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1. ABSTRACT 
 

Accumulated experimental evidence indicates 
that Hedgehog (Hh) signaling regulates cell proliferation 
and specification in a variety of organs during embryonic 
development. However, abnormal activation of this 
pathway in postnatal tissues has been linked to a large 
number of human cancers. With respect to the liver, it is 
known that Hh signaling not only influences bipotential 
precursor cells capable of pancreas and liver development, 
but is also implicated in the pathogenesis of liver tumors 
such as hepatoblastoma, hepatocellular and 
cholangiocellular carcinoma, if aberrantly activated. 
Blockade of Hh signaling by several specific inhibitors has 
been proven to successfully inhibit tumor growth of various 
Hh-associated cancers in vitro and in preclinical mouse 
models, and recent clinical data suggest that the 
implementation of novel anticancer therapeutics based on 
Hh interference into commonly accepted regimens are 
within reach. Thus, it is highly probable that Hh targeted 
therapies could be used for the treatment of Hh-dependent 
liver cancers in the future. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Hedgehog (Hh) signaling plays a crucial role in a 
variety of aspects of vertebrate development, including pattern 
formation, proliferation, and differentiation of numerous cell 
types. Hh was first described in a screen aimed at identifying 
genes essential for embryonic patterning in the fruitfly, 
Drosophila melanogaster (1). The association between the Hh 
pathway and cancer was initially depicted in a human cancer 
predisposition disease, the Gorlin-Goltz or nevoid basal cell 
carcinoma syndrome, by identifying germ-line mutations in the 
Hh receptor gene Patched (PTCH), which results in 
inappropriate activation of the Hh pathway thereby leading to 
the development of basal cell carcinoma and other neoplasms, 
comprising medulloblastoma and fetal myogenic tumors (2-4). 
Since then, a whole plethora of cancers has been associated 
with derailed Hh signaling, including tumors of the liver, such 
as hepatoblastoma (HB), hepatocellular (HCC) and 
cholangiocellular carcinoma (CCC).  

 
Therapy optimization studies for malignant liver 

childhood tumors run over the last decades by the German 
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Figure 1. The Hedgehog signaling cascade. (A) In the absence of Hh ligands, the PTCH receptor represses the SMO co-receptor 
by exclusion from the cell membrane, which leads to sequential phosphorylation of GLI by PKA, GSK3ß, and CK1 and the 
proteolytic processing into amino-terminal GLI repressors. (B) Binding of the palmitoylated and cholesterol-modified 
biologically active amino-terminal form of HH to a complex of PTCH and CDO/BOC results in de-repression of SMO. SMO is 
then phosphorylated by GRK2 and translocated to the membrane. Hh ligands could also interact with HHIP to compensate for 
overactivity of Hh signaling in the physiological state. Activated SMO triggers release of SUFU from a microtubule-bound multi-
protein complex consisting of FU, SUFU, KIF and GLI. This results in the stabilization of GLI, which then translocates to the 
nucleus initiating transcription of Hh target genes. Hh inhibitors (depicted in pink boxes) mainly act on the SMO co-receptor, but 
ligand/receptor interference and GLI perturbation also exist. 

 
(5), the European (6), and the North American groups (7) 
have failed to show a substantial benefit for high risk 
patients with advanced, metastatic or recurrent disease. In 
addition, conventional chemotherapy had never proved to 
be effective for HCC in adults (8). Although the use of the 
tyrosine kinase inhibitor Sorafenib has recently shown 
some efficacy in HCC patients (9) and the implementation 
of this drug in a new HB therapy protocol is currently being 
discussed, serious efforts for developing new treatment 
strategies are essential. This review will focus on the 
findings established from recent studies on the role of Hh 
signaling in liver cancer and the possibility of using Hh 
targeted therapies for the treatment of this devastating 
disease. However, many important aspects of Hh biology 
are not discussed, but several excellent reviews have been 
published for those who are interested in more in-depth 
knowledge on the molecular mechanisms of the Hh 
pathway (10-13) and Hh inhibitors (14, 15). 
 
