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1. ABSTRACT  
 
Cytokinesis is the terminal stage of eukaryotic cell division 
in which the cytoplasm of a dividing cell is partitioned 
between two daughter cells. In animal cells, this 
multifaceted cellular process is spatially and temporally 
regulated and requires dramatic remodeling of the 
cytoskeleton and plasma membrane. Animal cytokinesis 
proceeds when the acto-myosin contractile-ring, formed at 
the equatorial cortex of a dividing cell, advances inward 
like a ‘purse string’ and is a major driving-force for the 
separation of the two daughter cells. In this review, we 
highlight many of the recent advances in our understanding 
of the function and mechanisms of action of the endocytic 
protein machinery that control animal cytokinesis. This 
includes regulation of endosome delivery and targeting by 
Rab and ARF GTPases, their effectors FIP3, FIP4 and JIP4, 
the exocyst and centralsplindlin complexes and 
phosphoinositides. Roles for endosomal SNAREs, BRUCE 
and the ESCRT pathway in the membrane remodeling 
processes that lead to abscission are also discussed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 
Cytokinesis is a meticulously orchestrated eukaryotic 
cellular process in which the cytoplasm and cellular 
organelles of a dividing cell are segregated to complete the 
formation of two daughter cells. In plant cells, cytokinesis 
occurs via the cell plate, a disc-like structure formed by 
homotypic fusion of Golgi-derived vesicles at the cell 
center which expands towards the cell periphery and 
eventually fuses with the plasma membrane (1). In contrast, 
animal cytokinesis requires multifaceted changes in cell 
shape which necessitate assembly and activation of a 
constricting acto-myosin contractile-ring between the poles 
of the mitotic spindle; this is a major driving-force for the 
physical partitioning of the cytoplasm. 
 

Animal cytokinesis begins during anaphase with 
the formation of the central spindle (midzone 
microtubules). The central spindle is a set of anti-parallel 
non-kinetochore microtubules that extend from the spindle 
poles and overlap for a short distance at their plus-ends 
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Figure 1. Cellular structures involved in animal cytokinesis. A) Animal cytokinesis begins during anaphase with the assembly of 
central spindle. B) The central spindle assembles and activates the acto-myosin contractile-ring which constricts creating an 
indentation in the plasma membrane known as the cleavage furrow. C) As the cleavage furrow further ingresses, the central 
spindle is compacted into a slender membrane-bounded intercellular canal called the midbody. The process of scission of the 
midbody, which occurs in the vicinity of the Flemming body, is called abscission and completes cytokinesis. 

 
(Figure 1A) (2). They dictate the positioning of the 
cleavage furrow and function in its assembly and activation 
(2, 3). The next step in animal cytokinesis is the 
establishment and constriction of the acto-myosin 
contractile-ring which leads to the formation and 
ingression of the cleavage furrow, an inward-pinching 
groove in the plasma membrane at the cells equatorial 
cortex which occurs after anaphase (Figure 1B) (4). 
Ingression of the cleavage furrow is driven by mechano-
chemical forces generated by the myosin II motor protein 
which translocate actin filaments causing the contractile-
ring to constrict, thereby also constricting the plasma 
membrane and bundling the central spindle into a 
membrane-bounded intercellular bridge called the 
midbody (Figure 1C) (4). The terminal step in animal 
cytokinesis is known as abscission and involves scission 
of the midbody and sealing of the plasma membrane of 
the daughter cells. This occurs in the vicinity of the 
electron-dense centre of the midbody where the central 
spindle overlaps in a proteinaceous structure known as 
the Flemming body (alternatively known as the midbody-
ring) (5) (Figure 1C). 

 
While the acto-myosin contractile-ring is vital for 

ingression of the cleavage furrow, it is not the sole 
mechanism that drives this process as insertion of new 
membrane into the furrow is also required. Membrane 
trafficking is also crucial for abscission. In this review, we 
highlight many of the recent advances in our understanding 
of the proposed functions and mechanisms of action of the 
endocytic protein machinery implicated in animal 
cytokinesis.  
 
