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1. ABSTRACT 
 

Oxidative stress is a major contributor to the 
etiology of all severe vascular pathologies, such as 
atherosclerosis. NADPH oxidases (Nox) are a class of 
multicomponent enzymes whose unique function is the 
generation of reactive oxygen species (ROS) in the vascular 
cells and in circulating immune cells interacting with blood 
vessels. Physiological production of Nox-derived ROS 
contributes to the maintenance of vascular homeostasis. In 
pathological states, hyperactivity of Nox induces oxidative 
stress. Nox-derived ROS interact and stimulate other 
enzymatic sources of oxygen/nitrogen reactive 
intermediates, and amplify the initial response to insults. In 
atherosclerosis, Nox-induced lipid peroxidation is highly 
deleterious and expands the free radical reactions initially 
produced by activated Nox. Therefore, understanding the 
molecular mechanisms of Nox regulation, vascular and 
subcellular compartmentalization of ROS production and 
its subsequent biological significance, may lead to a 
focused and effective anti-oxidative stress therapy. We 
present here, recent advances in Nox regulation in the 
vasculature and discuss novel potential intrinsic feedback 
mechanisms and current and pharmacological perspectives 
to target Nox, which may have an impact in vascular health 
and disease.  

 
 
 
 
 
2. INTRODUCTION 
 

Cardiovascular disorders (CVD) are the leading 
cause of mortality in Western societies and an expanding 
cause of death in the developing countries. CVD include 
the coronary heart disease, cerebrovascular disease, and 
peripheral vascular disease, wherein the blood flow to the 
heart, the brain, and peripheral vasculature are severely 
compromised. The end product of most CVD is the 
formation of atheromatous plaques, which can occlude 
partially or totally the arterial lumen and disrupt the 
perfusion of the affected tissues causing organ injury and 
failure. In addition, plaque vulnerability and rupture 
(atherothrombosis) represents a life threatening 
complication of atherosclerosis resulting in thrombus 
formation and thrombi release that ultimately may obstruct 
the blood vessels in various locations (1). 

 
Atherosclerosis is generally viewed as the 

outcome of a lipid disorder and a chronic inflammatory 
reaction of large- and medium-sized arteries (2). It is 
characterized by progressive lipid accumulation in the 
vessel’s intima, dysfunctions of endothelial cells (ECs) and 
smooth muscle cells (SMCs), and a robust participation of 
extravasated immune cells. These characteristics illustrate 
that atherosclerosis is a multifactorial vascular disorder 
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portrayed by complex interactions and cross talk between 
the resident cells of the vascular wall, the cells of the 
immune system and the factors they produce.  Moreover, a 
complex interplay between predetermined and variable risk 
factors converges to plaque development and ultimately 
rupture and downstream cardiovascular complications and 
events (3). 

 
In the early stages of atherogenesis, endothelial 

dysfunction triggers a chronic inflammatory process in the 
vascular wall characterized by decreased nitric oxide (NO) 
bioavailability, induction of cell adhesion molecules, 
cytokines, and chemokines that facilitate the attachment, 
trapping, and transmigration of monocytes through the 
endothelial layer into the underlying intima. Consecutively, 
the monocytes differentiate into macrophages that via the 
non-regulated scavenger-receptor mechanism take up 
oxidized low-density lipoproteins (oxLDL) and become 
foam cells (4).  

 
Phenotypic alterations in SMCs are equally 

important in the initiation and progression of the 
atherosclerotic lesion, and ultimately contribute to artery 
wall thickening. In atherosclerosis, SMCs undergo 
hypertrophy, synthesize excess extracellular matrix and 
inflammatory cytokines, proliferate and migrate from the 
media towards the vessel’s intima. Other cell types 
involved in development of atherosclerotic plaque comprise 
platelets, neutrophils, dendritic cells, mast cells and T 
lymphocytes, which are recruited into the lesion following 
exposure to chemotactic stimuli (4). Of particular 
importance is that oxidative stress contributes, at least in 
part, in all the pathological processes leading to disease 
progression (5,6).  
   
3. IS OXIDATIVE STRESS IN ATHEROSCLEROSIS 
A CAUSE OR A CONSEQUENCE OF VASCULAR 
INJURY? 
 

Oxidative stress is a pathological phenomenon 
resulting from the imbalance in the production of reactive 
oxygen species (ROS) and the ability of biological systems 
to detoxify the reactive intermediates; it represents a 
distinctive attribute of all major cardiovascular diseases. 
The role of ROS in atherosclerosis is generally accepted 
(2). However, numerous clinical trials failed to demonstrate 
that the antioxidant therapy improve the health of patients 
with cardiovascular diseases (7,8). Therefore, many 
questions arise in relation to our current understanding of 
the molecular processes involved in ROS formation and 
action. Thus far, various pharmacological interventions 
have been used to suppress oxidative stress-induced 
damage in the cardiovascular system namely antioxidant 
supplements containing vitamins (e.g., vitamins C and E) 
and polyphenols or selective inhibitors of various 
enzymatic sources of ROS (9). These pharmacological 
approaches have numerous drawbacks such as insufficient 
concentration of active compounds at the site of ROS 
formation, or vitamins themselves becoming radicals with 
pro-oxidant activity or not being efficient scavengers (i.e. 
vitamins C and E) for hydrogen peroxide (H2O2) and 
hypochlorous acid (HOCl). Moreover, vitamin E 

accumulates in lipid membranes and lipoproteins and 
therefore its access to the oxidative events occurring in the 
cytoplasm or the extracellular space is considerably limited. 
Furthermore, the reaction between superoxide (O2

•-) and 
NO leading to NO deficiency and peroxynitrite anion 
(ONOO-) formation is not significantly affected by 
vitamins C and E.  

 
To counteract the deleterious effects of ROS (and 

to comprehend the failure of the antioxidant therapy) one 
has to ponder the diversity of enzymatic and non-enzymatic 
sources of ROS, their distinct vascular distribution and 
subcellular compartmentalization, and complex regulation 
during various stages of the disease process (10). 

 
Most of the current knowledge on ROS comes 

from studies on animal models or in vitro experiments on 
various cell-types and isolated tissues; yet, the precise role 
of the oxidative stress in the onset and progression of 
atherosclerosis in general and in humans, in particular, 
remains a debatable issue.  

 
The oxidative stress-induced vascular insults 

theory in humans is supported by clinical data, which 
validate that the transition from a physiological to a 
moderate oxidative status and ultimately severe oxidative 
stress is associated with atherosclerosis and numerous 
pathological conditions that predispose to lesion formation. 
Clinical and experimental studies revealed that in diabetes, 
hypertension, and hypercholesterolemia, ROS 
overproduction occurs early in the disease process and is 
associated with a deregulation of the antioxidant system 
(11).     

 
Several lines of evidence (in vivo and in vitro 

models) highlight the critical role of oxidative stress in 
endothelial dysfunction and atherosclerotic lesion 
formation indicating that ROS-induced ECs dysfunction is 
the primary step and the major contributor to the etiology 
of all severe vascular pathologies (12,13). Reduced 
endothelial NO bioavailability, caused by its inactivation 
by O2

•- and the consequent ONOO- formation, leads to 
impaired vascular relaxation, enhanced endothelial 
transcytosis, up-regulation of pro-inflammatory molecules, 
and the alteration of EC fibrinolytic activity. Furthermore, 
persistent oxidative stress renders endothelial NO synthase 
(eNOS) “uncoupled”, a dysfunctional state in which the 
enzyme ceases to generate NO and produces O2

•- as an 
alternative (14). 