3. THE HEDGEHOG SIGNALING CASCADE 
 

Since the initial discovery of Drosophila Hh (1), 
many components involved in Hh signal transduction have 

been identified and characterized. Although most 
components exhibit significant evolutionary conservation 
between flies and humans, important differences in specific 
signaling events have evolved in this pathway. However, 
we here focus on the current understanding of the 
vertebrate Hh network in order to discuss it’s relevance in 
development and treatment of liver cancers in humans. 
 

The signaling pathway (Figure 1) is named after 
the secreted Hh ligands, which are encoded in mammals by 
the three genes sonic (SHH), desert (DHH), and indian 
hedgehog (IHH) (16). Hh proteins are synthesized as ~45 
kDa precursors and cleaved to generate biologically active 
amino-terminal forms of 19 kDa. These signaling 
molecules are subsequently modified by covalently linking 
a palmitic acid moiety to the amino-terminus and a 
cholesterol group to the carboxy-terminal end (17, 18). In 
the absence of Hh ligands, the cell surface receptor patched 
(PTCH), a 12 pass transmembrane protein (19, 20), 
catalytically inhibits the activity of the 7 pass 
transmembrane receptor like protein smoothened (SMO), 
thereby keeping the signaling cascade in an off state (21). 
This leads to the sequential phosphorylation of GLI family 
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transcription factors by protein kinase A (PKA), glycogen 
synthase kinase 3ß (GSK3ß), and casein kinase 1 (CK1) 
and proteolytic processing into amino-terminal GLI 
repressors (22, 23). 

 
Binding of Hh ligands to PTCH leads to loss of 

the inhibitory activity of PTCH on SMO, which initiates an 
intracellular signaling cascade by recruiting downstream 
regulators (21). However, a couple of proteins at the cell 
surface are engaged to facilitate proper regulation of the 
initial activation process. The transmembrane proteins 
CDO (cell adhesion molecule-related/down-regulated by 
oncogenes) and BOC (brother of CDO) have been 
described to increase binding affinity of Hh to PTCH 
thereby positively contributing to Hh signaling (24). In 
contrast, all three Hh ligands could also interact with 
Hedgehog interacting protein (HHIP), an inhibitor of Hh 
signaling attached to the cell surface by a carboxy-terminal 
helix (25). Interestingly, a secreted version of HHIP has 
been described in the mature brain that is able to sequester 
Hh comparable to the membrane-associated form (26).  

 
Upon Hh activation, SMO is phosphorylated by 

the G-protein coupled receptor kinase 2 (GRK2) and 
translocates to the primary cilia, an organelle of most 
vertebrate cells that extends into the extracellular 
environment (27, 28). Activated SMO acts on a 
microtubule-bound multi-protein complex consisting of 
fused (FU), suppressor of fused (SUFU), kinesins (KIF) 
and the zinc-finger transcription factor GLI. This leads to 
the release of the suppressive SUFU from the complex, 
stabilization of full-length GLI by FU, and nuclear 
localization of GLI to drive transcriptional activation of Hh 
target genes. In mammals, three different GLI factors 
(GLI1, GLI2 and GLI3) are known, with GLI1 being a 
strong transcriptional activator, GLI2 harboring both 
activator and repressor functions, and GLI3 with 
predominantly repressive effects (29). There is a still 
growing list of transcriptional targets that are activated by 
the GLI proteins comprising BCL2 (30, 31), FOXM1 (32), 
CCND1 (33), MYCN (34), IGF2 (35) and PTCH itself (36), 
which leads to a negative feedback ensuring precise 
regulation of the pathway. In the physiological state of 
differentiated cells, the Hh signaling pathway is anticipated 
to be in the off state, which is consistent with the finding 
that adult mice largely tolerate inhibition of Hh signaling 
thereby qualifying Hh as an important factor during 
embryonic development (37). 
 
