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1. ABSTRACT 
 

Oxidative stress is an important factor in the 
etiology of age-related macular degeneration. In the retinal 
pigment epithelium, oxidative stress induces protective 
pathways, notably the phosphatidylinositide 3-kinase 
(PI3K)/Akt and the nuclear factor erythroid-2 related factor 
2 (Nrf2) pathways, but also vascular endothelial growth 
factor (VEGF) and neuroprotectin D1 (NPD-1) signaling 
conduct cell protection. Strong oxidative insults result in 
cell death, mainly mediated via a mitochondrial apoptotic 
pathway, including cytochrome c release and caspase 
activation. The role of mitogen activated protein kinases 
(MAPK) in oxidative stress signaling is diverse and 
conflicting, conducting protective as well as apoptotic 
pathways, in addition to involvement in a variety of other 
cell responses, such as VEGF or matrix metalloproteinases 
(MMP) upregulation. In addition to signaling deciding cell 
fate, first insights in inflammatory and extracellular matrix-
altering signaling are emerging.  

 
2. INTRODUCTION  
 

Age-related macular degeneration (AMD) is the 
leading cause of legal blindness in the industrialized world 
(1). The etiology of AMD is complex and includes 
demographic, genetic and environmental aspects (2). 
Oxidative stress has been widely acknowledged as an 
important factor contributing to its pathology. A cell-
biological model of AMD development presents a concept 
in which AMD consists of a combination of age-related and 
AMD-specific changes. In both normal aging and AMD, 
oxidative stress causes injury of the retinal pigment 
epithelium (RPE) and the choriocapillaris, which may 
result in chronic inflammation and altering of the 
extracellular matrix. In turn, these alterations impair the 
supply of oxygen, further damaging the tissue and finally 
resulting in either atrophy or neovascularization (3). 
Retinas of patients with AMD show increased oxidative 
damage and drusen contain high amounts of oxidized 
proteins (4,5). Also, eyes of AMD patients have a higher 
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expression of antioxidant enzymes (6,7). The age-related 
eye disease (ARED) study has shown that antioxidants 
combined with zinc reduce the progression to advanced 
stages of AMD, both of the dry and the wet form (8).  

 
 The retinal pigment epithelium (RPE), a highly 
pigmented monolayered epithelium located on the Bruch's 
membrane between the neuroretina and the choriocapillaris, 
performs many functions that are indispensable for 
sustaining vision and is exposed to high amounts of 
oxidative stress (9,10). Additional to intracellular exposure 
to reactive oxygen species, the environment and the 
function of the RPE add profoundly to its oxidative burden. 
Due to the high oxygen demand of the retina and especially 
of the macula, oxygen tension surrounding the RPE is very 
high (11). Light exposure has been linked to the 
development of AMD, possibly through oxidative stress 
related pathology (12,13). Blue light illumination induces a 
wide variety of reactive oxygen species (ROS) in the RPE 
and increases ROS production by the mitochondria while 
light-induced oxidation is positively associated with age 
(14-16). Additionally, highly toxic photosensitizers, 
including the phototoxic age-pigment lipofuscin, add to the 
oxidative burden (17). Intracellularly, in addition to the 
mitochondrial electron transport chain, lipid peroxidation 
from phagocytosed rod outer segments is the main source 
of intracellular oxidative stress in the RPE (18). The RPE is 
specifically adapted to a high oxygenated environment, 
which is essential for its durability (19). The ability of the 
RPE to cope with oxidative stress, however, decreases with 
age and the lack of oxidative defense can, at least in a 
mouse model, directly result in an enhancement of 
choroidal neovascularization (20).  
 

The topic of this review is to create an overview 
of the pathways induced by oxidative stress in RPE cells. 
Oxidative stress generally induces a variety of responses in 
the cells which are strongly dependent on the type of the 
cell, as well as the type and concentration of the stressor, 
and of the time course of stimulation. Depending on the 
severity of the insult, these responses can either be adaptive 
or lead to cell death. While oxidative stress induced 
pathways are rather well described in some cell types, the 
information on signaling cascades in the RPE is sparse. 
Caution is to be taken when translating signaling pathways 
from one cell type to another as the reaction of a given cell 
type to a given stimulus may differ from the reaction of 
RPE cells. In this review, pathways that have been shown 
to be activated by oxidative stress in the RPE are presented, 
mainly concerning cell fate but also presenting 
inflammatory and extracellular matrix altering pathways.   
 
3. OXIDATIVE STRESS PATHWAYS 
 
3.1. Oxidative stress stimuli 
 Oxidative stress can be induced by a variety of 
molecules and chemicals. Free radicals that contain one or 
more unpaired electrons and are capable of independent 
existence, oxygen species, which have been elevated to a 
higher energy level (e.g. singlet oxygen) or strong 
oxidizing agents (e.g. hydrogen peroxide (H2O2)), are 
summarized as reactive oxygen species of which hydrogen 

peroxide, superoxide anion, hydroxyl radical, nitric oxide, 
singlet oxygen, lipid peroxyl radicals and peroxynitrites are 
pathophysiologically most relevant. Hydrogen peroxide is 
generated as a byproduct of the ß-oxidation of long-chain 
polyunsaturated fatty acids, which make up a great portion 
of the lipids in ingested photoreceptor outer segments and, 
if applied extracellularly, readily crosses the plasma 
membrane. Superoxide anion (O2

-) is a byproduct of 
mitochondrial respiration and is converted into H2O2 by 
superoxide dismutase (SOD) 2 (21). In the presence of 
redox active metal ions (e.g. Fe2+), H2O2 may generate 
highly reactive hydroxyl radical (OH*) via Fenton 
chemistry, which is considered to be responsible for the 
majority of mtDNA damage. O2

- may additionally react 
with nitric oxide (NO) to generate NO-derived nitrogen 
oxides (ONOO-), which causes lipid peroxidation (22,23). 
4-hydroxynonenal (4-HNE) is a product of the oxidation of 
polyunsaturated fatty acids and one of the major reactive 
aldehydes. It reacts with nucleophilic sites of proteins and 
nucleic acid (24). Both H2O2 and 4-HNE are commonly 
used to experimentally induce oxidative stress in cell 
cultures. Another chemical oxidant applied is t-
butylhydroperoxide (t-BH). It is relatively stable and 
readily permeates the cell membrane. Once inside the cell, 
it induces oxidative stress by 2-electron oxidation and by 
metal ion and metalloprotein-catalyzed radical processes 
(25,26). Other sources of oxidative stress injuries are UV-
light, hypoxia and lipofuscin (17,27,28). One of the main 
environmental factors inducing oxidative stress that is 
strongly connected to AMD development is smoking 
(13,29). Cigarette smoke contains a vast amount of radicals 
including ROS, NO, nitrogen dioxide, peroxynitrite and 
peroxynitrate (30,31) and can directly induce oxidative 
damage in murine RPE (32). Recently, mononuclear 
phagocytes have been shown to induce oxidative changes 
in RPE cells that were accompanied by apoptosis (33). 
 