3. ENDOSOMAL FUNCTION DURING ANIMAL 
CYTOKINESIS 
 
Animal cytokinesis requires dramatic remodeling of the 
plasma membrane and significant increases in overall cell 
surface area as the two daughter cells are created (6). Both 
of these requirements necessitate the deposition of ‘new’ 

membrane into the cell surface. As the cleavage furrow has 
distinct membrane and protein composition, this membrane 
comes from internal stores which are specifically targeted 
to the furrow, and does not occur simply by expansion of 
the existing plasma membrane (7-11). Membrane 
trafficking is also essential for closure of the intercellular 
bridge during abscission (12). In animal cells, the secretory 
pathway contributes to the membrane required for 
cytokinesis (13-16); however, recent evidence indicates 
that the endocytic system is a central-source of the 
membranous-material which is deposited at the furrow and 
midbody during cytokinesis. 
 

Among the first implications of the endocytic 
machinery in animal cytokinesis emerged from studies in 
Dictyostelium discoideum whereby mutations affecting 
endocytic protein function caused cytokinesis defects (17-
19). Since then, an expanding collection of evidence has 
been forthcoming which has unequivocally implicated 
endosomal proteins in multiple aspects of animal 
cytokinesis. 
 
3.1. Targeted delivery of the membranous cargo: from 
endosomal GTPases to lipid domains 

In recent years, endosome-associated members of 
the Rab and ARF small GTPase families have emerged as 
key regulators of membrane trafficking events implicated 
in animal cytokinesis. This emergence began in 2001 when 
Skop et al. demonstrated that RNAi-mediated depletion of 
Rab11 in Caenorhabditis elegans embryos inhibited 
completion of cytokinesis (13). During interphase, Rab11 
primarily localizes to the juxta-centriolar endosomal-
recycling compartment (ERC) (alternatively know as 
recycling endosomes) and controls endosomal trafficking 
through this organelle (20-23). During cytokinesis, Rab11 
accumulates near the cleavage furrow and within the 
midbody, and RNAi and mutant expression studies in 
Drosophila melanogaster and mammalian cells indicate 
that Rab11 regulates targeted membrane delivery to the 
furrow and midbody (24-29). 
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Like all GTPases, Rab11 cycles between inactive 
(GDP-bound) and active (GTP-bound) states which have 
distinct conformations (30). This conformational GTPase 
cycle is the primary driving-force for the on/off switch 
mechanism of Rab proteins and the main determinant of 
their ability to bind downstream effector proteins. Two 
Rab11 effectors, Rab11-FIP3 (FIP3) and to a lesser degree 
Rab11-FIP4 (FIP4), which are members of an 
evolutionarily-conserved Rab11-effector protein family, 
have been implicated in Rab11-mediated trafficking events 
during cytokinesis (31). Consistent with this, embryos 
deficient in nuf (nuclear fallout), the FIP3 and FIP4 
orthologue in D. melanogaster, fail in the completion of 
cellularization (32, 33). During interphase, FIP3 is 
associated with the juxta-centriolar ERC, and during the 
early stages of cell division FIP3 is present on diffusely-
distributed endosomal vesicles (24, 26). However, when 
cells enter anaphase, FIP3-positive vesicles associate with 
the centrosomes at opposite poles of the cell and then upon 
constriction of the acto-myosin contractile-ring, the FIP3-
positive material moves to the furrow, and later, both FIP3 and 
FIP4 are significantly enriched within the midbody (34, 24-
26). Disruption of FIP3 function by RNAi or mutant 
expression causes failure of cytokinesis completion, while 
having minimal effects on furrowing (26). These data support 
the hypothesis that FIP3 is necessary for abscission.  