4. HEDGEHOG SIGNALING IN LIVER 
DEVELOPMENT AND HOMEOSTASIS 
 

Mammalian liver and ventral pancreas are 
believed to arise from a common progenitor within the 
ventral foregut endoderm (38). During the 2- to 6-somite 
stage of mouse embryogenesis (~E8.0 = 8 days of 
embryonic gestation) endodermal cells start to express Shh 
in response to fibroblast growth factor, which is secreted by 
the adjacent cardiac mesoderm (39). These Hh-responding 
endodermal cells subsequently form liver, whereas non-
responding cells, which do not express Shh, form pancreas. 
At E9.0-9.5, Shh expression seems to become grossly lost 

in the hepatic endoderm, the region giving rise to the liver 
bud (40). However, the existence of single interspersed Hh 
activated cells in the fetal liver at E11.5 has been described 
by the use of Ptch1-lacZ reporter mice, in which Hh 
activity can be reliably monitored by ß-galactosidase 
staining in a highly sensitive manner (41). It became 
evident that Shh expression is most likely restricted to cells 
expressing Dlk1 (42), a marker for hepatoblasts (43). By 
using fluorescence-activated cell sorting Dlk1-positive 
hepatoblasts were the cells most strongly expressing Shh, 
whereas various other cells types contained in the fetal liver 
such as hematopoetic cells, erythroid cells, hepatic 
sinusoidal endothelial cells, and precursors of hepatic 
stellate cells/portal fibroblasts could be excluded to 
contribute to Shh expression. Interestingly, Hh signaling 
had an inhibitory effect on hepatic differentiation of Dlk1-
positive hepatoblasts in culture, as evidence by decreased 
levels of the hepatocyte markers tyrosine aminotransferase 
and carbamoyl-phosphate synthetase 1 (42). Altogether, 
these studies strongly emphasize that Hh signaling is 
implicated in the regulation of cell fate decisions of 
bipotential cell populations in the endoderm thereby 
promoting specification of the early liver and moreover is 
maintained in selected cells during late-gestational 
embryogenesis to serve as a hepatic stem cell pool within 
the majority of Hh-quiescent mature epithelial liver cells. 

 
Because the primary functional cells of the liver, 

hepatocytes and cholangiocytes (bile duct cells), grossly 
lack the expression of Hh-associated genes (44), the role of 
Hh signaling in postnatal and adult liver homeostasis has 
largely remained unnoticed. Surprisingly, Sicklick et al. 
(45) in the year 2006, published the first description of Hh-
responsive hepatic progenitor cells in the adult liver (45). In 
this first paper in a row, the group of Anna Mae Diehl 
reported on the existence of small Hh activated cells in the 
periportal zone of the adult liver by the use of the Ptch1-
lacZ reporter mouse. Strikingly, most of these resident cells 
displayed a strong cytokeratin expression, a common 
marker for the committed, bipotential hepatic progenitor 
(45). Using EpCAM as a selection marker for hepatic 
progenitors, Hh components were highly enriched in 
freshly immunoselected human liver cells as compared to 
mature hepatocytes and non-epithelial liver cells. 
Moreover, when grown in culture these cells kept their Hh 
activity for weeks and were highly sensitive to the SMO 
antagonist cyclopamine, as evidenced by a substantial 
induction of apoptosis. Altogether, this initial study clearly 
indicated that the adult liver possesses a progenitor 
compartment that is regulated by the Hh pathway and 
might serve as a reservoir for life-long maintenance of 
tissue integrity. That this assumption holds true was 
established in various liver repair conditions provoked by 
alcohol consumption (46), fatty liver injury (47), and bile 
duct ligation (48). 
 