3.2. Signaling of life and death 
3.2.1. Protective signaling 
 The RPE is adjusted to exist in an environment of 
high oxygen tension and has a variety of mechanisms to 
protect itself from oxidative stress induced injuries (19). 
Most important factors of protective signaling in the RPE 
are phosphoinositide 3-kinase (PI3K) and nuclear factor 
erythroid-2 related factor 2 (Nrf2); additional factors 
discussed below are vascular endothelial growth factor A 
(VEGF-A, VEGF) and neuroprotectin D1 (NPD1). The 
signal transduction pathways of these factors overlap and 
interact, which is depicted in an integrative schematic of 
protective pathways of the RPE in figure 1.  
 
3.2.1.1. Phosphoinositide 3-kinase 
 The PI3K/Akt pathway plays a major role in cell 
survival signaling and is implicated in many biological 
responses to extracellular signals. It mediates cell survival 
by phosphorylating and thereby inactivating several 
proapoptotic factors. PI3K is a heterodimer consisting of a 
110 kDa subunit and a regulatory an 85 kDa subunit. When 
activated, PI3K catalyses the conversion of 
phosphatidylinositol-3,4-bisphosphate to 
phosphatidylinositol-3,4,5-trisphosphate (PtInP3), 
phosphorylating the phosphatidylinositol at the D3 position 
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Figure 1. An integrated summary of protective pathways is given. Only interactions that have explicitly been shown for the RPE 
are considered. Akt is activated by oxidative stress via the activation of PI3K, by VEGF and NPD1. Akt activates Nrf2 and 
inactivates the transcription factors FoxO1 and FoxO4. Additionally, GSK-3ß is inhibited, preventing its activation of Bax and its 
inactivation of Nrf2 and HSF-1. p70S6K is activated by Akt and NPD1. NPD1 also upregulates Bcl-2 and Bcl-xL, which in turn 
inhibit Bax.  
 
of the inositol ring. PtInP3 recruits pleckstrin homology 
domain-containing proteins to the plasma membrane, as the 
protein kinase Akt, also called protein kinase B, which is in 
turn phosphorylated and activated (34). Akt phosphorylates 
a wide variety of proteins on serine and threonine residues. 
Most downstream targets of Akt become inactivated by the 
phosphorylation event. These targets include, among 
others, glycogen synthase kinase (GSK) 3ß, Bad, caspase 9, 
the transcription factors forkhead and nuclear factor 'kappa-
light-chain-enhancer' of activated B-cells (NFkB), 
mammalian target of rapamycin (mTOR) and Raf protein 
kinase (35). Akt is active in the cytoplasm as well as in the 
nucleus.   
 
 Akt is activated in the RPE by oxidative stress in 
a dose dependent manner and a transient activation is 
important for RPE cell survival, as the inhibition of Akt 
enhances H2O2 mediated cell death. Phosphorylation of the 
proapoptotic molecules FoxO1 (forkhead in 
rhadomysarcoma), GSK3ß and FoxO4 (acute lymphocyte 

leukemia-1 fused gene from chromosome X) has been 
observed in the RPE (36). FoxO1 and FoxO4 are 
transcription factors that belong to subfamily forkhead box 
class O (FoxO) of the forkhead transcription factor family. 
Member of these families have been shown to be involved 
in a variety of oxidative stress responses (37). FoxO1 is a 
proapoptotic transcription factor, which is released from the 
DNA when phosphorylated. Free FoxO1 forms a complex 
with 14-3-3 protein, is shuttled out of the nucleus and 
retained in the cytoplasm, functionally inactivated (38,39). 
Phosphorylation of FoxO4 also translocates FoxO4 from 
the nucleus to the cytoplasm, inactivating the factor (40). 
Another member of the FoxO family, FoxO3, is involved in 
the regulation of complement factor H (CFH) in response 
to oxidative stress in the RPE and will be discussed below 
(41). GSK3ß is constitutively active in unstimulated cells 
and phosphorylates, thereby down-regulates, the activity of 
transcription factors such as activator protein (AP) 1, 
CREB and c-Myk. It phosphorylates proteins to promote 
their degeneration, is involved in the translocation of Bax 
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to the mitochondria and might impair the expression of heat 
shock proteins by inhibiting heat shock factor protein 
(HSF-)1 activation. GSK3ß is also involved in the 
regulation of Nrf2 (discussed below). Phosphorylation of 
GSK3ß by Akt turns off its catalytic activity, resulting in 
the activation of otherwise repressed pathways (34,42,43) 
(Figure 1). 
 
 Akt is also the main activator for mammalian 
target of rapamycin (mTOR), a serine/threonine kinase, 
which in turn is required for the activation of p70 S6 kinase 
(p70S6K) and the eukaryotic initiation factor 4E binding 
protein1 (4E-BP1), which is then released from the 
translation initiation factor eIF4E, increasing protein 
synthesis at the ribosome (44-46). Activation of mTOR is 
strongly associated with cell growth and proliferation. In 
the RPE, phosphorylation of mTOR and p70S6K is time- 
and dose-dependently initiated after oxidative stress, and 
the inhibition of this phosphorylation increases H2O2-
induced apoptosis (47). The activation of mTOR in the 
RPE is involved in cell protection, not cell proliferation.  
 