 
Oxidation of macromolecules especially of LDL 

(oxLDL) plays a key role in all stages of atherogenesis such 
as fatty streak formation, development of complex lesion, 
and plaque rupture. Mechanistically, LDL is oxidatively 
modified in the vascular wall by iron-dependent or 
lipoxygenase-catalyzed oxidation, reaction with 
myeloperoxidases-derived HOCl, or direct oxidation by 
reactive nitrogen species, such as nitrogen dioxide radical 
(•NO2), nitryl chloride (NO2Cl), and ONOO-. 
Consecutively, oxLDL further stimulates the production of 
ROS and the expression of many pro-inflammatory gene 
products including cell adhesion molecules, cytokine, and 
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chemokines, which promote the recruitment of immune 
cells to the lesion and SMCs migration and proliferation 
within the arterial intima (15). In addition, the uptake of 
oxLDL by macrophages and SMC to form lipid-loaded 
foam cells has been reported to be highly controlled by 
ROS, which obstructs the reverse cholesterol transport 
system (16). Other than ECs and SMCs, oxidizing agents 
modulate the function of various signaling molecules in 
fibroblasts, which promote the inflammatory reaction of 
vascular adventitia (17). 

 
Besides vascular resident cells, transvasaeted and 

infiltrated immune cells i.e. monocytes/macrophages, 
platelets, neutrophils, and T lymphocytes are important 
sources of ROS within the atherosclerotic plaque. They 
further promote oxidative alterations of LDL and 
extracellular matrix constituents, platelets aggregation, 
thrombogenesis, or act as signaling molecules regulating 
redox-sensitive pro-inflammatory pathways (18). In this 
context, although oxidative injury may not the sole etiology 
of atherosclerosis, it amplifies inflammatory responses to 
vascular insults.  

 
4. MECHANISMS OF OXIDATIVE STRESS IN 
ATHEROSCLEROSIS 
 

Thus far, the mechanisms underlying the 
oxidative stress in vascular pathology, comprise the 
overproduction of ROS, alterations in the endogenous 
antioxidant system, and the production of various oxygen 
intermediates such as peroxynitrite and hydroxyl radicals 
that cannot be efficiently neutralized by the naturally 
occurring antioxidant mechanisms (19,20). 

 
 In the cardiovascular system, the cellular ROS-

generating enzyme systems that can contribute to oxidative 
stress are dedicated enzymes such as NADPH oxidases and 
enzymes that produce ROS as a byproduct of cellular 
respiration and metabolism including, the mitochondrial 
respiratory chain, lipo-/cyclooxygenases, dysfunctional 
nitric oxide (NO) synthases, cytochrome P450 reductases, 
and xanthine oxidase (21). 

 
4.1. NADPH oxidases   

NADPH oxidases (Nox) represent a class of 
hetero-oligomeric enzymes comprising seven members 
(Nox1-5 and Duox1/2), whose primary function is the 
generation of ROS in a highly regulated manner both in 
physiological and pathological conditions (22). Of 
particular importance is that Nox-derived ROS interact and 
stimulate other enzymatic sources of oxygen/nitrogen 
reactive intermediates, and generally amplify the initial 
response to insults (23,24). Moreover, different subtypes of 
Nox are expressed in the cardiovascular cells (ECs, SMCs, 
vascular and cardiac fibroblasts, cardiac myocytes, 
pericytes) and in the circulating cells interacting with the 
blood vessels (monocytes/macrophages, neutrophils, 
lymphocytes, platelets, dendritic cells) (25). 

 
Studies in cell culture and animal models provide 

evidence for the critical role of Nox-dependent oxidative 
stress in atherosclerosis. Nox activity and expression is 

induced by a plethora of agonists associated with 
atherosclerotic lesion formation. Among these factors, there 
are angiotensin II (AngII), high glucose, oxLDL, platelet-
derived growth factor (PDGF), thrombin, tumor necrosis 
factor α (TNFα), interferon γ (IFNγ), and pathological 
shear stress (26-28). From human studies, there is evidence 
that chronic and acute overproduction of Nox-derived ROS 
in pathological states play a key role in the disease onset 
and progression (29).    
 
4.2. Mitochondrial electron transport chain 
 Mitochondrial electron transport chain 
represents a major source of O2

•- and consequently H2O2. It 
has been estimated that during oxidative phosphorylation 
process, 1% - 2% of O2 is incompletely reduced to O2

•- 

which is effectively neutralized by manganese superoxide 
dismutase. Under pathological conditions uncoupling of the 
mitochondrial electron transport complexes I-IV (NADH-
ubiquinone oxidoreductase, succinate-ubiquinone 
oxidoreductase, ubiquinole-cytochrome c reductase, 
cytochrome c oxidase) leads to increased O2

•- production. 
In the absence of protective histone-like proteins and of 
DNA damage-repair enzymatic machinery, the 
mitochondrial DNA is prone to oxidative damage, which 
ultimately leads to mitochondrial loss of functions that 
triggers apoptotic events. Defects in mitochondrial DNA 
resulting in altered mitochondrial electron transport chain 
enzyme activity and persistent oxidative stress have been 
ample reported in diabetes, atherosclerosis, obesity, and 
cigarette smoking (30). 
 
4.3. Lipoxygenases 

Lipoxygenases are non-heme containing 
dioxygenases, which oxidize polyunsaturated fatty acids to 
hydroperoxy fatty-acid derivatives. Evidence exist that 
12/15-lipoxygenase (LO) and its products, 12-
hydroxyeicosatetraenoic acid (12-HpETE) and 15-HpETE, 
are implicated in pathological processes leading to 
atherosclerosis (31). Knockout of 12/15-LO gene causes 
significant inhibition of early atherosclerotic lesions in 
ApoE-deficient (ApoE-/-) mice (32,33). The 12/15-LO 
product, 12-HpETE acid increases monocyte adhesion to 
human ECs and mediates inflammatory processes leading 
to atherosclerosis (34). The 12/15-LO activation induces 
SMCs growth, hypertrophy, and inflammatory gene 
expression whereas pharmacological inhibition of 12/15-
LO reduces blood pressure in hypertensive rats and 
prevents intimal hyperplasia in balloon-injured rat carotid 
arteries (35-37). 

 
4.4. Uncoupled NO synthases 

Uncoupled NO synthases (endothelial/inducible – 
eNOS/iNOS) are another important sources of ROS in 
vasculature. Physiologically, the enzyme produces NO and 
L-citruline by transferring electrons from a heme group in 
the oxygenase domain to the substrate L-arginine. In 
pathological conditions, such as atherosclerosis, diabetes, 
hypertension, and hypercholesterolemia, the lack of 
essential co-factors/substrate (i.e., 5,6,7,8-
tetrahydrobiopterin-BH4, L-arginine), renders the enzyme 
dysfunctional. Two different dysfunctional states have been 
described for NOS: “total uncoupled” when the enzyme 
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produces O2
•- and “partial uncoupled” in which case the 

enzyme generates both O2
•- and NO, leading to a condition 

favoring production of ONOO-. Thus, incapacitating NO-
generating  eNOS/iNOS is a major contributor to the onset 
of oxidative stress and a key pathological trigger of 
atherosclerosis (38).  
 