 
Interestingly, ARF6, another endosome-associated 

GTPase, appears to play a role in the recruitment of incoming 
FIP3 and FIP4-positive vesicles to the midbody (34-36). 
During cytokinesis, ARF6 localizes to the cleavage furrow and 
midbody, and this distribution temporally correlates with a 
transient spike in the activated-levels of ARF6 (37). Data from 
D. melanogaster and mammalian cells indicate that ARF6 is 
required for ingression of the furrow and completion of 
cytokinesis, respectively (37-39). In support of a role for ARF6 
in the recruitment of FIP3 and FIP4 to the furrow and 
midbody, ARF6 and Rab11 can form ternary complexes with 
FIP3 and FIP4 and a Rab11-binding deficient mutant of FIP3, 
which retains its ability to bind ARF6 (FIP3 I738E), can be 
recruited to the midbody (34, 40, 26). In addition, 
overexpression of a constitutively active ARF6 mutant (ARF6 
Q67L) enhances the recruitment of FIP3 and FIP4 to the 
furrow and midbody, whereas a constitutively inactive mutant 
(ARF6 T27N) blocks their recruitment (34). 

 
Other protein machinery has also been implicated in 

the recruitment of incoming FIP3/FIP4-positive endosomes to 
the midbody during cytokinesis. The octa-meric exocyst 
complex is involved in tethering of exocytic vesicles with the 
plasma membrane during interphase and cytokinesis (41-44). 
Rab11 and ARF6 are among the small GTPases that regulate 
the assembly, localization and function of the exocyst 
complex, as Rab11 binds the Sec15 exocyst subunit and ARF6 
binds Sec10 (45-50). It is possible that midbody-localized 
exocyst complexes serve as a tethering factor for incoming 
Rab11/FIP3 and Rab11/FIP4-positive endosomes and that 
these tethering events are regulated by Rab11 and/or 
midbody-localized ARF6 during abscission. Indeed, this 
appears to be the case as Exo70, another exocyst subunit, 
which localizes to the cleavage furrow and midbody and is 
required for completion of cytokinesis, can co-

immunoprecipitate Rab11, FIP3 and FIP4, and its RNAi-
mediated depletion reduces Rab11 and FIP3 localization to 
the furrow and midbody (34). 

 
Centralsplindlin has also emerged as a further 

protein complex which regulates the recruitment of FIP3-
positive endosomes to the midbody during cytokinesis. 
Centralsplindlin is a heterotetrameric protein complex with 
microtubule-bundling activity which is composed of the 
Rho GTPase-activating protein CYK-4/MgcRacGAP and 
the kinesin-like motor protein ZEN-4/MKLP-1 (51, 52). In 
addition to regulating formation of the central spindle, 
centralsplindlin regulates the formation of the acto-myosin 
contractile-ring by recruiting ECT2, a Rho GTPase 
guanine-nucleotide exchange factor, which activates RhoA 
and leads to contractile-ring formation and constriction (53-
55). FIP3 was recently identified as a CYK-
4/MgcRacGAP-binding protein that competes with ECT2 
for CYK-4/MgcRacGAP-binding within the midbody (56). 
During early cytokinesis, FIP3 is inhibited from binding 
CYK-4/MgcRacGAP by ECT2, but at late telophase, ECT2 
dissociates from CYK-4/MgcRacGAP and is sequestered 
back to the nuclei, thus allowing FIP3 to associate with CYK-
4/MgcRacGAP (56). In this manner, the dissociation of ECT2 
from CYK-4/MgcRacGAP may allow temporal regulation of 
the tethering of FIP3-positive endosomes at the midbody.  