3.2.1.2. Nrf2 
 Nrf2 is a basic leucine zipper transcription factor 
that keeps up cellular redox homeostasis and mediates 
protection of cells from oxidative stress and electrophilic 
agents. It controls the expression and induction of a wide 
variety of defensive genes encoding antioxidant proteins 
and detoxifying enzymes, and is regarded as the most 
important mechanism to protect cells against acute 
oxidative damage. Nrf2 is mainly controlled by Kelch-like 
ECH-associated protein (Keap) 1. It is thought to be 
retained in the cytoplasm by Keap1 in an Nrf2/Cul3/Rbx1 
complex, which facilitates the ubiquitylation and 
degradation of Nrf2 through the 26S proteasome. When the 
cell is exposed to oxidative stress, modifications of reactive 
cysteine in Keap1 lead to a physical release of Nrf2, which 
consequently translocates to the nucleus (48). This model 
has been challenged by Nguyen et al., who consider Nrf2 to 
be primarily located in the nucleus (49). The interaction 
between Nrf2 and Keap1 is believed to represent a transient 
event taking place in the nucleus, where Nrf2 is targeted for 
ubiquitylation or shuttled out of the nucleus (50,51). In the 
nucleus, Nrf2 forms heterodimers with other basic leucine 
zipper genes including Jun (c-Jun, Jun-D, Jun-B) and small 
Maf proteins (48). As a heterodimer, Nrf2 binds to an 
enhancer sequence designated as the antioxidant response 
element (ARE) which controls the expression of phase 2 
detoxifying enzymes and antioxidant proteins in response 
to a wide variety of stimuli, e.g. xenobiotics, heavy metals 
or UV light. Many genes that convey RPE resistance to 
oxidative stress are controlled by Nrf2, such as catalase, 
superoxide dismutase, heme oxygenase-1 or glutathione 
generating enzymes (52). Other pathways have been 
described to be involved in the regulation of Nrf2 
transcription, e.g. PI3K (see above), or MAKP pathways 
(see below). 
 
 In the RPE, Nrf2 has been shown to be induced 
by a variety of stressors, such as cigarette smoke extract, 
hydroquinone, 4-HNE or acrolein (53-56). The PI3K 
pathway is important for Nrf2 protection against oxidative 

stress in the RPE (55). PI3K/Akt activity is required for 
Nrf2 activation and Nrf2-dependent GSH synthesis, while 
active Akt is sufficient to enhance Nrf2 activation. 
Furthermore, translocation of Nrf2 into the nucleus was 
prevented by PI3K inhibitors (55). This involvement of 
PI3K is not universal, as in cell types other then RPE, Nrf2 
activity induced by the same agent (4-HNE) has been 
shown to be independent from the PI3K pathway (57). 
Another connection to the PI3K pathway is the regulation 
of Nrf2 activity by GSK3ß, which in turn is deactivated by 
PI3K. GSK3ß phosphorylates Fyn, which then translocates 
to the nucleus, where it binds to Nrf2. Bound Nrf2 is 
transported out of the nucleus, binds to Keap1 and is 
degraded (58). GSK3ß has also been shown to directly 
phosphorylate Nrf2, which excludes Nrf2 from the nucleus 
(59) (Figure 1).  
 
 In RPE cells, the mitogen activated protein kinase 
(MAPK) ERK1/2 and p38 were shown to be important for 
the activation of Nrf2, but not for basal activity and our 
own data indicates a species specific involvement of 
ERK1/2 in Nrf2 activation (Koinzer, unpublished data) 
(54). Activation of MAPK does not facilitate the release of 
Nrf2 from Keap, but is required for the translocation to the 
nucleus (60). While Nrf2 has MAPK phosphorylation sites, 
direct phosphorylation is not considered to be an important 
factor for Nrf2 activation. Moderate effects on activation 
and translocation could be seen after direct 
phosphorylation, but the effect of MAPK is considered to 
be indirectly mediated by additional proteins (61).  
 
3.2.1.3. VEGF 
 VEGF is the major angiogenic factor in 
embryonic development, a major factor in the pathology of 
exudative AMD and involved in a variety of other retinal 
disease, such as diabetic retinopathy or retinopathy of 
prematurity (62). Physiologically, it has important functions 
for the maintenance of the choroid and the retina (63,64). It 
is secreted by the RPE and has recently been described to 
be an autocrine survival factor for RPE cells following 
oxidative stress stimulation (65). In order to exert its 
function, VEGF has to bind to its receptors, VEGF receptor 
1 (VEGFR-1) or VEGF receptor 2 (VEGFR-2), of which 
VEGFR-2 is considered to be the main receptor mediating 
functional signaling. VEGFR-2 is a tyrosine receptor kinase 
which phosphorylates itself upon activation and activates, 
among others, the PI3K/Akt (described above) and MAPK 
(described below) pathway. Also involved in VEGF 
binding are the co-receptors neuropilin 1 and 2 (62). 
 

VEGF is upregulated after oxidative stress in the 
RPE, secretion being more elevated at the apical side than 
the basolateral side, indicating a protective role for the 
neuroretina under oxidative stress (65-67). A specific 
upregulation of VEGF189 has been reported, which is 
generally not expressed in the adult RPE (68,69). The 
underlying mechanisms of the upregulation in the RPE are 
not known in detail but have been shown to be dependent 
on ERK1/2 activation, while both pathological and 
physiological VEGF expression are partly regulated by p38 
(67). Oxidative stress also induces the upregulation of 
VEGF-R1 and VEGF-R2 and the phosphorylation of 
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VEGF-R2 (70). VEGF autocrine signaling protects RPE 
cells via VEGFR-2 and the PI3K/Akt pathway (described 
above), as inhibition of VEGF-R2 phosphorylation 
abrogates Akt phosphorylation and elevates cell death (65) 
(Figure 1). VEGF has been shown to induce its own 
expression in the RPE as well as in endothelial cells 
(71,72), so induction of (protective) VEGF by oxidative 
stress might result in a positive feedback loop, possibly 
linking oxidative stress-induced protective signaling to 
AMD progression.  
 
3.2.1.4. Neuroprotectin D1 
 NPD1 is a dihydroxy-containing derivate of 
docosahexaenoic acid, an omega 3 fatty acid highly 
concentrated in photoreceptors, brain and retinal synapses 
(73). It generally exerts antiapoptotic and anti-
inflammatory effects. RPE cells synthesize NPD1 in 
culture. NPD1 synthesis is enhanced by oxidative stress 
stimulation, which protects against the both single-dose and 
repetitive oxidative stress (74,75). The production of NPD1 
is dependent on 15-lipoxygenase-1 (75). NPD1 induces an 
elevated phosphorylation of Akt, mTOR and p70S6K 
during oxidative stress, activating both the PI3K/Akt and 
mTOR/p70S6K protective pathways (see above) (47). 
Additionally, NPD1 prevents RPE apoptosis by 
upregulating Bcl-2 and attenuating the expression of 
proapoptotic Bax and Bad (Figure 1). It enhances the 
heterodimerization of Bax with Bcl-xL, thereby inhibiting 
the formation of Bax homodimers, which in turn prevents 
the release of cytochrome c from the mitochondria 
(discussed in detail below). Additionally, NPD1 diminishes 
caspase 3 activation (73,74,76). NPD1 enhances the 
dephosphorylization of Bcl-xL by the protein phosphatase 
2A, thereby downregulating oxidative stress induced 
phosphorylation of Bcl-xL and rescuing its antiapoptotic 
function (76).  
  