5. HEDGEHOG SIGNALING IN LIVER CANCER 
 

Since in most developmental systems and tissue 
repair responses Hh signaling is associated with enhanced 
growth and survival, it has been anticipated that 
overactivation of the pathway could be responsible for 
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proliferative diseases, including cancer. Hh signaling has 
been implicated in tumorigenesis following the discovery 
of germline mutations in the PTCH gene in patients with 
nevoid basal cell carcinoma syndrome (NBCCS), also 
named Gorlin-Goltz syndrome (3, 4). Patients with NBCCS 
are predisposed to basal cell carcinoma, medulloblastoma, 
and other tumors such as meningioma and 
rhabdomyosarcoma (2). Somatic PTCH mutations have 
subsequently been detected in sporadic cases of basal cell 
carcinoma, medulloblastoma and in rare cases of mammary 
tumors and meningiomas (49-53). The PTCH gene has 
since then been considered a classical tumor suppressor. 
However, there are several mechanisms by which the Hh 
pathway can be activated in human cancers, including SMO 
mutations in basal cell carcinoma (54) and 
medulloblastoma (55), SUFU mutations in 
medulloblastoma (56), as well as GLI1 amplification in 
rhabdomyosarcoma (57) and glioma (58). However, 
besides these mutation-associated malignancies various 
cancers have been described to be driven by either an 
autocrine or paracrine Hh stimulation caused by massive 
overabundance of Hh ligands secreted by the tumor cells 
themselves or the stromal surrounding. This second 
category of Hh-associated tumors comprise mainly small-
cell lung cancer (59), pancreatic cancer (60), gastric cancer 
(44), prostate cancer (61, 62), and breast cancer (63). 
Interestingly, liver cancers both in children and adults have 
just recently been added to this list. 

 
An important study by Berman et al. has shown 

that five out of nine cancer cell lines derived from the 
biliary tract show high autonomous Hh signaling activity 
(44). In line with this, the cholangiocellular carcinoma cell 
line HUCCT1 expressing high levels of the target gene 
PTCH could be effectively blocked by adding the SMO 
antagonist cyclopamine, thereby leading to a dramatic 
decrease in tumor cell viability (44). First studies on HCC 
emerged early in 2006, when Sicklick and colleagues as 
well as Patil and his coworkers simultaneously published 
their finding that HCC tumor samples and cell lines 
strongly express the ligands SHH and IHH as well as their 
downstream targets GLI1 and PTCH, suggesting an 
autocrine stimulation of the pathway for this tumor type 
(64, 65). A comprehensive study on 115 HCC specimens 
confirmed these first data by reporting on the consistent 
overexpression of GLI1 and PTCH in 52% of all cases, 
while adjacent normal liver tissue and stroma were negative 
for both genes (66). Interestingly, reduced expression of the 
HHIP gene, capable of competively binding Hh ligands to 
compensate for overactivation of the pathway in some 
primary HCC (65) as well as a single missense SMO gene 
mutation in a 67-year-old female patient with a necrotic 
tumor and hepatitis C-induced cirrhosis (64) point to 
alternative activation mechanisms in HCC. However, all 
three studies clearly defined the Hh-dependency of HCC by 
inhibition of the Hh pathway using cyclopamine or a 
derivative thereof (KAAD-cyclopamine) in at least some 
HCC cell lines. As described for cholangiocellular 
carcinoma cells (44), blockade of the pathway resulted in a 
significant decrease of cell viability and proliferation. 
Consistent with earlier findings on other cancer cells with 
activated Hh signaling (67-69), cyclopamine induced 

apoptosis in HCC cells within a short period of treatment 
(65, 66). Of note, a fourth study could attribute a 
predominant role of GLI2 in HCC biology, since an 
antisense approach using oligonucleotides directed against 
GLI2 expression led to loss of growth and induction of 
apoptosis of HCC cells, whereas inhibition of GLI1 and 
GLI3 left most HCC lines unaffected (70).  

 
HB representing the most common malignant 

liver tumor in children (71) was just recently added to the 
list of Hh-associated tumors (72). Our group has found high 
mRNA levels of the ligands SHH and IHH (72) as well as 
the downstream targets GLI1 and PTCH (Figures 2a and b) 
in a subset of primary HB and tumor cell lines, as 
compared to normal fetal and adult liver. Most 
interestingly, HHIP was barely detectable in HB cells (72), 
as already described for some HCC cell lines (65). 
Downregulation of HHIP could be ascribed to promoter 
hypermethylation in at least some cases, since CpG island 
hypermethylation was found in 6/23 HB and 1/1 
transitional liver cell tumor, but none of the normal liver 
tissues (72). Strikingly, treatment of HB cells with the 
demethylating agent 5-aza-2’-deoxycytidine partially 
reverted the methylation status of the hypermethylated 
HHIP promoter region (Figure 2c) and re-established HHIP 
expression (Figure 2d) in at least some HB. Inactivation of 
other suppressive components of the Hh pathway such as 
SUFU and PTCH by promoter methylation was ruled out 
by bisulfite sequencing of the respective CpG islands. In 
line with the results in CCC and HCC, blocking Hh 
signaling by the SMO inhibitor cyclopamine also led to a 
significant decrease in cell viability and massive induction 
of apoptosis in HB cell lines (72).  
 