4.5. Xanthine oxidoreductase 

Xanthine oxidoreductase, a molybdenum-
containing enzyme, catalyzes the oxidation of 
hypoxanthine to xanthine, with the subsequent production 
of ROS and uric acid. The enzyme complex exists in 
separate but interconvertible forms, xanthine 
dehydrogenase (XD) and xanthine oxidase (XO). 
Reduction of O2 by either form of the enzyme yields to O2

•- 
and H2O2 with xanthine and hypoxanthine as substrates. 
Noteworthy XD preferentially reduces NAD+ whereas XO 
specifically reduces O2. Conversion of XD to XO is 
stimulated by ischemia/reperfusion, exposure to 
inflammatory cytokines or by oxidation of critical cysteine 
residues by reactive oxygen/nitrogen intermediates. The 
XO is expressed in the plasma and the membrane of ECs 
and is not present in SMCs (39,40). 

 
Clinical evidence exists that XO-induced 

oxidative stress is correlated with coronary artery diseases, 
whereas treatment with allopurinol (a pharmacological 
inhibitor of XO), attenuates oxidative stress, induces 
vasorelaxation and improves endothelial function in 
hypertensive patients (41). Yet, NO-dependent endothelial 
function is unaffected by allopurinol in 
hypercholesterolemic subjects (42).  
 
5. Phagocyte-type Nox: role in cardiovascular diseases  

The structure, function, and regulation of Nox 
have been originally described in professional phagocytes 
(neutrophils, monocytes/macrophages). In these cells, in 
cooperation with myeloperoxidases, NADPH oxidase plays 
a major role in host defense against invading microbes 
through the production of toxic ROS such as hypochlorous 
acid (HOCl), a highly reactive oxidant.  

 
During phagocytosis, macrophages also produce 

considerable amounts of NO. Consequently, the Nox-
derived superoxide (O2

•-) reacts with NO generating 
ONOO-, a highly cytotoxic chemical species which directly 
attack and oxidize biological molecules in invading 
microorganisms, resulting in molecular damage and 
microbial death (43). 
 

Structurally, the phagocytic Nox contains five 
subunits: a membrane-associated cytochrome b558 (named 
for the spectral absorption at 558 nm), consisting of heavily 
glycosylated 91-kDa protein (gp91phox, also termed Nox2) 
and non-glycosylated 22-kDa subunit (p22phox) in a 1:1 
complex, and three cytosolic regulatory components, 
p40phox, p47phox, and p67phox. Besides “Phox” proteins, 
activation of Nox involves a low-molecular-weight GTP-
binding protein (Rac1/2, Rap 1A). In resting phagocytes, 
the enzyme complex is dissociated, but upon exposure to 
microorganisms or inflammatory mediators is rapidly 
activated.  

Two major mechanisms regulate Nox activity: 
p47phox phosphorylation and Rac-GTPase (44). Serine 
phosphorylation of p47phox represents the limiting step 
required for the complex activation; it triggers assembly of 
cytosolic subunits, its translocation to the membrane and 
association with cytochrome b558. Rac interacts directly to 
p67phox and activates Nox in its GTP-bound active state, 
only. In addition to Nox2-containing NADPH oxidase, in 
macrophages, Nox1 and Nox4 have been shown to be 
essential inducible isoforms, which participate in the 
oxidation processes in the vascular wall (45, 46). 

 
Genetic defects in the genes encoding four of the 

“Phox” proteins (gp91phox, p22phox, p47phox and 
p67phox) cause chronic granulomatous disease (CGD), 
which is a rare inherited disorder of the innate immune 
system. In CGD dysfunctional phagocyte Nox are unable to 
produce ROS, thus leading to life-threatening bacterial and 
fungal infections (43). Although the phagocyte-type Nox-
derived ROS has an important role in pathogenesis of 
vascular diseases (e.g. atherosclerosis), a correlation 
between defective Nox2-dependent oxidative burst in CGD 
patients and cardiovascular abnormalities was not 
demonstrated yet.  

 
In addition to macrophages, dendritic cells 

(DCs) and lymphocytes, which usually reside in the 
adventitia of normal arteries, were found in the arterial 
atherosclerotic lesions. Apart from being involved in 
innate immunity, Nox2-containing NADPH oxidase also 
controls adaptive immunity, and antigen presentation by 
DCs is a key process in adaptive immune responses. The 
antigens are partially degraded and processed in the DCs 
endosomes and then presented by major 
histocompatibility complex (MHC) class I molecules to 
CD8+ T lymphocytes. It has been reported that Nox2 is 
a critical regulator of antigen processing during cross-
presentation by DCs; the Nox2-derived ROS maintain 
an alkaline pH in the endosome lumen. Knockout of 
Nox2 results in enhanced endosomal acidification that 
promotes increased antigen degradation and less cross-
presentation (47). In addition, Nox2-deficient T cells 
elicit enhanced activation of mitogen-activated protein 
kinases cascades in response to T-cell receptor stimulation 
(48). Because DCs and T lymphocytes are important 
constituents of atheroma and Nox2 up-regulation is 
correlated with macrophage infiltration in complicated 
lesions, the study of the genetic defects of the Nox subunits 
and their potential consequences in cardiovascular diseases 
is of particular importance and has to be further 
investigated. 

 
6. Non-phagocyte type Nox: expression pattern in the 
vascular cells 

Non-phagocyte Nox enzyme family consists of 7 
members (Nox1-5, Duox1/2), each with a distinct cell and 
tissue distribution. Nox enzymes are classified into three 
major categories, as a function of the additional domains to 
the prototypical catalytic subunit Nox2. The first category 
comprises Nox1, Nox3, and Nox4 subtypes, which have a 
similar structural organization and molecular weight with 
Nox2. 
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Figure 1. Distinct expression of Nox isoforms in the cells involved in atheroma formation. Resident vascular cells, the 
endothelial cells (EC), smooth muscle cells (SMC) and  adventitial fibroblasts; the cells of the immune system, monocytes (Mon) 
that turn into macrophages and foam cells (Mac) within the intima, T lymphocytes (TLy), platelets (Pl), and mast cells (Mast). 

 
Nox5, the second group of the Nox family, 

posses in addition to the Nox2-type catalytic core, an extra 
amino-terminal calmodulin-like domain that contains four 
Ca2+-binding EF-hands structures (49). Two types of Nox5 
have been described, Nox5-S and Nox5-L. The latter 
possesses an amino-terminal calmodulin-like domain that 
contains four Ca2+-binding EF-hands structures, whereas 
Nox5-S is lacking this domain. Hitherto, four splice 
variants of Nox5-L, namely Nox5α, Nox5β, Nox5γ, and 
Nox5δ have been identified in humans. In particular, the 
Nox5 gene is not present in the rodent’s genome.  

 
The Nox5-like dual oxidases 1 and 2 (Duox1/2) 

are the third category of Nox. Duox possess, in addition to 
the Nox5-based structure, an extracellular peroxidase 
domain that uses the H2O2 generated by its Nox catalytic 
core. Duox enzymes are involved in thyroid hormone 
synthesis and in cooperation with lactoperoxidase were 
suggested to play a role in host defense in various tissues 
(50).  

 
Different subtypes of Nox along with their regulatory 
subunits are expressed in the cardiovascular cells including 
ECs, SMCs, vascular and cardiac fibroblasts, cardiac 
myocytes, and pericytes (38). The ECs contain Nox1, 
Nox2, Nox4 (most abundant isoform), and Nox5-based 
NADPH oxidases. In SMCs, a high expression of Nox1, 
Nox4, and Nox5 and a low level of Nox2 have been 
detected. Adventitial and cardiac fibroblasts contain mainly 
Nox2 and Nox4 (51) (Figure 1). 
 