3.2.2. Cell death pathways 
 Retinal pigment epithelial cells are to a high 
degree resistant to oxidative stress (19). High 
concentrations of or prolonged stimulation with oxidative 
stress, however, induce cell death. In the following 
chapters, degenerative signaling in the RPE after oxidative 
stress is discussed. A main executioner of cell death in the 
RPE is the mitochondrial pathway. Both pro- and 
antiapoptotic players of this pathway, including the heat 
shock proteins (Hsp), are presented. Additionally, p53, the 
oxidative stress sensor 66kDa proto-oncogene Src 
homologous-collagen homologue protein (p66Shc) and 
bone morphogenic protein 4 (BMP4), which all can also 
induce a senescent phenotype, as well as lipid oxidation 
product 4-HNE, are discussed. An integrated picture of the 
apoptotic pathways of the RPE is given in figure 2. 
 
3.2.2.1. Mitochondrial pathway 
 In addition to their role as the main source of 
energy of the cell, mitochondria are important mediators of 
cells death. The main event in mitochondrial signaling and 
control of apoptosis is the permeabilization of the 
mitochondrial outer membrane and the release of 
proapoptotic proteins into the cytosol, such as cytochrome 
c, AIF or HtrA2/Omi, which can mediate caspase-

dependent and caspase-independent cell death pathways. 
Mitochondrial membrane permeabilization is a complex 
process, which can be induced by mitochondrial 
permeability transition (MPT) pore-dependent and Bcl-2 
family-dependent mechanisms (77).  
 
3.2.2.1.2. Mitochondrial Permeability Transition 
 Mitochondrial permeability transition is caused 
by opening of non-specific pores in the mitochondrial inner 
membrane, allowing ions and small molecules to pass 
freely across the inner membrane. This leads to a loss of 
mitochondrial membrane potential and to an uncoupling of 
oxidative phosphorylation, increased generation of ROS 
and depletion of ATP. It also leads to osmotic swelling and 
eventually to the rupture of the outer membrane, releasing 
molecules of the intermembrane proteins into the cytosol, 
such as cytochrome c, apoptosis-inducing factor (AIF), or 
high temperature requirement protein 2 (HtrA2/Omi), 
which will be discussed in detail below (78,79). In t-BH-
treated RPE cells, an early decrease of mitochondrial 
membrane potential is observed, followed by caspase 
activation and DNA fragmentation (80). 
  
3.2.2.1.3. Bcl-2 family 
 The Bcl-2 family includes a variety of pro- and 
antiapoptotic proteins, which all share Bcl-2 homology 
(BH) domains. They are divided in three groups: 
antiapoptotic molecules that contain BH domains 1-4 such 
as Bcl-2, Bcl-xL and Mcl-1; proapoptotic molecules that 
contain BH domains 1-3, such as Bax and Bak, and a third 
class of proapoptotic molecules that only contain BH 
domain 3, such as Bad, Bik, Bim, Noxa and Puma, of 
which some are under transcription regulation of p53 
(discussed below) or FoxO3 (81-83). Bcl-xL is a major 
antiapoptotic Bcl-2 protein which protects against apoptotic 
and necrotic cell death (84). It generally promotes cell 
survival by regulating electric and osmotic homeostasis of 
mitochondria and forms small calcium-dependent, cation 
selective ion channels that protect mitochondria from 
osmotic damage (85,86). Additionally, Bcl-xL prevents the 
release of cytochrome c by binding and inactivating 
proapoptotic family members, such as Bax or BH3-only 
molecules (87,88). Phosphorylation of Bcl-xL at Ser62 
changes it to a proapoptotic protein (76) (Figure 2). In the 
RPE, Bcl-xL is highly expressed and required for RPE cell 
survival, especially under oxidative stress (89,90). Bcl-xL 
phosphorylation is enhanced in RPE cells after H2O2 
induced oxidative stress which is intensified by PP2A 
inhibitors. NPD1 downregulates oxidative-stress induced 
phosphorylation by increasing PP2A activity and enhances 
the heterodimerization of Bcl-xL with Bax in the RPE (76). 
Bcl-2 sequesters BH3-only proteins and neutralizes 
activated Bax/Bak in the mitochondrial membranes (88). 
Additionally, Bcl-2 can regulate the Ca2+ homeostasis in the 
endoplasmatic reticulum. Bcl-2 expression is reduced in 
RPE cells treated with H2O2 (91). 
 
 Bax is an important factor in mitochondrial outer 
membrane permeabilization. Bax resides in the cytosol of 
healthy cells (92,83). Apoptotic insults result in Bax 
activation and its translocation to the mitochondria where it 
assembles into high-molecular weight complexes (93,94). 
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Figure 2. An integrated summary of cell death inducing pathways is given. Only interactions that have explicitly been shown for 
the RPE are considered. The cellular death pathway following oxidative stress stimulus follows the classical pattern of the 
mitochondrial death pathway. Oxidative stress induces a release of proapoptotic factors such as HtrA2/Omi, AIF and cytochrome 
c. Cytochrome c release leads via the apoptosome to a caspase dependent DNA degradation and cell death, while AIF is involved 
in caspase independent DNA degradation and cell death. Bax is regulated by MAPK, which are activated via Rac1 and BMP4. 
Bcl-xL is inactivated via phosphorylation and cannot exert its antiapoptotic function. The transcription factor p53 is activated via 
MAPK pathways and by 4-HNE. 4-HNE alters Hsp70, which in turn can no longer inhibit the formation of the apoptosome.  
 
Bax heterodimerizes with Bcl-2 (95), interacts with BH3-
only proteins, is inserted in the outer membrane and 
undergoes a conformational change. The exact mechanism 
as to how Bax permeabilizes the outer membrane is under 
debate (96,97).  
 
 In RPE cells, H2O2 treated cells display a 
enhanced transcription of Bax which is accompanied by an 
increase of caspase 9 and 3 (discussed below) and oxidative 
stress induces Bax translocation to the mitochondria, which 
is dependent on the activation of Rac1, c-Jun N-terminal 
Kinase (JNK) and p38 (discussed below) and induces the 
release of AIF from the mitochondria (discussed below) 
(98,99). Also, UV light induces Bcl-2 and Bax expression 
in RPE cells (100) (Figure 2). 
 