 
The data discussed above indicate that ARF6 and 

the exocyst and centralsplindlin complexes co-mediate the 
tethering of Rab11/FIP3-bearing endosomes at the midbody 
during cytokinesis, but until recently the identity of the motor 
proteins that mediate the movement of this endosomal-material 
to the midbody remained unclear. During cytokinesis, ERC 
membranes accumulate at the spindle poles and at both edges 
of the intercellular bridge (at the minus-end of the midzone 
microtubules) (57, 9, 58). In C. elegans, accumulation of 
Rab11-positive endosomes at the minus-end of microtubules is 
necessary for successful cytokinesis and is dependent on 
dynein and the RACK1 (Receptor for activated C kinase-1) 
scaffolding protein (59). Localization of endosomes at the 
minus-end of microtubules makes them ideally-positioned for 
the plus-end-directed vesicular transport along both astral and 
midzone microtubules which occurs during cytokinesis (26, 
57, 60). Consistent with this, the plus-end-directed kinesin-1 
motor protein is reported to co-immunoprecipitate with Rab11 
and FIP3 and its depletion blocks the delivery of FIP3 to the 
cleavage furrow and midbody during cytokinesis [reported as 
unpublished data in (61)]. Furthermore, a study by Montagnac 
et al. found that in cells depleted of kinesin-1 subunits, 
transferrin-positive endosomes are retained at the minus-end of 
the midzone microtubules and are thus not trafficked into the 
midbody (62). Intriguingly, this study also demonstrated 
that ARF6 is a key regulatory switch for the motor proteins 
that traffic endosomal-material in opposing directions along 
microtubules within the midbody. The JNK-interacting 
proteins, JIP3 and JIP4, were identified as ARF6 effector 
proteins that also bind kinesin-1 and the dynactin/dynein 
complex in a mutually-exclusive manner; and JIP4 was 
shown to be required for kinesin-1-dependent trafficking of 
endosomal-material into the midbody (62). At the midbody, 
activated-ARF6 binds JIP4 to promote and stabilize its 
association with dynactin/dynein, while interfering with its 
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kinesin-1 association, and thus drives the trafficking of 
dynactin/dynein cargo out of the intercellular bridge, which 
was also shown to be necessary for abscission (62). 

 
Other endosome-associated members of the Rab 

GTPase family have also been implicated in cytokinesis. Rab8-
positive endosomes are a source of the membranous-material 
trafficked to the midbody during abscission [(63) – discussed 
in further detail below]. Rab14 also displays strong 
localization to the cleavage furrow and midbody during 
cytokinesis, although the functional significance of this 
cytokinetic distribution remains to be clarified (64). Rab21, 
an endosomal Rab that associates with multiple integrin 
subunits, regulates the targeting of integrins to and from the 
cleavage furrow, where they anchor the furrow to the 
surrounding matrix or trigger matrix-induced signaling 
events required for cytokinesis (65, 66). Pellinen et al. also 
demonstrated that successful cytokinesis failed when the 
Rab21 activity was disrupted by RNAi or mutant 
expression, and further mutagenesis experiments verified 
that the Rab21/integrin association and integrin endocytosis 
are both necessary for successful cytokinesis (66). A study 
by Kouranti et al. investigated the effects of RNAi-
mediated depletion of each of the Rab genes in D. 
melanogaster S2-cultured cells and found that depletion of 
Rab35 results in post-furrowing cytokinesis defects (67). 
That study demonstrated that Rab35 regulates a ‘fast’ 
endosomal-recycling pathway and is responsible for 
midbody-localization and maintenance of 
phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] and 
the GTPase SEPT2 (septin-2), both of which are essential 
for successful cytokinesis (67-70). In this context, Rab35 is 
believed to direct the targeting of phosphoinositide kinases, 
such as phosphatidylinositol 4-phosphate 5-kinase 
(PtdIns4P 5-kinase), to the cleavage furrow and midbody 
whereby local lipid domains are established following 
regulated activation of phosphoinositide kinases at the 
plasma membrane (71-74). Midbody-localized 
PtdIns(4,5)P2 may then allow the recruitment of 
PtdIns(4,5)P2-binding proteins implicated in cytokinesis 
such as ERM (ezrin/radixin/moesin) proteins and SEPT2, 
and may also have additional roles such as regulating 
cytoskeletal remodeling or local enrichment of signaling 
molecules required for successful cytokinesis (75, 71, 72).  

