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1. ABSTRACT 
 

Telomeres, at the end of chromosomes provide 
genomic stability. During embryonic development, 
telomerase, a reverse transcriptase elongates the ends of the 
DNA. In somatic cells, the activity of telomerase decreases 
after birth leading to shortening of telomere with cell 
division, which thereby triggers senescence. In embryonic 
stem cells and germ cells, telomere length is maintained. In 
adults, the tissue specific stem cells have telomerase 
activity, but it is not enough to maintain the length of 
telomere. The stem cells also undergo the process of ageing 
but it is delayed as compared to the somatic cells. Studies 
on the genetic disorder, dyskeratosis congenital, caused by 
mutations in the human telomerase, reiterate the importance 
of telomere maintenance in human stem cells.  This review 
covers the role of telomere and telomerase in stem cells and 
their relevance in disease and ageing. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Telomeres are present at the ends of the 
chromosomes and protect DNA from terminal degradation 
and chromosomal fusion (1). In eukaryotes, telomeres are 
characterized by the presence of short guanine-rich repeats, 
which vary in length from 5 to 20 Kb depending on the age 
and the renewal potential of tissue or cell type in an 
individual (2). During replication, DNA polymerase fails to 
completely copy the end of chromosomes leading to loss of 
telomere repeats (3). This gradual shortening of the 
telomere is considered as one of the mechanisms 
underlying aging and critically short telomeres lead to 
senescence and loss of cell viability (2, 4, 5). The 3’ end of 
the telomere is single-stranded, which folds back into D-
loop (double-stranded DNA) forming a “T-loop” structure. 
The double-stranded region of telomere is bound by two 
sequence-specific DNA binding proteins, telomeric repeat 
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binding factor 1 (TRF1) and telomeric repeat binding factor 
2 (TRF2) along with other telomeric DNA-binding 
complex of proteins known as Shelterin (6) (Figure 1). 
TRF2 has been shown to bind to ATM and interfere with 
the DNA damage response at the ends of the chromosome 
(7, 8). It has also been shown to interact with DNA damage 
signaling and repair factors, particularly MRE11 complex 
(5). Telomere length and capping is also controlled by the 
proteins known to be involved in DNA damage and 
response, both nonhomologous DNA endjoining (Ku and 
DNA-PKCs) and homologous recombination (RAD51d, 
RAD54, XRCC3) pathways (9-13).   

 
Telomerase is a ribonucleoprotein complex 

consisting of a protein component with reverse 
transcriptase activity (TERT) and an RNA component 
which serves as template for telomere synthesis (TERC) 
(14-17). The RNA component of telomerase is 
characterized by the presence of a box H/ACA small 
nucleolar (sno RNA-like) RNA- like domain, which is 
bound by dyskerin protein, which binds to three other small 
proteins (NHP2, NOP10 and GAR1).  Another domain 
CAB (Cajal body box) is bound by a protein TCAB1 (18, 
19) which also interacts with dyskerin. TCAB1 is essential 
for telomerase localization to Cajal bodies. Absence of 
TCAB1 leads to telomere shortening with each cell 
division. In humans, mutations in the telomerase core 
component have been detected in patients suffering from 
aplastic anemia and dyskeratosis congenital (DKC). In 
human beings, telomerase is known to be expressed during 
early embryogenesis, before blastocyst implantation, and 
then gradually decrease in the differentiated tissues of the 
embryo. In adults, most of the somatic tissues except for 
highly proliferative tissues such as that of hematopoietic 
system, intestinal crypt cells and skin cells lack any 
detectable level of telomerase (20). In germ cells, 
telomerase activity is maintained at a similar level, 
throughout the life of an individual. Telomerase activity 
and telomere maintenance have been correlated with the 
unlimited potential of growth in cancer cells, embryonic 
stem cells and germ-line cells. The role of telomerase in 
aging and cancer has been studied extensively, but recently, 
the interest has shifted towards the understanding of role of 
stem cells in the progression of cancer and ageing (21).   