3.2.2.1.4. Released factors and downstream pathways 
 For the induction of caspase mediated cell death, 
cytochrome c is a most important factor. When in the 
cytosol, cytochrome c binds to the apoptosis activating 
factor (Apaf-1) which recruits and thereby activates 

procaspase-9 in a complex, called apoptosome, which is 
tightly regulated by heat shock proteins (hsp70, hsp90, 
discussed below) (101,102). Activated caspase 9 cleaves 
and thereby activates the “executioner” caspase 3 
(101,103). Release of cytochrome c, activation of caspase 9 
and activation of caspase 3 after oxidative stress in the RPE 
have been shown in studies using t-BH and hydrogen 
peroxide (80,91).  
 
 Caspase mediated cell death is supported by the 
released protein HtrA2/Omi, a serine protease, which 
promotes caspase activation by neutralizing the endogenous 
inhibitor of caspases (IAP) (104). HtrA2/Omi is localized 
at the mitochondria intermembrane space where it remains 
until it translocates to the cytosol after apoptotic stimuli 
(105). Additional to its caspase promoting activity, it can 
mediate caspase-independent death through its own 
protease activity, e.g. by cleaving and degrading X-linked 
inhibitor of apoptosis (XIAP) (106).  
 
 H2O2-induced oxidative damage in the RPE 
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results in an HtrA2/Omi translocation from the 
mitochondria to the cytosol, leading to RPE cell apoptosis 
via a caspase-mediated pathway (107). 
 
 Additional to caspase-executed cell death, 
mitochondria can mediate caspase-independent cell death 
as well, which nevertheless may display apoptotic features 
(78). Apoptosis inducing factor (AIF), in healthy cells 
important for the maintenance of the mitochondrial 
respiratory chain, can mediate caspase-independent cell 
death when translocated to the nucleus where it induces 
DNA fragmentation (108). The release of AIF from the 
mitochondria has been shown after oxidative insults in the 
RPE (99). 
 
3.2.2.2. p53 
 A factor closely connected to mitochondria 
mediated cell death is p53. The p53 pathway is composed 
of a network of genes responding to intrinsic and extrinsic 
stress signal which lead to cell cycle arrest, cell senescence 
or cellular apoptosis. In response to such a stress signal, 
p53 is activated by post-translational modification and can 
induce cell death via transcriptional and transcription-
independent functions, while these two modes of apoptosis 
induction cooperate and complement each other (109). A 
negative regulator of p53 is mouse double minute 2 
(MDM2), an ubiquitin ligase that blocks p53's 
transcriptional activity and mediates its degradation (110). 
As a transcription factor, p53 induces several proapoptotic 
proteins such as Bax, Puma, Noxa and Bid and represses 
the transcription of Bcl-2 and Bcl-xL. It also effects the 
expression of numerous other factors (110). For the 
transcription-independent pathways, p53 is accumulated in 
the cytosol and the mitochondria, where it interacts with 
members of the Bcl-2 family. p53 activates Bak, Bax and 
Bad while inhibiting the antiapoptotic effect of Bcl-2 and 
Bcl-xL (109). The forkhead transcription factor FoxO3 
promotes cytosolic accumulation of p53 and apoptosis 
(111) (Figure 2). A downstream factor of p53 is the adaptor 
protein p66Shc (112) (discussed below). In the RPE, 
hydrogen peroxide induces an elevation of p53, and 4-HNE 
increases the level and phosphorylation of p53, induces its 
accumulation in the nucleus and causes the degradation of 
MDM2 (91,113). Hypoxia as well as blue light exposure of 
A2E-laden RPE also induce an elevation of p53 (114,115). 
 
3.2.2.3. p66Shc 
 p66Shc is an adaptor protein (116), which 
interacts with other proteins mediating cell signaling, but 
lacking genuine enzyme activity. p66Shc mediates tyrosine 
kinase signaling, where it serves as a negative regulator, 
inhibiting Ras/MAPK pathways (117). It was recently 
identified as an intracellular oxidative stress sensor which 
plays a prominent role in oxidative stress induced apoptosis 
and in the life span of animals (118). Its apoptotic 
properties are dependent on the JNK/ERK dependent 
phosphorylation of Ser36 which is induced by oxidative 
stress (119) (Figure 2). p66Shc increases intracellular ROS, 
probably by inner membrane oxidation of cytochrome c 
(120). Additionally, it acts as a downstream effector of p53, 
which in turn increases the stability of p66Shc (112). 
 A knock down of p66Shc in the RPE reduces 

intracellular ROS and increases the expression of several 
antioxidant enzymes. RPE cells lacking p66Shc display an 
increased NFkB activity and are less susceptive to 
oxidative stress induced apoptosis (121). These results 
indicate an important function of p66Shc in oxidative stress 
induced cell death in the RPE.  
 
3.2.2.4. Bone morphogenetic protein 4 
 BMP4 is an important regulator of differentiation, 
senescence and apoptosis in many different cells and 
tissues, including the eye (122). BMP4 is highly expressed 
in RPE and Bruch's membrane of atrophic AMD and 
mediates oxidative stress induced senescence in vitro via 
Smad and p38 pathways. In contrast, in neovascular AMD 
lesions, BMP4 expression in RPE is low. It might be 
involved in the molecular switch determining which 
phenotype pathway is taken in the progression of AMD 
(123). Chronic exposure to sublethal doses of oxidative 
stress can increase the BMP4 expression in the RPE and 
induce a senescence phenotype (124). BMP4 mediates RPE 
senescence via the activation of Smad and p38 pathways to 
activate p53 and increase the expression of p21WAF1/cip1, and 
to decrease phospho-Rp. The BMP4 mediated RPE 
senescence can be inhibited by a BMP4 antagonist and a 
phospho-p38 inhibitor. The interaction of p53 with the 
BMP-Smad pathway is not elucidated yet, but the 
possibility of post-translational modifications of p53 by 
Smad1/5 which activate p53 dependent transcription has 
been discussed (123). 
 
3.2.2.5. Heat shock proteins 
 Heat shock proteins are molecular chaperones 
which assist in the folding of polypeptides and assist 
misfolded proteins to regain their native state. Furthermore, 
they play a critical role in modulating apoptotic pathways 
(102) and play important roles in saving damaged cells, 
which might also be of clinical and pharmacological 
importance (125).  
 