Nox subtypes are differentially distributed within 
the cellular compartments; moreover, they control specific 
ROS-mediated signal transduction pathways. Nox1 and 
Nox2 are localized in caveolae, in the plasma membrane, 
and endosomes. Nox4 has been detected in focal adhesions, 
the nucleus, endoplasmic reticulum, and mitochondria 
(52,53). Nox5 is expressed in the perinuclear compartment, 
colocalized with markers for the endoplasmic reticulum, 
and in the plasma membrane (54,55). 
 
6.1. Nox-induced oxidative stress signals in the vascular 
cells 

In addition to their capacity to alter cell functions 
by reacting indiscriminately with a large majority of 
macromolecules which cause irreversible damage of DNA, 

proteins, carbohydrates, and lipids constituents, ROS are 
key regulators of signal transduction.  

 
Nox enzymes catalyze the formation of O2

•- by 

one-electron reduction of molecular oxygen (O2) using 
NADPH as an electron donor. Chemical conversion of O2

•- 

or interactions with other biological molecules generates a 
large spectrum of second messengers which transduce 
important physiological and pathological signals. 
Spontaneous or enzymatic dismutation of O2

•- produces 
H2O2, which consecutively may be reduced via the 
Haber-Weiss reaction to HO•, hitherto, the most 
powerful oxidizing agent identified in biological 
systems.  

 
Alternatively, O2

•- can react with NO by a 
process that is highly regulated by the rate of diffusion 
of both radicals, the result of which is the formation of 
ONOO-, a highly potent oxidant. Nox-generated ROS 
may lead to the production of several other radicals, 
including lipid peroxidation products (6,56). 

 
Evidence exists that, in cardiovascular cells, 

changes in the redox state alter directly or indirectly the 
activities of several intracellular signaling molecules 
(57). The biological targets of redox signaling comprise 
a large spectrum of molecules including enzymes 
(especially protein kinases, phosphatases, and 
phospholipases), transcription factors, peptides, ion 
channels and transporters, lipids, carbohydrates, and 
other oxygen-based species (58). Transient inhibition of 
protein tyrosine phosphatases (PTPs) through the 
reversible oxidization of their catalytic cysteine 
suppresses protein dephosphorylation and represents a 
major mechanism by which H2O2 regulates various 
cellular processes. In addition, O2

•- and H2O2 modify the 
activity of the mitogen-activated protein kinase 
(MAPKs) family and of different receptor and non-
receptor protein tyrosine kinases (PTKs) (59).  

 
Besides protein kinases, phosphatases and 

transcription factors, Nox-derived ROS are the key 
regulators of intracellular Ca2+ and K+ concentrations by 
a mechanism that involves reversible thiol oxidation of the 
cysteine residues present on ion channels and transporters 
(60,61). 
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Enzymatic and non-enzymatic lipid peroxidation 
represents an important mechanism of the oxidative stress-
mediated vascular injury. Peroxidation of lipids has 
deleterious effects because the formation of these products 
extends the free radical reactions. Under an oxidative 
environment, both circulating or intima-infiltrated 
lipoproteins and plasma membrane phospholipids are 
susceptible to ROS attack. The reaction between Nox-
derived ROS and polyunsaturated fatty acids (PUFAs) 
generates fatty acid peroxyl radical (R-COO-) that can 
attack adjacent fatty acid chains and initiate the production 
of other lipid radicals by a chain reaction mechanism (58). 

 
The lipid peroxidation comprises three sequential 

stages: initiation, propagation, and termination. Hydrogen 
atom abstraction from the double bonds of the PUFAs 
represents the initiation step of lipid peroxidation. Several 
oxygen-derived reactive intermediates can abstract the first 
hydrogen atom including hydroxyl radical (HO•), 
hydroperoxyl radical (HO2•) and to a lesser extent O2

•- or 
H2O2 (non-radical) (62). As recently reviewed by Riahi et 
al. (63), nonenzymatic peroxidation pathway of n-3 and n-6 
PUFAs generates 4-hydroxy-2E-hexenal (4-HHE) and 4-
hydroxy-2E-nonenal (4-HNE), whereas enzymatically 
regulated peroxidation pathways involves different 
lipoxygenases (e.g. 12/15-LO) that ultimately produce 4-
HNE and 4-hydroxy- 2E,6Z-dodecadienal (4-HDDE). 
Notably, 4-HDDE is exclusively derived from 12-HpETE, 
the 12-LO metabolite of arachidonic acid, whereas 4-HNE 
is the end peroxidation product of 15-LO metabolites of 
arachidonic acid, linoleic acid, and other n-6 PUFAs. 

 
Hydroxyalkenals have been implicated in various 

pathophysiological interactions due to their chemical 
reactivity and formation covalent adducts with proteins, 
nucleic acids and phospholipids. The progressive 
accumulation of these adducts can alter normal cell 
functions and ultimately may lead to cell death, unless the 
cells are equipped with an efficient enzymatic neutralizing 
system of these hydroxyalkenals (e.g., glutathione 
peroxidase, fatty aldehyde dehydrogenase) (64).  

 
Lipid peroxidation products affect the cell 

membrane structure, causing changes in its fluidity and 
permeability, alterations of ion transport and inhibition of 
metabolic processes (65). In addition, lipid peroxidation 
products directly affect mitochondrion function and can 
induce further increases in ROS generation. In particular, 4-
HNE induces vascular SMCs apoptosis through an 
increased mitochondrial production of ROS (66). In 
addition, break down of lipid peroxides in the presence of 
reduced metals give rise to reactive aldehyde products, 
including malondialdehyde (MDA), 4-HNE, 4-HHE and 
acrolein, all having detrimental effects on the cells. The 
chemical adduct reactivity of the three 4-hydroxyalkenals 
correlates directly to their hydrophobicity [LogP(o/w)]: 4-
HHE (0.89) < 4-HNE (2.45) < 4-HDDE (3.48) (67). Still, at 
low non-cytotoxic concentrations these molecules could 
function as signaling molecules, as it has been shown for 4-
HNE and to some extent for 4-HHE (68). 

 

Distinct to lipoxygenase-mediated lipid 
peroxidation, there is evidence that Nox-derived ROS are 
effective triggers of lipid peroxides formation (69). Based 
on the fact that Nox enzymes generate mainly O2

•- and 
H2O2 which are not able to abstract hydrogen atoms per se 
from the double bonds of the PUFAs, additional 
cooperative processes are involved in the formation of 
oxygen-derived molecules with a higher chemical 
reactivity. As mentioned, HO• and HO2• are the most 
important initiators of lipid peroxidation. Therefore, 
protonation of Nox-derived O2

•- to afford HO2• represents a 
critical step by which Nox interfere with lipid peroxidation 
chain reactions. Moreover, H2O2 may be reduced to HO•, 
in the presence of free transition metal ions (e.g., Fe2+, 
Cu2+) via the Haber-Weiss reaction (70). 

 
In addition to being involved in lipid peroxides 

formation, Nox enzymes themselves are targets of lipid 
peroxidation products action. Evidence exists that 4-HNE 
increases the activity of Nox and that the pro-inflammatory 
effect of 4-HNE is mediated, at least in part, by Nox-
derived ROS in murine macrophages (71).  

 
13-hydroperoxyoctadecadienoic acid (13-

HPODE) is also implicated in the pathophysiology of 
atherosclerosis. 13-HPODE, a constituent of oxLDL, can 
induce cytotoxicity of vascular SMCs, a condition that 
facilitate plaque destabilization and/or rupture. Consistent 
with this hypothesis, Li et al. (72) showed that 13-HPODE 
and 9-HPODE increases O2

•- production and is cytotoxic 
for vascular SMCs. The 13-HPODE-induced increase in 
O2

•- was blocked by knock-down of p22phox, suggesting 
that the O2

•- was produced by activated Nox.  
 