 
3. TELOMERE AND TELOMERASE ACTIVITY IN 
HUMAN AND MOUSE STEM CELLS 
 
  Most of the adult tissues have a resident stem cell 
population. These cells were identified based on their 
ability to retain BrdU (Label-retaining technique) (22-24). 
In mice tissues, longer telomeres have been mapped to the 
stem cell compartment in hair, skin, small intestine, testis, 
cornea and brain (25). Telomere length, shortened in the 
stem cell compartment as well as the differentiated cells, 
concomitant with decreased telomerase activity and loss of  
stem cell function with age (25).  Disruption of a 
component of telomerase (Terc) showed decreased 
efficiency in tissue renewal and life span of mice (26, 27). 
The deficiency of Terc in mice led to male and female 
infertility, heart failure, immunosenescence, and decreased 
regeneration of the digestive system, the skin, and the 

hematopoietic system (28-31).  On the other hand, Tert 
transgenic mice showed longer telomeres in stem cells and 
differentiated cells. These mice showed a decrease in 
ageing associated inflammatory processes, and an increase 
in the median survival rate (32). It has also been shown that 
telomere length influences the ability of epidermal stem 
cells to regenerate tissues in mice (33). Deficiency of 
Shelterin components in mouse (Trf1, Trf2  and Tin2) are 
embryonically lethal and therefore it is not possible to 
study their affect on aging (34). On the other hand 
overexpression of Trf2 in skin led to short telomere and 
premature deterioration of skin and also UV induced skin 
cancer (35). Thus, the studies from mouse mutants of 
telomere binding proteins and telomerase complex show 
that the telomere length can be correlated to the renewal 
potential of the tissues, aging and cancer.  
 
3.1. Hematopoietic Stem Cells (HSCs)  
 In adult hematopoietic and non-hematopoietic 
human stem cells, low level of telomerase activity has been 
detected (36). Although telomerase is present, it is not 
sufficient for maintaining the length of the telomere (Table 
1).  Hematopoiesis is one of the processes which occur 
throughout the lifetime of an individual and therefore 
serves as a good model to study the changes in stem cells 
during aging and disease progression. Hematopoietic stem 
cells (HSCs) give rise to progenitor cells, which then 
differentiate into multiple cell types which include 
granulocytes, monocytes, and mast cells of myeloid 
lineage, which is important for innate immune response and 
T and B lymphocytes of lymphoid lineage, which are 
responsible for adaptive immune response. Decline in both 
innate and adaptive immune response has been observed 
with aging (37), which could be correlated with the 
shortening of telomere, as observed in the peripheral blood 
T- and B-lymphocytes (38, 39). In vivo, comparative 
analysis of telomere length of leukocytes between donor 
and recipient after bone marrow (BM) transplantation 
showed that all the cell types from different lineages 
showed loss of telomere following extensive cell division 
(40-42).  
 
 HSCs purified from bone marrow have shorter 
telomeres when compared to HSCs from fetal liver (FL) or 
umbilical cord blood (UCB). The HSCs from younger 
individuals have longer telomeres than that of older 
individuals (43). Average telomere length of CD34 positive 
cells of UCB, BM and peripheral blood, was around 10.4 
Kb, 7.6 Kb and 7.4 Kb, respectively (44, 45). The level of 
telomerase also varied between HSCs and their 
differentiated progeny (46-51) (Figure 2). Telomerase was 
expressed in the progenitor cells of both lymphoid and 
myeloid origin but downregulated in mature, resting cells 
(52). Unlike mature myeloid cells, which do not express 
telomerase after activation, in mature lymphocytes 
expression can be detected during development, 
differentiation and activation (53). Telomere shortening has 
been observed in T-cells with age in vivo and in vitro (54). 
In this regard, T-cells from Down’s syndrome patients 
showed higher loss of telomere with age when compared to 
age matched controls (55).  Loss of telomere in B-
lymphocytes occurs with age (56) although the shortening 



Telomerase and stem cells 

18 

 
 