Heat shock proteins are classified into distinct 
families, of which Hsp90, Hsp70 and small heat shock 
proteins will be discussed. Hsp90 can prevent the formation 
of the apoptosome complex by inhibiting the 
oligomerization of Apaf-1 (126). It maintains the activity of 
Akt by inhibiting its dephosphorylation (127). The 
Akt/Hsp90 complex also inactivates JNK-mediated cell 
death pathway (discussed below) by inactivating ASK-1, 
one of the activators of JNK (128). Additionally, Hsp90 is 
involved in the activation of NFkB, as Hsp90 can cause the 
dissociation of NFkB from its inhibitor IkappaB (129). 
Hsp90 is upregulated in the RPE of AMD patients and was 
shown to be involved in the protection against 4-HNE 
induced cell death in the RPE, as its inhibition with 
Geldanamycin increases 4-HNE induced cell death (6,130).  
  

 
Hsp70 inhibits the formation of a functional 

apoptosome by direct interaction with Apaf-1, protects 
against forced expression of caspase 3 and prevents the 
translocation of Bax from the cytoplasm to the 
mitochondria (131-133). Also, it binds to AIF, restricting its 
translocation to the mitochondria and prevents the 
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activation of JNK (134,135). In the RPE, increased 
resistance to chronic oxidative stress is correlated to a 
higher expression of Hsp70 and 4-HNE modifies Hsp70, 
impairing its function (54,136) (Figure 2).  

 
 Hsp27 belongs to the family of small heat shock 
proteins. Hsp27 can maintain mitochondrial stability and 
redox homeostasis in cells and interacts with the apoptotic 
signaling pathways at many steps (137). It prevents the 
release of cytochrome c from the mitochondria, prevents 
the assembly of the apoptosome by sequestering 
cytochrome c away from Apaf-1 and mediates the 
inhibition of procaspase-3 (138-140). Hsp27 is also 
involved in the stabilization of Akt (141). High levels of 
Hsp27 are expressed in the RPE of the rat retina and in 
Arpe19 cells. Oxidative injury activates the translational 
and transcriptional activation of Hsp27 (142). Its 
activity is regulated by phosphorylation, which seems to 
be important for its antiapoptotic properties (143). 
Phosphorylated Hsp27 is upregulated in the RPE of 
AMD patients (136,144). Non-lethal oxidative injury 
induced with HQ leads to an mRNA upregulation, dimer 
formation and Hsp27 phosphorylation in the RPE in 
vitro and in vivo, which is mediated by p38 and ERK1/2 
(144). AlphaB-cystallin is closely related to Hsp27 and 
interferes with the processing of the precursor of 
caspase-3 (145,146). Additionally, it can inhibit 
apoptosis through sequestration of Bax and Bcl-xS in 
the cytoplasm (147). AlphaB-crystallin is expressed in 
the RPE and can protect against hydrogen peroxide 
induced caspase 3 activation (148).  
 
 Assessing the role of Hsp in RPE protection, one 
has to consider that the Hsp-inhibitor quercitin protects 
RPE cells from oxidative damage (149). However, this 
effect is attributable to the antioxidative rather than to the 
Hsp-inhibiting properties of quercitin. 
 
3.2.2.6. 4-HNE 
 Under conditions of oxidative stress, light 
exposure, hyperglycemia, smoking or vitamin E deficiency, 
polyunsaturated fatty acids (PUFA) react with free radicals 
to form lipid peroxidation products (53,150-152). 4-
hydroxynonenal is produced from oxidation of n-6 PUFA 
and is one of the major reactive aldehydes. It is considered 
an important second messenger for cell cycle arrest, 
differentiation and apoptosis and reacts with nucleophilic 
sites in proteins and nucleic acids (153-155). In astrocytes, 
4-HNE activates Nrf2, NFkB and cFos (156). In RPE cells, 
however, an activation of NFkB or AP-1 is not seen (130). 
Additionally, it modifies proteins, especially Hsp70, which 
is also shown for RPE cells, or the Nrf2 inhibiting protein 
Keap1 (54,154,157). It is mainly detoxified by gluthatione-
S-transferases (158). In the RPE, 4-HNE has been shown to 
activate Nrf2 and to increase GSH synthesis (54). 
Inhibition of PI3K enhances oxidative protein modification 
by 4-HNE (54). It directly induces p53-mediated apoptosis 
in the RPE (113) (Figure 2). 4-HNE induced cell death, 
however, differs from hydrogen peroxide induced cell 
death. In hydrogen peroxide induced cell death, we see an 
activation of NFkB and AP-1, which is not seen in 4-HNE 
induced cell death (18,130). 

3.2.3. MAPK 
 A common mechanism of signal transduction 
after a plethora of signals is the sequential activation of 
protein kinase within the mitogen-activated protein kinase 
pathways. MAPK are a family of serine/threonine kinases 
which are strongly involved in oxidative stress mediated 
signaling and of which JNK, p38 and ERK1/2 are the best 
characterized. Each of these kinases mediates a vast variety 
of different reaction, both adaptive and apoptotic, and these 
kinases are important factors in integrating various external 
signals in order to coordinate the appropriate response of 
the cell. Generally, all MAPK are activated by MAPK 
kinases (MAP2K), which in turn are activated by a family 
of MAP3K (159). The cascade is usually started either by a 
small GTP-binding or an adaptor protein.  
 
3.2.3.1. p38 
 The activation of p38 influences cellular 
processes such as inflammation, cell growth, survival and 
apoptosis by interacting with signaling pathways and 
regulating gene expression. The MAPK p38 is activated by 
MKK3 and MKK6, which in turn are phosphorylated by 
MLK3. MLK3 is activated by small G-proteins Rac1 and 
cdc42 (160).   
 

In the RPE, data on p38 is not consistent. It is 
activated after H2O2 and t-BH, while in other studies, no 
activation of p38 after t-BH was found (99, 161-164). Also, 
the effect of p38 on RPE cell survival is controversial. In 
some studies, p38 displayed proapoptotic properties, other 
studies found protective effects of p38 activation, with p38 
(and JNK) involved in GSH upregulation (99,161-163). 
Our own laboratory found a proapoptotic effect of p38 after 
H2O2 stimulation but not after t-BH stimulation (Koinzer, 
unpublished), so the effect of p38 might strongly depend on 
the reactive oxygen species, duration and concentration of 
stimulation, species and density of cell culture used (162). 
A simple dependency on the oxidative stimulus cannot be 
seen. MAPK p38 induces the transcription and activation of 
different members of AP-1 transcription factors (165,166). 
Depending on concentration and duration of the oxidative 
stimulus, different factors are activated and may mediate 
different cellular responses (discussed in more detail 
below) (167). Additionally, p38 is involved in the 
upregulation of IL-8 and IL-6 after oxidative stress and of 
matrix metalloproteinase (MMP)-3 (168,169) (discussed 
below). 
 