Collectively, these studies clearly bolster the 
relevance of an activated Hh signaling pathway in liver 
tumors, both in children and adults. Although a 
comprehensive sequencing analysis of Hh components is 
lacking, autocrine stimulation through endogenous 
expression of Hh ligands in tumor cells along with 
transcriptional silencing of the HHIP gene by promoter 
hypermethylation can be anticipated as the driving forces 
for Hh activation in liver tumors. 
 
6. HEDGEHOG TARGETED CANCER THERAPIES 
 

Cancers harbor many mutations (73), but they 
appear to be dependent on derailment of only a few 
developmental pathways, including Hh signaling (74). 
Thus, manipulation of this pathway for therapeutic 
purposes has received increasing attention. The first 
inhibitor of Hh signaling becoming evident was 
cyclopamine, a steroidal alkaloid isolated from the corn 
lily, Veratrum californicum (75). Cyclopamine (Figure 1b) 
or synthetic derivatives thereof were first shown to block 
Hh signal transduction in tumors with PTCH and SMO 
mutations (76) and the exact targeting mechanism has been 
described almost two years later in the direct binding of 
cyclopamine to SMO (77). Treatment of tumor cells with 
cyclopamine has subsequently reported to induce decrease 
in proliferation, increase in apoptosis, and/or decrease in 
the metastatic behavior in a variety of cancers (44, 59, 60, 
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Figure 2. Hedgehog dependency of hepatoblastoma. High expression of the Hh target genes GLI1 (A) and PTCH1 (B) in a large 
number of pediatric liver tumors as compared to normal fetal and adult liver suggests pathological activation of Hh signaling in 
this tumor type. Expression was measured by means of real-time RT-PCR and is depicted as relative RNA levels standardized 
against the house-keeping gene TATA-Box-binding-Protein. (C) Lack of HHIP expression in the Hh-activated hepatoblastoma 
cell line HepT3 is caused by heavy DNA methylation of the promoter region, as determined by bisulfite sequencing. Open and 
filled circles represent unmethylated and methylated CpG sites, respectively. Treatment of HepT3 cells with the demethylating 
agent 5-aza-2’-deoxycytidine results in demethylation of a large proportion of the HHIP promoter. (D) Demethylation of the 
HHIP promoter region after 5-aza-2’-deoxycytidine treatment for 72 h results in the reactivation of HHIP expression in HepT3 
cells, as determined by real-time RT-PCR. For exact methodology, see (72). 

 
62, 78-81). As mentioned before, pathological activation of 
Hh signaling and its successful inhibition by cyclopamine 
has also been reported in cholangiocellular (44) and 
hepatocellular carcinoma (64-66, 70) as well as 
hepatoblastoma (72). These encouraging findings have 
fueled the race for identifying antagonists and small 
molecule inhibitors (69, 82-89), which more effectively 
block this deleterious pathway and overcome the poor 
aqueous solubility and acid lability of cyclopamine as well 
as its teratogenic effects (90).  