Siems et al. (73) established that 4-HNE inhibits 

Nox-dependent O2
•- formation in phorbol myristate acetate 

(PMA)-stimulated human neutrophils by 4-HNE-binding to 
-SH and -NH2 groups. Therefore, a possible explanation of 
enzyme inhibition may be the tendency of 4-
hydroxyalkenals to form covalent adducts with 
macromolecules, rather than the alosteric inhibition of the 
enzyme complex. Likewise, at low concentration, 4-HHE 
elicits antioxidant activities by inducing the expression of 
heme oxygenase-1 through the redox-activation of Nrf2 
transcription factor in human umbilical vein ECs (74). 
 
6.2. Regulation of vascular Nox activity and expression 

The activity of Nox1 and Nox2 isoforms is highly 
controlled by phosphorylation cascades involving cytosolic 
regulatory subunits that trigger the assembly of the enzyme 
complex. Besides p40phox, p47phox, and p67phox 
components, two different homologues have been 
identified in vascular cells, the Nox organizer 1 (Noxo1) - 
the analog of p47phox, and Nox activator 1 (Noxa1) - the 
analog of p67phox.  

 
Unlike phagocytic cells, different functional 

aspects are involved in the regulation of vascular Nox 
activity. Thus, Noxo1 is pre-localized within the membrane 
together with Nox1 and p22phox distinct to p47phox, 
which is localized in the cytosol (35). To function, Nox1-4 
enzymes require the p22phox subunit, whereas Nox5 
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isoforms are activated directly by calcium (75). The 
polymerase delta interacting-protein 2 (Polidp2) has been 
identified as a novel partner for Nox4-p22phox complex, 
which enhances enzyme stability and activity. In addition, 
it was suggested that owing to strategic nuclear 
localization, the Nox4-p22phox-Polidip2 complex might 
have a role in the regulation of key nuclear process such as 
redox modification of DNA or associated proteins, DNA 
synthesis and repair (76). Nevertheless, as reviewed by 
Miller (77) many questions arise in relation to the nuclear 
compartmentalization and function of Nox4.  

 
In aortic SMCs, Nox1 activity is controlled by a 

ClC-3 anion transporter, which is required for charge 
neutralization of the electron flow generated by Nox1 
across the membrane of early endosomes (78). Recently, 
Chu et al. (79) showed that ClC-3 is necessary for the 
activation of SMCs by TNF-α (and not by thrombin), and 
deficiency of ClC-3 markedly reduces neointimal 
hyperplasia following vascular injury in mice aorta. 

 
Pathways linked to phosphorylation of Nox1 and 

Nox2 regulatory subunits and their assembly into active 
complexes comprise, among others, phospholipases 
(PLCβ/γ, PLD), arachidonic acid metabolites, protein 
kinase C (PKC), phosphatidylinositol 3-kinase (PI3K), 
GTP-binding proteins (Ras, Rac1/2), members of the 
mitogen-activated protein kinase (MAPK) family 
(p38MAPK, ERK1/2), and non-receptor protein tyrosine 
kinases (80,81). In contrast to Nox1 and Nox2, which 
require the regulatory subunits for their function, Nox4 
produces ROS constitutively, and variations in protein level 
directly affect the activity of Nox4 (82). Nox5 activity is 
Ca2+-sensitive. Moreover, activation mechanisms involving 
PKC- and the proto-oncogenic tyrosine kinase c-Abl 
phosphorylation of Nox5 have been reported (55,83). In 
addition, chaperone proteins (e.g., protein disulfide 
isomerase) are important regulators on Nox activity (84). 

 
Changes in the gene expression of the Nox 

isoforms are critical for their function. Evidence exist that 
multiple transcription factors are coordinately involved in 
the regulation of Nox expression and function. In the 
myelomonocytic cell lineage, Nox2 transcription is 
controlled by PU.1, Elf-1, IRF-1 (interferon regulatory 
factor-1), and ICSBP (interferon consensus sequence 
binding protein) (85).  

 
In human colon epithelial Caco-2 cells, Nox1 is 

transcriptionally regulated by GATA-binding factors (86), 
whereas in murine macrophages, the induction of Nox1 by 
lipopolysaccharide (LPS) is partially mediated by 
CCAAT/enhancer-binding protein (C/EBP)β and C/EBPδ 
(87).  

 
In human aortic SMCs, AP-1 is an important 

regulator of the genes coding for p22phox (CYBA), Nox1, 
and Nox4 transcription (88, 89). STAT1 and STAT3 
physically interact with the promoter of human Nox1 and 
Nox4 genes in SMCs exposed to interferon (IFN) γ and 
JAK/STAT-dependent mechanisms are involved in the 
modulation of Nox-derived O2

•- production. In addition, the 

promoter activities of the genes coding for p22phox, 
p47phox (NCF1), and p67phox (NCF2), are significantly 
enhanced in SMCs overexpressing STAT1/STAT3, a 
finding that indicates the presence of functionally 
GAS/ISRE elements (90). Ets1, a critical mediator of 
vascular inflammation and remodeling, regulates NCF1 
transcription in response to AngII in SMCs (91). In 
addition, growth-promoting transcription factor E2F 
physically interacts and controls the transcription of Nox4 
promoter in A7r5 cells and primary mouse aortic SMCs 
(92).  

 
Reportedly, NF-kB signaling represents a central 

mechanism in the control of the transcription of various 
Nox subunits. Anrather et al. (93) have shown that, in 
murine monocytes, the expression of the gene coding for 
gp91phox/Nox2 (CYBB) is induced by NF-kB. Moreover, 
the up-regulation of p47phox and p22phox expression by 
LPS/IFNγ was blunted in IkBα-overexpressing cells 
indicating the involvement of the NF-kB pathway in the 
regulation of these components. Gauss et al. (94) reported 
similar results in TNFα-exposed human 
monocytes/macrophages. These observations are consistent 
with our previous study demonstrating the role of NF-kB in 
the regulation of Nox activity and p22phox transcription in 
human aortic SMCs (95). Recently, we reported that NF-kB 
is also a regulator of Nox1- and Nox4-containing NADPH 
oxidase in human aortic SMCs (96). 

 
Hypoxia sensing and associated signaling events 

represent key features in vascular cell physiology and 
pathology (97). Evidence exists that hypoxic conditions 
stimulate the expression of Nox activity (98). In a recent 
study, Diebold et al. (99) have found that hypoxia induces 
Nox4 mRNA and protein levels in pulmonary artery SMCs 
and in pulmonary vessels in mice exposed to hypoxic 
conditions. The response is dependent on HIF-1α, which 
interacts with the corresponding elements in the Nox4 
promoter. Consequently, the HIF-1α dependent up-
regulation of Nox4 by may be an essential mechanism to 
preserve ROS level after hypoxia and the hypoxia-induced 
proliferation of pulmonary artery SMCs. Furthermore, ATF 
(activating transcription factor)-1, a transcription factor of 
the CREB (CRE-binding protein)/ATF family, plays a 
pivotal role in the up-regulation of Nox1 in rat vascular 
SMCs (100). Pendyala et al. (101) have demonstrated that 
Nrf2, a critical transcriptional regulator of antioxidant 
genes, also controls Nox4 expression in mouse lung and 
human lung endothelium in response to hyperoxia. 
 