3.2.3.2. JNK   
 The c-Jun N-terminal Kinase (JNK) is also 
referred to as the stress activated protein kinase (SAPK). 
JNK is activated by dual specificity kinases MKK4 and 
MKK7 which phosphorylate JNK on critical threonine and 
tyrosine residues in order to activate it (170). MKKs can be 
activated by a number of pathways, e.g. MEKK1-4, MLK 
and ASK1, of which MEKK4 is specific for JNK and of 
which MEKK1 and ASK1 can be directly activated by 
oxidative stress (159,171-174). Upstream, cdc42 or 
Ras/Rac can induce the activation of the JNK pathway 
(175). JNK has a wide variety of targets. One important 
function of JNK is the activation of AP-1 transcription 
factors (176) (see below). The activation pathway of JNK 
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in the RPE has hardly been investigated so far, but an 
involvement of the Rac1 in oxidative stress JNK activation 
has been shown (99). Additionally to oxidative stress, the 
JNK pathway can be activated by a wide variety of 
stressors, e.g. chemotherapeutic drugs, UV light, irritation 
or heavy metals (159). While activation of JNK is generally 
proapoptotic, the JNK pathway exhibits antiapoptotic 
features in some cell types and can phosphorylate and 
activate Nrf2 (177,178). The duration of JNK activation 
might be a factor in determining the induction of pro- or 
antiapoptotic pathways (179), but also the cellular 
localization or isoform may play a part in that decision 
(180-182). In the RPE, the involvement of the JNK pathway 
in oxidative stress response is not fully elucidated and studies 
display conflicting results. While JNK is activated after 
stimulation with hydrogen peroxide, the role of JNK activation 
has been described as proapoptotic or, at least in combination 
with 5-deoxy-Delta (12,14)-prostaglandin J82, as protective, 
where it is involved in GSH upregulation (99,161,162). After 
stimulation with t-BH, on the other hand, our lab did not find 
any proapoptotic properties of JNK (Koinzer, unpublished). In 
blue light induced cell death, JNK exhibited a protective effect, 
while UV-light and 4-HNE induced prolonged JNK activation 
was proapoptotic (113,115,183). Further research is needed 
to better elucidate the involvement of different JNK 
isoforms and their cellular localization in oxidative stress 
signaling in the RPE.  
 
3.2.3.3. ERK1/2 
 ERK1/2 (p42/p44) is generally considered to be 
involved in proliferation and differentiation, but may also 
participate in apoptotic responses. Most important 
regulators of ERK1/2 are the MAP2K MEK1 and MEK2. 
ERK1/2 is a ubiquitous serine/threoine kinase that 
phosphorylates a high number and wide variety of 
substrates, most of them regulatory proteins, either in the 
cytosol or after translocation into the nucleus. ERK1/2 is 
also involved in the regulation of AP-1 transcription factors 
(184). The specificity of ERK1/2 activation is regulated by 
its pathway of activation, by subcellular localization of the 
kinase, and also by strength and duration of the inducing 
signal (185). ERK1/2 is often antiapoptotic, e.g. by 
phosphorylation of Bad or by translocating Nrf2 to the 
nucleus (60,186). In the RPE, ERK1/2 is readily activated 
after stimulation with hydrogen peroxide and weakly after 
t-BH (161,162,164,187,188). Our own data suggests an 
ERK1/2 involvement in cell death pathways after t-BH 
stimulation, which displays a species dependent pattern 
(Koinzer, unpublished data). ERK1/2 is also 
phosphorylated in response to UV light, where it is 
probably has proapoptotic functions (189). After hydrogen 
peroxide stimulation, ERK1/2 does not seem to be involved 
in cell death but to be involved in oxidative stress induced 
proliferation and can be protective if induced by PEDF 
(161,162,187,190). Additionally, ERK1/2 seems to be 
involved in the activation of Nrf2 in RPE after stimulation 
with 4-HNE (54). ERK1/2 is involved in oxidative stress 
induced upregulation of VEGF after t-BH stimulation and 
in MMP-1 and MMP-3 secretion (67,169).  
 
3.2.3.4. AP-1 transcription factors 
 AP-1 transcription factors are a family of the 

basic region leucine zipper proteins Jun, Fos, Maf, Far and 
ATF gene subfamily, which form  homo- and heterodimers 
in order to bind to the DNA to induce transcription. Their 
expression and activation are induced by many factors, 
including oxidative stress and can occur via a variety of 
pathways, especially MAPK pathways (165,184,191). 
These dimers bind to regulatory elements present in 
promoter and enhancer regions of many genes, regulating a 
wide range of cellular processes, including proliferation 
and apoptosis, depending on the cellular context (176). In 
the RPE, a general activation of AP-1 in response to H2O2 
but not after 4-HNE stimulation has been shown (18,130). 
In response to hydrogen peroxide, FosB and c-Fos, and to a 
lesser extent Fra-1 and ATF3, are upregulated in a dose-
dependent manner, while JunB and c-Jun are induced in a 
threshold response. The investigated transcription factors 
are induced in a time-dependent manner, specific for each 
individual protein (167). A model of transcriptional 
regulation by AP-1 transcription factors is the dimer ratio 
control. AP-1 proteins homo- and heterodimerize with each 
other. Relative levels of different AP-1 dimers in the 
nuclear and cytosolic pool differentially modulate AP-1 
gene expression at each transcription factor locus through 
autoregulatory mechanisms, resulting in differing cellular 
responses according to the presence of different dimers, 
allowing a highly flexible response of the cell (167). As 
AP-1 proteins are differentially regulated by the 
concentration of the stressor and differentially regulated in 
a time dependent manner, this model might well explain the 
inconsistent effects on and of MAPK activation obtained in 
studies using different approaches to induce oxidative 
stress.  
  