 
One such inhibitor, CUR-61414 (Figure 1b) has 

been reported to be potent at nanomolar levels, suppresses 
proliferation and induces apoptosis in an in vitro basal cell 
carcinoma model consisting of Hh-induced basaloid nests 
derived from embryonic skin punches of Ptch+/- knockout 
mice (69). Another oral SMO inhibitor, HhAntag (Figure 
1b) is also more potent than cyclopamine and completely 
eliminates growth of medulloblastoma in the Ptch+/- 
knockout mouse (80). Interestingly, inhibitors upstream of 
SMO have also been described (Figure 1b). The Hh-

neutralizing antibody 5E1 as well as the small-molecule 
robotnikinin both act on Hh signaling by disrupting binding 
of Hh ligands to PTCH (86, 91). Strikingly, anti-Hh 5E1 
has already been effectively applied to block growth of Hh 
ligand-driven tumors in vivo (92). First approaches to 
develop inhibitors lying more distal of the pathway are 
also on their way (Figure 1b), which might hold promise 
to target tumors with initial mutations in SMO or an 
activated signaling cascade due to alterations of 
components downstream of SMO, such as SUFU and 
GLI. Theses include the HPI1-4 molecules known to 
inhibit SMO multimerization and trafficking as well as 
perturbation of GLI processing and stability (87) and 
GANT-61 and GANT-58 that attenuate DNA binding of 
GLI (83). Another potential avenue, especially with 
respect to liver tumors exhibiting lack of HHIP 
expression (65, 72), might be the creation of soluble 
decoy receptors that would titrate Hh ligands away from 
binding to the PTCH receptor. That truncated HHIP 
proteins are able to bind SHH and inhibit Hh signaling 
has recently been shown (93).  



Hedgehog signaling in liver cancer 

282 

The most recently established inhibitor GDC-0449 
(Figure 1b) was identified by Genentech in a high throughput 
screening of a library of small-molecule compounds and 
subsequently optimized through medicinal chemistry (94). As 
described for cyclopamine, GDC-0449 inhibits Hh signaling 
by specifically binding to SMO (95), but displays a greater 
potency and more favorable pharmaceutical properties. 
Besides being effective in a mouse model of medulloblastoma 
and xenograft models of colorectal and pancreatic cancer, 
GDC-0449 has already been successfully used in a phase 1 
clinical trial on patients with locally advanced or metastatic 
basal cell carcinoma (94). Of the 33 patients treated, 18 had an 
objective response to GDC-0449, which was given in oral 
doses of 150 to 540 mg per day. Interestingly, no dose-limiting 
toxic effects or grade 5 adverse effects were observed in this 
two-stage trial, and only one grade 4 adverse event in terms of 
asymptomatic hyponatremia occurred during continuous daily 
administration for up to 19 months. Since expression analyses 
of archival tumor tissue of the phase 1 cohort showed 
increased transcriptional levels of GLI1 it was believed that the 
successful treatment of advanced basal cell carcinomas could 
be dependent on the inhibition of the activated Hh pathway 
(94). However, treatment of a single patient with metastatic 
medulloblastoma, which also depended on Hh pathway 
activation through a PTCH mutation, showed rapid regression 
of the tumor for a initial period of 2 months, but developed 
thereafter multiple new lesions and tumor regrowth at already 
existing sites (96). The cause for the resistance against GDC-
0449 was identified in a mutation of the SMO gene giving rise 
to a protein with an altered topography at its carboxy-
terminus, which is required for binding of cyclopamine 
(77). Nevertheless, these data provide the first proof of 
principle studies on the successful treatment of Hh-
dependent tumors in patients. Altogether, Hh inhibitors are 
on their way to enter the clinic, and their ultimate utility, 
alone or in combination with conventional regimens, has to 
be determined in future clinical trials.  
 
7. PERSPECTIVES 
 

Considerable evidence has demonstrated that Hh 
signaling is deregulated in liver cancers and other 
neoplasias, and that pathological Hh activation drives 
survival and growth of cancer cells. Preclinical studies over 
the last decade making use of mouse models for a number 
of Hh-associated tumors have substantively shown that 
inhibition of Hh signaling could effectively block tumor 
growth and induce apoptosis. The success of the SMO 
inhibitor GDC-0449 in a clinical setting together with the 
finding that liver tumors both in children and adults belong 
to the ligand-driven group of Hh-activated cancers open the 
door to combination therapies for HB and HCC patients at 
advanced stages who cannot benefit from established 
treatments. Taken together, the data and studies 
summarized in this review strongly encourage the 
implementation of established SMO inhibitors into future 
therapeutic regimens of liver cancers. 
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