6.3. PPARs in the vasculature: redox-signaling 
regulators? 

Peroxisome proliferator-activated receptors 
(PPARs) are members of a superfamily of nuclear hormone 
receptors. They have 3 isoforms, PPARα, PPARβ/δ, and 
PPARγ, which act in concert with Retinoid X Receptor 
(RXR) as ligand-activated transcription factors. PPARs 
play key roles in the regulation of energy homeostasis, fatty 
acid metabolism and inflammation. Agonists of PPARα 
and PPARγ are currently used therapeutically. The former 
lowers plasma triglycerides, VLDL, increases HDL 
cholesterol, and the latter affects free fatty acid metabolism, 
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thus reducing insulin resistance and blood glucose level 
(102,103). Activation of PPARβ/δ enhances glucose 
tolerance, insulin-stimulated glucose disposal, cholesterol 
efflux and oxygen consumption (104).  

 
PPARs regulate gene expression by dimerizing 

with RXR and binding to specific DNA sequence elements 
termed PPRE (Peroxisome Proliferator Response Element). 
Besides their metabolic actions, PPARs also control 
immune and inflammatory responses, and regulate cell 
proliferation, differentiation, and survival.  

 
PPAR ligands can be either synthetic, such as 

peroxisome proliferators, hypolipidemic agents, anti-
inflammatory or insulin-sensitizing drugs, or endogenous 
ligands, most of which are fatty acids or their derivatives 
(105).  

 
Clinical and experimental data indicate that 

PPARs agonists modulate ROS production in blood 
vessels, but the precise function of PPARs in the regulation 
of Nox enzymes is scantily elucidated. The protective 
cardiovascular effects of PPARα and PPARγ activators 
have been demonstrated (102,106-108). Moreover, 
combined low doses of PPARα and PPARγ agonists 
attenuate the development of hypertension, correct vascular 
structural abnormalities, and improve endothelial function, 
oxidative stress, and vascular inflammation (109). The 
PPARγ agonist, rosiglitazone, has been reported to prevent 
high-glucose-induced oxidative stress and Nox 
hyperactivity in ECs and to reduce the hyperglycemia-
induced Nox expression in diabetic mice (110,111). In 
addition, pioglitazone treatment prevents hypertension and 
renal oxidative stress, both by reducing free-radical 
production and by increasing NO production/availability 
(112). Thus far, the involvement of the PPARβ/δ isoform in 
the regulation of Nox enzymes has not been investigated.  

 
Activation of PPARα and PPARγ inhibits 

inflammatory responses by preventing the activation of 
nuclear transcription factors, NF-kB, AP-1, and STAT1/3 
(112,114). Since these transcription factors are also key 
regulators of some Nox isoforms (39,88-90,95), we can 
hypothesize the existence of an auto-regulatory mechanism 
by which diverse PPAR isoforms control the transcription 
of Nox in a negative feedback loop. 

 
Interestingly, Teissier et al. (69) have reported 

that PPARα induces Nox activity and expression in 
macrophages, leading to the generation of oxLDL with 
PPARα activation properties. These findings lead to the 
novel concept that a “controlled oxidative stress” mediated 
by Nox activation might also generate certain anti-
inflammatory activities. In addition, the promoter activities 
of the genes coding for p22phox, Nox1, and Nox4, were 
significantly enhanced in human aortic ECs and SMCs 
overexpressing hPPARα, hPPARβ/δ, hPPARγ or hRXRα; a 
finding that indicates the presence of functionally PPRE 
elements. Moreover, the transcriptional activities of each 
component were significantly up-regulated by PPARα, 
PPARβ/δ or PPARγ agonists. Based on the fact, that RXRα 
up-regulates various Nox transcription, the contribution of 

other heterodimerization partners, distinct to PPARs, such 
as subfamily 1 nuclear receptors including CAR 
(constitutive androstane receptor), FXR (farnesoid X 
receptor), LXR (liver X receptor), PXR (pregnane X 
receptor), RAR (retinoic acid receptor), TR (thyroid 
hormone receptor), and VDR (vitamin D receptor) should 
be considered (Manea et al. unpublished data). Further 
extensive studies will elucidate the intimate relation 
between Nox and PPAR/RXR system in vascular health 
and disease (Figure 2). 
 
6.4. Nox-derived ROS in cardiovascular pathology 
6.4.1. Nox subtypes-specific effects 

In physiological conditions, Nox-derived ROS 
contribute to the maintenance of vascular tone and regulate 
key processes such as cell growth, proliferation, 
differentiation, apoptosis, cytoskeletal organization, and 
cell migration. In pathological conditions excessive Nox-
dependent ROS formation, which is frequently correlated 
with the up-regulation of different Nox isoforms, promotes 
oxidative injury to the cells of the cardiovascular system 
(6). 

 
As recently reviewed by Rivera et al. (51), 

transgenic and knockout mice provided much of our current 
knowledge about the role of Nox enzymes in vascular 
physiology and pathology. Compelling evidence 
demonstrates that Nox-derived ROS play an important role 
in vascular inflammation and injury and that genetic 
ablation of Nox components (p47phox, Nox1, Nox2) 
protects the vascular cells against the detrimental effects of 
oxidative stress. ApoE-/- mice develop atherosclerotic 
lesions that cover the entire spectrum of human lesions, 
including fatty streaks, intermediate lesions, fibrous 
plaques, and vulnerable plaques exhibiting necrotic core 
and intra-plaque hemorrhage (115). Numerous studies 
performed on ApoE-/- mice clearly depicts that changes in 
Nox activity and expression occur early in atherogenesis, 
and hyperactivity of Nox associated with the up-regulation 
of various isoforms marks all the stages of the plaque 
formation (42). In addition, Nox1, Nox2, and Nox4 are 
activated and up-regulated in the blood vessels of ApoE-
deficient mice and diabetic animals (116,117). 
ApoE/p47phox double-knockout mice have significantly 
less atherosclerosis compared with ApoE-/- mice. 
Moreover, aortic O2

•- levels are lower in p47phox-/- mice 
than in wild-type mice. Moreover, aortic SMCs from 
p47phox-/- mice exhibit a decreased proliferative response 
to growth factors compared with that of the SMCs of wild-
type mice (12). 

 
Hypertension represents a major risk factor for 

atherosclerosis and its complications and several reports 
demonstrate that oxidative stress is both cause and 
consequence of hypertension (61). In mice, Nox1 
deficiency decreases AngII-induced blood pressure, media 
hypertrophy, and extracellular matrix accumulation, but not 
cell proliferation (118,119). Consistent with these findings, 
AngII-infused mice overexpressing Nox1 in vascular 
smooth muscle cells display an elevation of blood pressure, 
medial hypertrophy and significant up-regulation of O2

•- 

formation (120). Furthermore, overexpression of Nox1 in 
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Figure 2. Diagrammatic representation of Nox activation in vascular cells and the hypothetical mechanism whereby Nox-derived 
ROS, besides inducing transcription factor - mediated oxidative stress, could elicit anti-inflammatory activities via PPARs. Nox 
mediates the signals of several cardiovascular risk factors generating reactive oxygen/nitrogen species (ROS/RNS) which 
activates redox signaling/transcription pathways and promote lipid peroxidation. In addition, Nox-derived ROS may produce 
endogenous ligands (i.e. lipid peroxidation products) for PPARα, PPARβ/δ or PPARγ whose activation inhibit key regulators of 
Nox isoforms and pro-inflammatory genes (NF-kB, AP-1, and STAT1/3), thus determining a state of “controlled oxidative 
stress” with anti-inflammatory action. Consequently, Nox-generated ROS may have a dual role: they either induce oxidative 
vascular injury or may elicit anti-inflammatory functions via PPARs activation.   

 
vascular SMCs leads to enhanced production of ROS in 
response to ANG II, causes eNOS uncoupling and the 
ensuing decrease in NO bioavailability, resulting in 
impaired vasorelaxation (121). 