3.3. Inflammatory pathways 
3.3.1. Complement system 
 The complement system is component of the 
innate immune system and a number of studies have 
associated the complement system with the development of 
AMD (192). It is divided into three different pathways, 
classical, alternative and lectin, of which the alternative 
pathway is most strongly associated with AMD. 
Complement factor H is a negative regulator of the 
alternative pathway, inhibiting several steps of this pathway 
and promoting degradation of activated components. The 
polymorphism Y402H, which displays a reduced binding to 
C-reactive proteins and heparin and thus is less inhibitory, 
has been shown to display a higher risk for developing 
AMD (193). In the eye, the RPE is a local source of CFH 
(194). Oxidative stress reduces the ability of interferon-
gamma to increase CFH expression in the RPE (41). 
Interferon-gamma- induced increase in CFH is mediated by 
transcriptional activation of Stat1 and its suppression by 
oxidative stress is mediated by acetylation of a member of 
the forkhead family, FoxO3. Acetylation of FoxO3 
enhances its binding to the CFH promoter and inhibits the 
interaction of Stat1 with the CFH promoter (41). 
Additionally, the phagocytosis of oxidized photoreceptor 
outer fragments reduces CFH mRNA level (195).  
 
 Oxidative stress also alters the expression of 
regulators of complement activation, which protect cells 
from the complement system. In the RPE, oxidative stress 
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decreases the expression of DAF and CD59. This reaction 
is specific for the RPE and is not seen after hypoxia (196).  
 
3.3.2. Interleukin secretion 

Interleukin-6, a proinflammatory cytokine which 
is involved in autoimmune responses and associated with 
dry AMD, is expressed at low level in cultured RPE and is 
induced by a variety of insults, such as endotoxin or 
cytokines (197-199). Sublethal doses of hydrogen peroxide 
increase IL-6 expression in the RPE in a dose dependent 
manner. The upregulation of IL-6 is mediated by a nuclear 
translocation of NFkB, which is dependent on p38 
phosphorylation (200). 

 
Interleukin-8 (CXCL8) is a proinflammatory 

chemokine that has strong leukocyte chemotactic and 
proangiogenic properties (201). It is induced in the RPE by 
a variety of oxidative insults, such as phagocytosis of 
oxidized photoreceptor outer segments (POS), oxidized 
cholesterols, A2E, hydrogen peroxide and paraquart, but 
not by t-BH (168,202,203). The underlying pathway seems 
to be dependent on proteasome inhibition. A short term 
protease inhibition results in an NFkB dependent 
downregulation of IL-8 secretion, while a long-term 
inhibition upregulates IL-8 via a MKK3/6 activated p38 
signaling (168). The phagocytosis of oxidized POS also 
induces the upregulation of MCP-1, a monocyte 
chemoattractant, which is dependent on NFkB (202).    
 
3.4. Extra cellular matrix 
 The turnover of the extracellular matrix, 
especially Bruch’s membrane, is regulated by a balanced 
system of matrix metalloproteinases and their inhibitors 
(tissue inhibitors of metallo proteinases, TIMP). The RPE 
secretes several MMPs and TIMP (204). MMP-2 is the major 
RPE enzyme for the degradation of the Bruch’s membrane 
components collagen I, collagen IV and laminine. Non-lethal 
oxidative stress increases pro-MMP-2 protein in the RPE, but 
downregulates MMP-2 activity (205). To be activated, pro-
MMP-2 forms a complex with MMP-14 and TIMP-2. 
Oxidative injury decreases the expression of MMP-14 and 
TIMP-2 in the RPE, indicating that oxidative stress disrupts 
enzymatic cleavage of pro-MMP-2 (206,207).  MMP-9, on the 
other hand, is increased after oxidative stress (208). Also, 
oxidative stress increases MMP-1 and MMP-3 release in a 
MAPK dependent manner, with MMP-1 dependent on 
ERK1/2 and MMP-3 dependent on ERK1/2 and p38 activity. 
The activation of MMPs results in a degradation of collagen 1 
(166). Prolonged, but not transient, non-lethal oxidative stress 
also induces an increase of collagen IV (205).  
 
4. SUMMARY AND PERSPECTIVE 
 

RPE cells answer to oxidative stress in a complex 
and interacting manner. This is even further complicated by 
the fact that different stressors, all designated as models for 
oxidative stress, induce different responses (209). As for 
models of oxidative stress, in addition to “pure” chemical 
oxidative stress, such as hydrogen peroxide or t-BH, 4-
HNE, UV-light and even hypoxia have been used, which all 
induce different pathways. And even in chemically induced 
oxidative stress, the reaction of the RPE to hydrogen 

peroxide might differ from the reactions to t-BH.  
 
The RPE cell is rather resistant to oxidative stress 

and the published data indicates the Akt pathway to be a main 
factor in the pathway of protection. Akt is activated by 
oxidative stress via the activation of PI3K. Additionally, Akt is 
activated by VEGF and NPD1, factors that are both induced by 
oxidative stress and that both mediate RPE protection. Besides 
the initiation of protein synthesis and inhibition of proapoptotic 
proteins, Akt is strongly involved in Nrf2 protection, which in 
turn is vital for RPE protection against oxidative stress (Figure 
1).  

 
 The cellular death pathway following oxidative 
stress stimulus seems to follow the classical pattern of the 
mitochondrial death pathway. Oxidative stress induces a 
change in mitochondrial membrane potential and a subsequent 
release of proapoptotic factors such as HtrA2/Omi, AIF and 
cytochrome c. Cytochrome c release leads to a caspase 
dependent DNA degradation and cell death, while AIF is 
involved in caspase independent cell death. Bcl-2 family 
members are strongly involved in the regulation of cell death, 
in particular Bcl-xL and Bax. Also, heat shock proteins have 
been shown to be involved in RPE cell death regulation 
(Figure 2).  
 
 The involvement of MAPK in oxidative stress signal 
transduction pathways is controversial and seems to be 
dependent on the stimulus used to inflict oxidative stress. The 
MAPK kinases p38 and JNK have been shown to be 
proapoptotic, protective or not involved at all. ERK1/2 seems 
to be generally activated, while the cell’s reaction seems to be 
dependent on the activation pattern. Besides cell death, 
ERK1/2 is involved in oxidative-stress-induced VEGF 
upregulation. The conflicting results of the MAPK may be 
explained by their substrates of the AP-1 transcription factor 
family that form different heterodimers depending on length 
and severity of the oxidative insult. These levels of various 
AP-1 dimers may differentially modulate the cellular response.  
 
 Inflammatory responses can be induced by oxidative 
stress, as has been shown for the FoxO3 dependent 
downregulation of CFH and the p38 dependent secretion of IL-
8 and IL-6, but more data is needed to elucidate the pathways 
that modulate the inflammatory response in the RPE. The 
investigation of oxidative stress induced modulation of the 
extracellular matrix and its underlying pathways is just at 
the beginning.  

 
The present data indicates a strong involvement 

of oxidative stress induced pathways in AMD pathology. 
Further research is needed to elucidate the response of RPE 
cells to oxidative stress.  
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