Figure 1.  Human telomeric, telomerase and telomere repair components. A. Sequence of the telomeric DNA in 
human cells, which is normally composed of 4-12 kb of G-rich repeats (TTAGGG). Telomerase is a 
ribonucleoprotein complex consisting of a protein component with reverse transcriptase activity (TERT) and an 
RNA component which serves as template for telomere synthesis (TERC). B. The six subunit “shelterin” complex 
proteins TRF1, TRF2, tankyrase, TIN2, RAP1 and POT1 are all involved in interacting with the telomere . TRF1 
and TRF2 with  bind to duplex telomeric DNA. TIN2 interacts with both TRF1 and TRF2 but not with telomeric 
DNA. POT1 interacts specifically with single-stranded G-rich telomeric DNA.  C.  Telomerase is a reverse 
transcriptase which adds telomere repeats to end of the chromosomes. Telomerase is composed of RNA subunit, 
TERC  and protein component, TERT. The RNA component is stabilized by additional protein factors. Dyskerin 
binds to 3’ end of TERC. Proteins NHP2, NOP10,  GAR1  and TCAB1 interacts with Dyskerin and helps in 
maintenance of telomere. Other proteins, which are DNA damage response proteins such as KU70/80. MRE11, 
RAD50, NBS1, ATM, WRN, BLM, FANC,  are important  for  telomere length regulation and telomere capping. 
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Table 1. Telomere and telomerase in human and mouse stem cells 
Cell type Growth Telomerase Telomere Reference 
Embryonic                     Unlimited High      Maintained 131 
Hematopoietic               Limited       Absent/low                  Shortened 132                                      
Mesenchymal        Limited/unlimited      Absent/low upregulated by stimuli                   Shortened/maintained     74, 133, 134                        
Skin                                Limited Low   Shortened 135, 136                              
Hair follicle                    Limited Low   Shortened  
Intestinal crypt               Limited   Low Shortened 137 
Neuronal Limited Low/absent                      Shortened 138 
Pancreatic                      Limited     Absent     Shortened 139 
Liver epithelial              Limited (durable)       Low     Maintained/shortened 140 
Cancer stem cell Unlimited   High Maintained 141 
Cardiac stem cell Limited Low/absent modulated by IGF-1  Shortened 47,48 
Neural Stem cells Limited Low/Absent Shortened 79-84 
Primordial Germ 
Cells 

Limited/Unlimited High Maintained 91-95  

Muscle satellite stem 
cells 

Limited High maintained 
 

96-99 
 

 

 
 
Figure 2. Telomerase expression in hematopoietic-derived cells. Telomerase expression is highly regulated during 
development of hematopoietic cells. Telomerase is expressed in progenitor lymphoid and myeloid cells but down-
regulated in mature, resting lymphoid and myeloid cells. Mature myeloid-derived cells that do not express 
telomerase after activation whereas lymphocytes are capable of expressing telomerase after antigenic stimulation. 
 
of telomere is slower than T-cells. Telomerase activation is 
observed after antigenic activation of B-cells (57). 
 

Shortening of telomere length in blood cells has 
also been observed in many diseases (Table 2). Examples 
include hematologic neoplasias such as myelodysplastic 
syndrome (MDS) wherein telomeres were shortened (58).  
In the case of chronic myeloid leukemia (CML), a clonal 
myeloproliferative disorder characterized by the 
Philadelphia chromosome (Ph), studies showed changes in 

telomere length and telomerase activity between chronic 
phase (CP) and blast phase (BP) (59-61). A high level of 
telomerase activity was observed in patients with CML-BP, 
but not in patients with CP. In dyskeratosis congenita 
(DKC) (62), which is caused by mutation in the 
components of telomerase, bone marrow failure has been 
observed. In these cases, haematopoetic progenitors are 
reduced in number, both in bone marrow and peripheral 
blood. This could be because the cells reach a critically 
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short length of telomere, earlier than normal and thereby 
enter replicative senescence (63).  
 