 
ROS-mediated protein oxidation is 

significantly diminished in Nox2-/- mice compared with 
wild-type mice, and this is accompanied by reduced 
neointimal proliferation (monitored by intimal thickness 
and the intimal/medial ratio). In addition, Nox2 
deficiency leads to reduced cell proliferation and 
leukocyte accumulation, indicating that Nox2-mediated 
oxidation has a requisite role in the cell response to 
injury (122). 

 
The physiological and pathological functions 

of Nox4 and Nox5 isoforms, in vivo, are less 

understood, because there are few atherosclerosis-
related studies on Nox4 deficient mice, and the Nox5 
gene is not present in the rodent’s genome. Therefore, 
much of the current knowledge comes from in vitro 
experiments on various cell-types and isolated tissues. 
Recently, Zhang et al. (123) have generated a Nox4-null 
mouse model and a cardiomyocyte-targeted Nox4-
transgenic model to elucidate the effects of Nox4 during 
cardiac stress. In contrast to the effects of Nox2 and 
other ROS sources, the increase in cardiomyocyte Nox4 
resulted in protection against pressure overload-induced 
adverse cardiac remodeling. The authors conclude that 
Nox4 facilitates the preservation of myocardial capillary 
density during pressure overload by regulating stress-
induced cardiomyocyte HIF1 activation and release of 
vascular endothelial growth factor (VEGF), resulting in 
increased paracrine angiogenic activity.  
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Notably, in a recent study Guzik et al. (124) 
reported a strong association between Nox5 and 
atherosclerotic lesion progression. Furthermore a 
specific expression pattern was reported; with Nox5 
being expressed mainly by the endothelium in the early 
stages of the disease while its expression is significantly 
increased in SMCs underlying fibro-lipid atherosclerotic 
lesions.   

 
The mechanisms of Nox isoforms regulation 

were intensively investigated in cell culture and isolated 
tissues. Both catalytic (i.e., Nox1-5, p22phox) and 
cytosolic regulatory (i.e., p40phox, p47phox, p67phox, 
and Noxa1) components of the Nox complex have been 
shown to be up-regulated by vasoactive agents, 
inflammatory cytokines, growth factors, high glucose, 
modified lipids and lipoproteins, hyperinsulinemia, 
homocysteine, and mechanical stress (125-128). 

 
Taken together these data indicates that Nox1, 

Nox2, Nox4, and Nox5 are important regulators of 
cellular pathways mediating ROS-dependent 
physiological and pathological processes. Given that the 
different Nox subtypes are expressed concurrently in the 
vascular cells, and that several isoforms are similarly 
regulated, their subcellular localization might be an 
essential factor in determining Nox functions.  
 
6.4.2. Consequences of Nox-related genetic variants in 
CVD 

Genetic studies provided conclusive support that 
several Nox-related polymorphisms are associated with an 
increased susceptibility for cardiovascular disorders. Thus 
far, much attention has been paid to the CYBA gene 
encoding the p22phox essential subunit. The p22phox 
protein is ubiquitously expressed in cardiovascular cells 
and represents the α-subunit of the membrane-associated 
cytochrome b558 that serves as final electron transporter 
from NADPH to O2 in both phagocyte-type and non-
phagocyte Nox systems (129). Furthermore, increases in 
p22phox expression associated with elevated ROS 
production, correlate with severe oxidative stress and 
various vascular pathological states (38,130). The p22phox 
protein forms stable and functional heterodimers with 
Nox1, Nox2 or Nox4, a critical condition for Nox activity 
as demonstrated by siRNA-based knock-down of p22phox 
expression (131).  

 
The CYBA gene is located on chromosome 16q24 

and some allelic polymorphisms are independently 
associated with cardiovascular risk factors and disease 
incidence (i.e., hypertension, coronary artery disease, 
myocardial infarction, cerebrovascular disease, diabetic and 
non-diabetic nephropathy) (132). Several polymorphisms 
were detected in the exonic (i.e., C242T, A640G, C549T) 
and promoter (i.e., -930A/G, -675A/T, -852C/G, -536C/T) 
regions of the CYBA gene, which potentially affect the 
p22phox expression and consequently the Nox activity. 
Therefore, the occurrence of a particular allele may 
predispose to oxidative stress and cardiovascular disease 
development (133).  

 

The C242T polymorphism results in the 
replacement of histidine with tyrosine located in the 
putative heme-binding site (134). The functional aspects of 
this polymorphism were intensively investigated. Guzik et 
al. (135) reported that the T allele is associated with a 
significant down-regulation of Nox activity and reduced 
oxidative stress in blood vessels. The data regarding the 
association of CYBA C242T polymorphism with diverse 
vascular pathologies are conflicting; some studies report 
that the T allele confer protection against coronary artery 
disease (CAD) others show no statistic  significant 
association (136-138). In contrast, the frequency of the T 
mutant allele was found to be significantly higher in CAD 
group as compared to normal subjects (139). Moreover, the 
C242T CYBA polymorphism has been reported to be 
associated with essential hypertension, with the subjects 
carrying the CC genotype exhibiting pronounced features 
of Nox-dependent oxidative stress and endothelial damage 
(140). 

Several other polymorphisms associated with 
essential hypertension and diabetes have been reported to 
affect the p22phox mRNA processing and stability or 
CYBA transcriptional activity. These include the A640G 
polymorphism located in the 3- untranslated region of 
CYBA gene and -930A/G or -675A/T polymorphisms 
located in the promoter sequence (141-143). Hitherto, 
reports indicating the existence of functional Nox1-5 
polymorphisms with a relevant impact on vascular 
pathology are missing.     

 
6.5. Pharmacological targeting of Nox activity and 
expression 

The Nox-derived ROS may have both 
beneficial and deleterious effects. We can safely assume 
that these effects are function of the expression pattern 
and regulation of various Nox isoforms, their subcellular 
compartmentalization, and the rate of ROS generation. 
Moreover, Nox-derived ROS can stimulate other 
enzymatic sources of ROS such as eNOS/iNOS, 
mitochondrial dysfunction, oxidative activation of 
xanthine oxidase, cytochrome P-450 uncoupling, 
dysregulation of several peroxisomal oxidases, and 
generally intensify the initial response to vascular 
insults (36, 37). Consequently, the co-expression/co-
localization of Nox with other enzymatic/non-enzymatic 
sources of reactive oxygen intermediates at the site of 
injury is of particular importance. Therefore, inhibition 
of these enzyme complexes is an attractive therapeutic 
strategy to counteract the oxidative stress and prevent 
the escalation of cardiovascular diseases (CVD).  

 
Several drugs that interfere with Nox 

activation or expression, such as HMG-CoA reductase 
inhibitors (statins), angiotensin converting enzyme 
(ACE) inhibitors, AT1-receptor blockers, and calcium 
channel blockers, reduce vascular oxidative stress, 
improve endothelial function, and slow down 
cardiovascular disease progression (10). Recently, 
Fortuño et al. (144) have shown that losartan metabolite 
EXP3179 blocks Nox-mediated O2

•- production 
(inhibiting PKC), which confers, to losartan the capacity 
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to reduce oxidative stress mediated by phagocytic cells 
in hypertensive patients.  

