated in vivo as byproducts 
of inflammation can cause cancer. Furthermore, how these 
carcinogens act on DNA, form covalent bonds with DNA, 
cause mutations, and induce neoplastic transformation in 
cells became clear, especially in in vitro systems and in 
experimental animals (103, 104). Moreover, recent studies 
have shown that a typical mutagenic carcinogen is involved 
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Figure 3. Methodological developments in nature and nurture analyses of cancer susceptibility. The arrows how much 
environmental and genetic components influence the incidence of diseases. A disease like lung cancer (open circle) would be 
located in a more environmental position in the spectrum, whereas a late-onset genetic cancer like hereditary diffuse gastric 
cancer (HDGC) (closed circle) would be located in more genetic position in the spectrum. The prevalence of lung cancer is much 
higher than that of HDGC.  Figure 4 and 5 are the same. Descriptive era: A descriptive history of life style, including smoking 
history, a nicotine dependence test, and a food-frequency questionnaire were the main methods of estimating exposure. Family 
history, twin studies, and immigration studies played a great role in assessing genetic elements. 

 
in carcinogenesis via its actions on physiologically 
important cell machinery that are not necessarily 
accompanied by mutation induction (105, 106).  Thus, 
the remaining questions are how to validate the 
formation of these adducts that “carcinogenesis” studies 
have indicated occurs in the human body and how to 
evaluate their effects. Several methodologies have been 
invented to answer these questions, and some have 
succeeded in detecting causes of human carcinogenesis, 
i.e., a particular adduct in a particular cancer in a 
particular setting (4, 107, 108), but since these methods 
are capable of detecting only a limited numbers of 
adducts and human body may contain a wide variety of 
adducts it was hoped that a more efficient method that 
would detect multiple species of adducts in many 
samples would be found. The recent progress in the field 
of bio-measurement has facilitated the simultaneous 
detection of multiple adducts in the same human tissues 
(109, 110). DNA adducts have been found to vary with 
the organ analyzed in the same individual (Figure 2), 
showing that each organ has a different profile of 
adducts, probably as a result of exposure to different 
sets of carcinogens, e.g., the lung to air-bone 
carcinogens, the colon to food-borne carcinogens, the 
skin to environmental carcinogens, etc., and organ-
specific metabolism. In the adductome map in Figure 2 
liquid chromatography retention time is shown on the 
horizontal axis, and mass spectrometry molecular  DNA 
species in individual human tissues.   weight per charge 
on the vertical axis. Only some of the spots have been 
annotated (109). Complete annotation would reveal the 

overall exposure status of human organs and promote 
further quantitative characterization of the modified 
DNAs, including the mutagenicity of the modified 
DNAs. Even in this pilot study, differences in numbers 
and sizes reflecting the approximate amount of the 
individual adducts can be seen between smokers’ lungs 
and never-smokers’ lungs (100). Chou et al. applied the 
adductome approach to larger numbers of cases and 
succeeded in discovering considerable amounts of lipid 
peroxidation-induced DNA adducts (110). Lipid 
peroxidation-induced DNA adducts are derived from 
omega 3 and omega 6 polyunsaturated fatty acids, which 
are endogenous in all body tissues. These adducts can be 
used as a surrogate markers to estimate how much an 
individual has been exposed and will provide a clue as 
to how environmental or endogenous mutagens trigger 
neoplastic transformation in cells. A specific analysis of 
how the cellular machinery responds to these adducts in 
the human body andpresumed individual differences in 
their repair capacity is needed. 

 
6. PERSPECTIVES 

 
As Gazdar provocatively mentioned, lung cancer 

is mainly associated with smoking behavior and with 
environmental exposure to tobacco smoke in other words, it 
is a highly environmental disease. Lung cancers in never-
smokers account for 25% of all lung cancers, and the 
histological type found in never- smokers is very different 
from the histological types found in smokers] (111). The 
results of some SNP analyses of lung cancers were not 
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Figure 4. Candidate gene era: Some technical developments in molecular dosimetry, such as the post-labeling method and 
enzyme-linked immunoorbent assays using antibodies to adducts, were introduced. Genetic polymorphisms, such as restriction 
fragment length polymorphisms and single-strand conformation polymorphisms, were widely adopted to indentify individual 
genotypes.  
 

 
 
Figure 5. GWAS and post-GWAS era: The GWAS approach and post-GWAS approach (personal genome by next generation 
sequencing methods) are included among the methodologies aimed at the genetic aspects of lung cancer susceptibility. 
Adductome analysis emerged as a comprehensive method of detecting multiple modified  
 
replicated in a subsequent meta-analysis that included 
never-smokers’ lung cancers (112), probably because 
the study was “underpowered” (only thousands of 
cases!). Copy number variants have never been fully 
estimated in lung cancer susceptibility studies. Genomic 
analyses will soon become more economical, and the era 
of personal genome analysis is at hand. Obviously, 
careful and comprehensive studies on genotype-
phenotype associations (113) need to be performed in 
humans. When we review the previous progress in 

methodologies for analyzing both the nature and nurture 
aspects of cancer susceptibility (Figure 3-5), we cannot 
avoid expecting a future in which “personal genome x 
personal adductome” information will provide a 
definitive assessment of each individual’s risk of lung 
cancer.   
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