3.2. Mesenchymal Stem Cells  

Mesenchymal stem cells (MSCs) can be derived 
from many sources like BM, Wharton’s jelly and adipose 
tissues. These cells are selected on the basis of their plastic 
adherence property (64). MSCs can differentiate into 
mesodermal cell lineages, adipocytes, chondrocytes, 
osteocytes and endothelial cells as well as non–mesodermal 
lineage to neuronal like cells (65, 66). Human MSCs can 
grow until senescence at approximately 22 population 
doublings (67). The MSCs   obtained from young (18-29) 
and old (68-81yrs) donors showed difference in their 
proliferative capacity as younger ones could undergo more 
population doubling than older ones and the senescent 
phenotype was seen in MSCs obtained from aged 
individuals earlier than young ones (68). The differentiation 
capacity also decreased with age (69, 70).  The analysis of 
telomere length from early and late passages of MSCs did 
not show any major difference in the telomere length. 
These cells do not display detectable telomerase activity 
(71) (Table 1). Several growth factors (PDGF, TGF-b, 
FGF, EGF) enhance the mitogenic potential of human 
MSCs (hMSCs) (72, 73). In the presence of basic FGF 
(74), MSCs can undergo 100 PDs and the telomere length 
is maintained. Telomerase immortalized human MSCs cells 
grown for 189 PDs also showed stable telomere length 
pattern (67, 75) and enhanced differentiation potential (76). 
It is likely that there is an alternative to telomerase in 
MSCs which help in maintaining telomere length. 
Overexpression of telomerase in hMSCs led to better 
proliferation and differentiation capacity (76). In mice, 
MSCs express telomerase and they can be passaged for 
more than 100 PDs (77). In telomerase knockout mMSCs, 
the cells did not differentiate into adipocytes or 
chondrocytes even at earlier passages (78). It therefore 
seems that telomere length is the criteria in MSCs that 
determines retention of their proliferative and 
differentiation ability inspite of low levels of telomerase.  
 
3.3. Neural Stem Cells 

Most of the studies on neural stem cells have 
been done in mice.  Stem cell based neurogenesis is 
restricted to two areas in the brain, the sub granular zone of 
the dentate gyrus and the sub ependymal zone (SEZ) of 
lateral ventricles  (79) . The neural stem cells (NSCs) are 
reduced in Terc deficient mice and the absence of 
telomerase leads to reduction in neurogenesis (80). 
Telomerase expression in neural progenitors is 
downregulated during differentiation (81, 82). 
Overexpression of telomerase inhibits neuronal 
differentiation in neural cell lines (83). Telomere 
shortening occurs with age in NSCs of SEZ. Telomere 
shortening in adult NSCs has been shown to disrupt 
neuronal differentiation and neuritogenesis in mice (84).   
In human, neural progenitor cells from embryos (hNPCs) 
showed a very low level of telomerase and shortening of 
telomere length was observed with each passage (Table 1). 
These cells could undergo only 40-50 population doubling 
before they ceased to divide (85).  Upon transplantation, 
hNPCs grown in culture were shown to grow and make 

axonal connections. These cells can differentiate into 
neurons and glia (86, 87). Shortening of the telomere and 
low levels of telomerase is seen with age in NSCs.  
 
3.4. Cardiac Stem Cells  

Cardiac stem cells (CSCs) reside in heart and are 
characterized by the presence of shorter telomeres and 
expression of p16INK4a (88). These cells, under the influence 
of CDK inhibitors do not undergo division and maintain 
CSC pool. The increase in myocyte death leads to a need 
for myocyte replacement. The c-kit positive p16INK4a -
negative cells differentiate to myocyte leading to an overall 
decrease in CSC population (89). Insulin Growth Factor -1 
in myocytes has been shown to bind to receptors on CSCs 
and modulate telomerase expression. CSCs have been 
shown to delay organ ageing and dysfunction of heart by 
differentiating to myocytes.  Telomerase activity is 
markedly decreased in dividing cells leading to telomeric 
shortening and growth arrest. In heart, the presence of 
nuclear phospho-Akt prevents the onset of myopathy. 
Nuclear phospho-Akt can modulate the expression of 
telomerase by phosphorylating it, thereby increasing 
enzyme activity (89, 90). Increase in phospho-Akt was 
observed more in acute phase CSC concomitant with 
increase in telomerase activity and other telomere binding 
proteins.  As compared to controls, CSCs with p16INK4a 
expression and shorter telomeres increased in number in 
acute followed by chronic phase. This decrease in the 
number of functional CSCs in the chronic phase would 
account for progression of the disease and terminal failure. 
This suggests that although resident stem cells are present 
and can revive the disease early on, lack of telomerase 
activity and short telomere would make CSCs also enter 
senescence.  