 
Statins, in addition to their hypolipemiant 

effect, inhibit vascular ROS production by preventing 
the isoprenylation of p21Rac, a low-molecular-weight 
GTP-binding protein that is critical for Nox assembly 
and activation. Statins improve endothelial function, 
inducing the expression of eNOS and the resulting level 
of bioactive NO (145). Thus, the pleiotropy of some 
conventional cardiovascular drugs may be employed as 
a pharmacological strategy to correct the cardiovascular 
risk factors and to hinder the acceleration of CVD and 
its downstream complications. 

 
Numerous reports assert that the 

pharmacological inhibition of Nox complexes is more 
effective in modulating ROS production than 
scavenging of ROS by antioxidant vitamins (75,146-
148). Vendrov et al. (149) have demonstrated that 
GKT136901, a specific inhibitor of Nox1/4 activity, 
attenuates ROS generation and atherosclerosis. 
Furthermore, Wind et al. (150) report that the Nox 
inhibitor, VAS2870, reduces oxidative stress and 
endothelial dysfunction in aortas of aged 
spontaneously hypertensive rats. 

 
Besides pharmacological interventions, 

modulation of the upstream regulators of Nox may 
represent a novel and efficient strategy to attenuate 
the pathological effects of oxidative stress. We have 
reported that in human aortic SMCs under pro-
inflammatory conditions, Jak/signal transducer and 
activator of transcription (STAT) signaling represents 
an important mechanism that mediates up-regulation 
of Nox1 and Nox4 expression, as well as Nox-derived 
O2•- production (90). Since Jak2 transduces the 
signals of various cardiovascular risk factors and 
during atherogenesis regulates processes such as 
inflammation, cell growth, proliferation, and 
migration, pharmacological manipulation of this 
signaling pathway may represent a novel strategy to 
reduce oxidative stress and inflammation in 
atherosclerosis (151,152). 

 
To obtain additional insights into the 

potential of pharmacological approaches to 
manipulate Nox activity, we have investigated the 
effect of Jak2 inhibition on atherosclerotic lesion 
formation, Nox expression and function employing 
hypercholesterolemic ApoE-/- mice. Treatment of 
ApoE-/- mice fed a high-fat, cholesterol-rich diet, 
with tyrphostin AG490, a highly specific Jak2 
pharmacological inhibitor, greatly reduced the up-
regulated aortic Nox activity and decreased the 
mRNA levels and protein expression of each Nox 
isoform. Morphometric analysis revealed a marked 
reduction of atherosclerotic lesions in the aorta of 
AG490-treated animals (Fenyo et al., unpublished 
data). Similar effects were found employing the 
protein tyrosine kinase (PTK) pharmacological 
inhibitor, WP1066 (Manea et al., unpublished data). 

Natural compounds that inhibit PTKs and 
vascular ROS production have been extensively 
investigated. The first inhibitor discovered was 
quercetin, a plant-derived flavonoid (153). However, 
quercetin is highly cytotoxic, and inhibits, in 
addition, cAMP-dependent kinase, protein kinase C, 
and other ATP-dependent enzyme systems. The 
isoflavone genistein has been showed to be a more 
selective PTKs inhibitor than quercetin and a potent 
antioxidant (154). Other natural occurring compounds 
including erbstatin, herbimycin A, levendustin A, and (+) 
aeroplysinin-1, were also reported to be effective inhibitors 
of PTKs (155). Tyrphostins, the generic name for ‘tyrosine 
phosphorylation inhibitor’, represent a family of chemically 
modified derivates of erbstatin (156). Of particular 
importance is that all PTK blockers, except erbstatin, were 
found to be ATP competitors. Owing to these 
pharmacological features, tyrphostins have been found to 
be largely nontoxic agents (157). 

 
WP1066 is a derivate of caffeic acid and a 

novel analog of the Jak2 inhibitor AG490, Similar to 
the latter, WP1066 inhibits the phosphorylation of 
Jak2, but unlike AG490, WP1066 also degrades Jak2 
protein, thus blocking more effectively its down-
stream signaling events (158). 

 
A significant up-stream regulator of Nox 

enzymes is c-Src, a non-receptor PTK. Touyz et al. 
(159) have reported that c-Src activation increases 
p47phox phosphorylation and Nox-derived O2•- in 
human vascular SMCs exposed to AngII. In addition, 
c-Src inhibition decreases the up-regulated expression of 
Nox2, p22phox, and p47phox. In human pulmonary ECs, a 
c-Src-dependent tyrosine phosphorylation of p47phox 
regulates hyperoxia-induced NADPH oxidase activation 
and ROS production (160). Consistent with this data, c-Src-
mediated phosphorylation of Noxa1 has been shown to 
regulate Nox1 activity in human embryonic kidney 293 
cells (161,162). Recently, we found that pharmacological 
inhibition of c-Src [Src I1: 6,7-Dimethoxy-N-(4-
phenoxyphenyl)-4-quinazolinamine] in ApoE-/- mice fed a 
high-fat, cholesterol-rich diet, reduces the extent of 
atherosclerotic lesions, aortic Nox-dependent O2•- 
production, Nox1, Nox2, and Nox4 gene and protein 
expression, as well as the protein level of CD68, a 
macrophage-specific marker. Furthermore, a 
significant improvement of vascular redox state 
associated with a considerable decreases in Nox 
expression and activity were detected in the aorta of 
diabetic C57Bl/6 mice treated with Src I1 (Manea et 
al., unpublished data). Since pharmacological 
inhibitors of Jak2 and c-Src are promising drugs in 
cancer therapy (163) these enzymes may be also 
candidates to modulate therapeutically the oxidative 
stress and inflammation in atherosclerosis and its 
complications (Figure 3).  
 
7. CONCLUSIONS 
 

Clinical and experimental data demonstrate that 
overactivity of the different vascular Nox isoforms 
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Figure 3. Schematic representation of the possible pharmacological manipulation of Jak2- and cSrc-related signalling pathways 
in atherosclerosis. Binding of pro- atherogenic factors (i.e. cytokines, hormones, vasoactive agents, metabolic factors) to their 
specific receptors (R) activate the redox-sensitive protein tyrosine kinases Jak2 and cSrc which in turn up-regulate Nox. 
Excessive production of Nox-derived ROS induces oxidative stress, which triggers key pathological aspects of atherosclerotic 
plaque formation such as endothelial dysfunction, inflammation, phenotypic switch of vascular SMCs or matrix remodelling. 
Hence, pharmacological inhibition of Jak2 (tyrphostin AG490, caffeic acid derivate WP1066) or cSrc that obstructs the activation 
of oxidative stress (e.g. Nox enzymes) and inflammation-related genes can potentially impede the development of atherosclerotic 
lesions.  

 
associated with alterations in the antioxidant system 
triggers oxidative-stress-induced endothelial dysfunction 
and initiates the chain of critical events that contribute to 
major cardiovascular pathologies namely atherosclerosis, 
hypertension, congestive heart failure, ischemia-reperfusion 
injury, and diabetes-associated vascular complications. 
Therefore, to develop focused and effective anti-oxidative 
stress therapy further studies are crucial to reveal and 
understand the ROS-dependent signal transduction 
mechanisms, the molecular features of Nox regulation, 
vascular localization and subcellular compartmentalization 
of ROS production and its subsequent biological 
significance.   
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