 
Phosphatidylinositol-3-phosphate [PtdIns(3)P], 

an endosomal phosphoinositide, has also recently been 
implicated in abscission (75). In a study by Sagona et al., 
the authors report that PtdIns(3)P-positive endosomes 
localize to the midbody during cytokinesis and that 
disruption of the activity of VPS34 (vacuolar protein 
sorting 34), a class III phosphatidylinositol-3-OH kinase 
(PI(3)K-III) required for synthesis of PtdIns(3)P, or its 
accessory subunit Beclin 1, results in cytokinesis failure 
(75). At the midbody, PtdIns(3)P recruits additional 
proteins required for abscission such as the centrosomal 
protein FYVE-CENT (FYVE-domain-containing 
centrosomal protein) and its binding-partner TTC19 
(tetratricopeptide repeat domain 19), which are translocated 
to the midbody by KIF13A (kinesin superfamily protein 
13A), a plus-end-directed microtubule motor protein which 
binds FYVE-CENT (75). 

3.2. Remodeling the midbody membrane to close the 
bridge: from endosomal SNAREs to ESCRTs 

As outlined above, ingression of the cleavage 
furrow causes compaction of the central spindle into the 
membrane-bounded midbody. While the entire functional 
significance of the midbody remains to be fully elucidated, 
the physical obstacle of the midbody itself needs to be 
removed and some topological transformation of the 
plasma membrane must take place in order to ‘plug the 
hole’ in the plasma membrane and allow completion of 
cytokinesis. In this regard, a number of endosome-
associated proteins appear to contribute to the membrane 
remodeling events within the midbody that lead to 
separation of the daughter cells.  
 
 SNAREs (soluble NSF attachment protein 
receptors) are integral membrane proteins that localize to 
distinct vesicle (v-SNARE) and target (t-SNARE) 
membranes and, through the formation of what is believed 
to be unique v-SNARE and t-SNARE complexes, mediate 
the fusion of vesicles with their target compartments (76). 
As a number of endosomal SNAREs are required for 
successful cytokinesis, it seems likely that SNARE-
mediated membrane fusion plays a role in membrane 
remodeling events during cytokinesis (9, 77, 78). 
Consistent with this, mutant expression studies of two v-
SNAREs, VAMP-3 and VAMP-7, demonstrate that these 
proteins are required for deposition of membrane into the 
plasma membrane during cytokinesis (9). Further mutant 
expression studies from different systems indicate that the 
VAMP-8/syntaxin-2 and VAMP-2/SNAP-25 SNARE 
complexes, which are enriched within the midbody, are 
required for abscission (77, 78). These data suggest that the 
VAMP-8/syntaxin-2 and VAMP-2/SNAP-25 SNARE 
complexes may, in a manner analogous to cell plate 
formation in plant cells, mediate the fusion between 
endosomal vesicles or endosomal vesicles and the plasma 
membrane within the midbody. 
 