 
3.5. Primordial Germ Cells  
  The male and female germ cell lineages are 
derived from specialized stem cells in the embryo called as 
primordial germ cells (PGCs). In both human and mice, 
telomerase activity is observed in oocytes (91, 92) (Table 
1) and in testis (93, 94) but not in spermatozoa (92, 95). 
Normally telomere length is maintained in germ line. In 
absence of telomerase in successive generations, shortening 
of telomere and male sterility has been reported. In female 
both immature and mature oocytes express telomerase.  
The PGCs in male stop expressing telomerase as the cells 
enter a phase of growth arrest. Spermatogonial stem cells 
have been grown in culture and have been shown to 
differentiate into multiple lineages. This also suggests that 
telomerase activity in stem cells can be correlated to its 
renewal and differentiation potential. 
 
3.6. Satellite Stem Cells  

Satellite stem cells are quiescent mononucleated 
myogenic cells, located between the sarcolemma and 
basement membrane of terminally-differentiated muscle 
fibers. They are quiescent in adult muscle, but can 
proliferate in response to injury and regenerate muscle (96). 
The study in humans showed that the telomere length is not 
affected in satellite stem cells in young vs adult but there 
was a reduction in the number of satellite stem cells in 
adults which would correlate with low regenerative 
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capacity of muscle with aging (98). Mouse satellite stem 
cells have been shown to have high telomerase activity and 
it decreases upon differentiation (97). But under diseased 
condition where muscle undergoes degeneration and 
regeneration (DMD) resulting in loss of the muscle mass 
and extensive fibrosis, telomere shortening was 14 times 
greater in satellite stem cells than that observed in controls. 
Under these conditions satellite cells enter senescence 
much earlier than normal owing to the decrease in 
regenerative capacity (98, 99).  

 
3.7. Cancer Stem Cells  

The evidence of presence of cancer stem cells 
(CSCs) came from the studies of hematopoietic 
malignancies (100). Telomere shortening is the 
characteristic feature of cancer cells. This leads to 
chromosomal instability and malignant transformation. It is 
debatable whether CSCs have longer telomeres, which 
would be a requirement if CSCs have to replicate and 
divide. It is also not clear whether the CSCs have 
telomerase activity or not, owing to the difficulty in 
isolating CSCs from solid tumors.  One of the recent 
studies showed that telomerase is downregulated in brain 
cancer stem cells and they have shorter telomere than other 
cancer cells (101). In contrast, breast cancer stem cells 
showed similar level of telomerase activity and telomere 
length as other tumour cells (102) which was shorter than 
the telomeres in the normal stem cells. This suggests that 
telomerase is present in CSCs, but gets activated in the later 
stages of cancer.  One of the major therapeutics for cancer 
which has been gaining grounds, is the treatment using 
drugs which can block telomerase activity in the resident 
cancer stem cells (103). 

 
4. EMBRYONIC STEM CELLS AND INDUCED 
PLURIPOTENT STEM CELLS 
 

 Embryonic stem cells (ESCs) are pluripotent 
cells capable of indefinite self renewal and differentiation 
into cells of all the lineages. ESCs have very high 
telomerase activity and hTERT expression (Table 1). The 
level of telomerase decreases as they undergo 
differentiation (104). TERT overexpressing ESCs showed 
increase in proliferation, self renewal and differentiation 
(104). Telomerase is reactivated during reprogramming of 
human fibroblasts to induced pluripotent stem cells (iPS) 
(105, 106). It was shown that telomere length is 
significantly increased in 3F and 4F iPS cells compared to 
parental differentiated cells, reaching intermediate levels to 
those of control ES cells in early passages but reaching 
telomere length comparable to control ES cells at later 
passages (107). Telomere heterochromatin was also 
remodeled in iPS cells, to a conformation similar to that of 
telomeric chromatin of ESCs. As in  ES cells, iPS also 
showed a significant decrease in the density of histone 
heterochromatic markers (H3K9m3 and H4K30m3) at 
telomeric regions compared to differentiated mouse 
embryonic fibroblast (MEF) cells. The donor cells with 
short telomeres obtained from old animals showed telomere 
elongation and functional telomere capping during 
reprogramming into iPS cells, suggesting that telomere 

length and telomerase activity are important for cells to 
undergo indefinite self renewal.  

 
5. TELOMERE, TELOMERASE DURING AGING 
AND DISEASE   
 

With ageing most of the normal human tissues 
and organs (108) including peripheral blood cells, 
lymphocytes, kidney epithelium, hepatocytes, intestinal 
epithelial cells, lung epithelial cells, muscle show telomere 
shortening (Table 3). As mentioned above stem cells from 
each of these tissues also show telomere shortening or is 
maintained (see Table 1). Telomere shortening could be 
correlated to low telomerase levels in tissue resident stem 
cells with few exceptions such as primordial germ cells, 
and muscle satellite stem cells (Table 1) (109). As a result 
of telomere shortening in the stem cell compartment during 
aging, there is loss of stem cell function (110). Telomere 
shortening has been observed in many diseases (Table 2). 
Some of these are associated with mutations in the genes 
encoding for the telomere binding proteins (Figure 1) such 
as TRF2 and components of the enzyme telomerase 
(TERT, TERC and Dyskerin). Few of such diseases are 
also due to mutations in the DNA DSB repair proteins 
associated with telomere such as Mre11, Rad50, Nbs1 
complex, ATM, BLM and WRN. Loss of function of 
telomerase components have been seen in DKC, which is 
discussed below. In patients with Aplastic Anemia, 
mutations in telomerase TERC and TERT genes have been 
observed, which is associated with telomere shortening and 
premature death (111, 112). Elevated telomerase levels are 
seen in most of the cancers discussed below. Telomere 
shortening has also been observed in patients with heart 
failure, coronary artery disease and others (Table 2). In this 
regards it has been observed that individuals with short 
telomeres had a 3.18-fold higher mortality rate from heart 
diseases, and 8.54-higer mortality rates from infectious 
diseases compared to those with relatively long telomeres. 
Some other studies have shown a relationship between 
telomere shortening and the evolution of cardiac disease 
(24, 25). Studies on various diseases put together (Table 3) 
indicate accelerated telomere shortening in disease 
compared to the normal individuals. Accelerated telomere 
shortening leads to loss of tissue regeneration (34). The 
studies on mice deficient in the telomerase components or 
overexpression as discussed above, have been the direct 
evidence linking aging with telomere shortening (5, 34). 

 
6. TELOMERE AND STEM CELL DYSFUNCTION  
 
Dyskeratosis congenital in humans is widely considered to 
be due to defects in telomerase or telomere maintenance 
(113). Patients with DKC show three distinctive features, 
nail dystrophy, oral leukoplakia and abnormal skin 
pigmentation. The other complications are bone marrow 
failure, pulmonary fibrosis and cancer (114, 115). 
Mutations in DKC1 and homozygous mutations in TERT 
have been shown to cause Hoyeraal-Hreidarsson syndrome 
(HH), which is characterized by bone marrow failure, 
severe growth retardation, immunodeficiency and 
cerebrellar hypoplasia (116, 117).  Heterozygous TERT 
and TERC have been implicated in 5-10% of aplastic
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Table 2. Human diseases and telomere shortening 
            Human disease               Telomere protein affected                    Reference 
Atherosclerosis                                                     Not known 142, 143 
Heart failure                                                                 TRF2   144 
Liver cirrhosis                                                         Not known 145 
AIDS                                                  Not known                     146 
Ulcerative colitis                                Not known                    147 
Dyskeratosis congenital                                      TERC, TERT, Dyskerin     62, 148-150 
Aplastic anemia                                          TERC, TERT                       111, 112, 151-153 
Idiophatic pulmonary Fibrosis TERC,TERT                      120, 154 
Werner syndrome                                                         WRN 155 
Bloom syndrome                                                          BLM 156 
Fanconi anemia                                                     FANC genes 5  
Ataxia telangiectasia                                                    ATM 106 
Nijmegen breakage syndrome                                      Nbs1 5 
Ataxia telangiectasia disorder Mre11 5 
MDS                                                                           TERC 157, 158 
Cri du chat syndrome                               TERT 159                
Coronary artery disease                                         TERT 160 
Hypertension and diabetes mellitus                             Not known 161 
Down syndrome (DS)                                            Not known 162 
Duchenne muscular dystrophy                                     Not known 99 
Crohn disease                                                               Not known 163 
Li Fraumeni Syndrome (LFS)                                      Not known 164 
Alzheimer’s disease (AD) Not known 165, 166 

 
Table 3. Ageing and telomere shortening in human organsO 

Human organs                            References 
Kidney                                            167-171 
Cardiovascular system            172, 173 
Liver                                                                           145, 167, 168, 174-176 
Colon               177, 178                                                                                                             
Stomach       179 
Esophagus       177 
Spleen       168 
Blood        43, 55, 180 
Lung        170 
Skin        170, 181 
Skeletal muscle                                                              170 
Thyroid                                                                                182 
Pancreas                                                     183 
Brain Cerebral cortex                                                                         168 

 
anemia (AA) (118, 119) and pulmonary fibrosis (117, 120) 
leading to respiratory failure. The presence of shortened 
telomeres is suspected to be the cause of the abnormalities 
(121, 122). Mutations in DKC1, TERC, TERT, NOP10, 
NHP2 and TINF2 have been implicated in DKC. Mutation 
in DKC1 which codes for protein dyskerin causes X-linked 
form of the disease (123). During development, when the 
cells have to divide rapidly in the absence of telomerase, 
telomere would be shortened more than in healthy 
individuals. The bone marrow, gut and skin are the tissues 
where renewal and differentiation of stem cells are 
continuous processes, thus explaining the defect in stem 
cell leading to the disease symptom.  Reduced telomerase 
and short telomeres might compromise the number as well 
as replicative potential of stem cells.      

 
7. TELOMERE AND CANCER 
 

Telomerase is upregulated in majority of human 
cancers (93, 124-126). The patients with DKC or mutations 
in telomerase gene develop leukemia (127). In DKC 
patients, the loss of stem cells by telomerase dysfunction 
could stimulate the growth of abnormal cells. A heritable 
hypomorphic mutation in the telomerase reverse 
transcriptase gene could predispose to acute myeloid

 
leukaemia (AML) (128). The mutant telomerase showed a 
decrease in its enzymatic activity by 50%.  The SNPs on 
the TERT locus could be correlated to the risk of 
developing lung cancer (129, 130). It seems that different 
mutations in TERT would lead to different levels of 
telomerase activity and also predispose to different kinds of 
cancers and disease symptoms. 

 
8. CONCLUSION AND PERSPECTIVES 
 

Studies from mouse indicate the presence of 
longer telomere in the stem cell compartment of the tissues, 
which also undergo telomere shortening with age. The mice 
mutants of the telomerase complex hTERT and hTERC, 
implied the importance of telomerase and telomere length 
in stem cells and their potency to differentiate. It has been 
shown that the differentiation potential for NSCs decline in 
telomerase deficient mice. Differentiation of cardiac stem 
cells to myocytes reduces with age.   The human genetic 
disorder, dyskeratosis congenita is widely considered to be 
due to defects in telomerase or in telomere maintenance. 
Heterozygous TERT and TERC have been implicated in 5-
10% of aplastic anemia (AA) and pulmonary fibrosis. The 
patients with DKC or mutations in telomerase gene develop 
leukemia. Mutations in TERT might lead to difference in 
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telomerase activity and also predispose to different kinds of 
cancers and disease symptoms. Studies on the length of 
telomere and telomerase activity from tissue resident stem 
cells show that they possess low telomerase activity which 
can be induced during the disease state and that is 
important for the self renewal of stem cells and their 
differentiation ability. With age telomere length shorten in 
the stem cells, which are accelerated in diseases leading to 
reduced function of stem cells. All these studies with regard 
to telomere length and telomerase suggest that stem cells 
from young individuals have better capacity to regenerate 
the tissue.  
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