 BRUCE (BIR repeat-containing ubiquitin-
conjugating enzyme) is a further endosome-associated 
protein required for abscission (63). BRUCE, which is 
targeted to the midbody during cytokinesis, can co-
immunoprecipitate the endosomal Rab8 and Rab11 
GTPases as well as the exocyst components Sec6 and Sec8, 
and disruption of its function by RNAi-mediated depletion 
or mutant expression approaches blocks abscission and 
causes cytokinesis-associated apoptosis (63). It is believed 
that BRUCE may serve as a platform within the midbody 
for the tethering of endosomal vesicles and may coordinate 
the assembly of a membranous ‘diffusion barrier’, creating 
a physical blockade between the imminent daughter cells. 
In addition, as BRUCE possesses ubiquitin-conjugating 
activity and is necessary for midbody-localization of 
ubiquitin, it is possible that BRUCE may catalyze 
ubiquitylation events within the midbody that serve 
structural or regulatory functions required for successful 
cytokinesis (63). This intriguing study by Pohl et al. also 
found that in cells in which the activity of BRUCE is 
disrupted by RNAi-mediated depletion or mutant 
expression, cells accumulated large vesicles close to only 
one side of the midbody-ring, while intracellular trafficking 
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Figure 2. Integrated model of proposed endosomal functions within the midbody. Half of the midbody is portrayed and the 
events depicted are not necessarily independent of one another. A) Rab14 localizes to the cleavage furrow and midbody during 
cytokinesis. B) Rab35 directs PtdIns(4)P kinases to the midbody where local lipid domains are established which recruit proteins 
involved in cytokinesis. C and D) ARF6 regulates motor protein-mediated trafficking within the midbody. ARF6 binds JIP4 
which inhibits JIP4 binding to kinesin-1 and promotes its association with the dynactin/dynein complex and drives minus-end-
directed trafficking out of the midbody. E) Rab11/FIP3 and Rab11/FIP4-positive endosomes are tethered within the midbody via 
interactions with activated-ARF6 and the exocyst complex. F) Centralsplindlin mediates temporal recruitment of Rab11/FIP3 
complexes to the midbody. G) BRUCE serves as a platform within that midbody for the tethering of endosomal vesicles and may 
coordinate the assembly of a membranous ‘diffusion barrier’ between the mother and daughter cell. BRUCE may also mediate 
ubiquitylation events that serve structural and/or regulatory functions required for abscission. H) v-SNARE and t-SNARE 
complexes mediate vesicle/vesicle and vesicle/plasma membrane fusion within the midbody which plays a role in membrane 
remodeling during cytokinesis. I) Rab21 regulates targeting of integrins to the furrow and midbody which anchor these structures 
to the surrounding matrix or trigger matrix-induced signaling events required for cytokinesis. J) ESCRT complexes induce 
membrane deformation within the midbody that contributes to the membrane remodeling events which lead to abscission. The 
KIF13 motor protein delivers FYVE-CENT and TTC19 to the midbody where they are recruited by midbody-localized 
PtdIns(3)P. TTC19 may regulate ESCRT activity within the midbody. PtdIns(4,5)P2, phosphatidylinositol 4,5-bisphosphate; 
SEPT2, septin-2; JIP4, JNK-interacting protein 4;  FIP3, Rab11-family-interacting protein 3 (Rab11-FIP3); FIP4, Rab11-family-
interacting protein 4 (Rab11-FIP4); KIF13A, kinesin superfamily protein 13A; FYVE-CENT, FYVE-domain-containing 
centrosomal protein; TTC19, tetratricopeptide repeat domain 19; SNARE, soluble NSF attachment protein receptor; ESCRT, 
endosomal sorting complex required for transport; BRUCE, BIR repeat-containing ubiquitin-conjugating enzyme; PtdIns(3)P, 
phosphatidylinositol-3-phosphate.  
 
in control cells appeared symmetrical (63). These data are 
in agreement with previous reports that abscission has an 
asymmetrical component whereby the scission event occurs 
at the daughter-centrosome-containing cell side of the 
midbody-ring, while the midbody-ring itself, along with 
BRUCE, are inherited by the mother-centrosome-
containing cell where the midbody-ring is eventually 
disassembled (43, 63, 79, 80). 
 
 The ESCRT (endosomal sorting complex required 
for transport) pathway consists of four multi-protein 
complexes (ESCRT-0, -I, -II and –III) which are recruited to 
endosomes via protein and lipid (phosphoinositide) 
interactions (81). They serve to sort ubiquitinated proteins into 
multivesicular bodies (MVBs) and regulate MVB formation 
by facilitating the invagination and ‘pinching-off’ processes 
required for inward vesiculation (81). ESCRT complexes also 
have roles in additional cellular processes including viral 

budding and abscission during cytokinesis (82-84). Thus, 
ESCRT complexes are necessary for three cellular processes 
requiring topologically-analogous membrane scission events: 
inward vesiculation within MVBs, viral budding, and 
abscission (85, 86, 82, 87). Distinct adapter molecules recruit 
ESCRT components to the sites of membrane fission events. In 
this respect, the centrosomal protein CEP55, which is required 
for abscission, was identified as a binding-partner for TSG101 
(tumor susceptibility gene 101), an ESCRT-I component, and 
found to recruit TSG101 and the ESCRT-associated protein 
ALIX (apoptosis-linked gene-2-interacting protein X) to the 
midbody (81, 86, 88). RNAi-mediated depletion of TSG101 
and ALIX, both of which can associate with additional 
proteins involved in cytokinesis (CD2AP, ROCK1, and 
IQGAP1), results in abscission failure; and expression of a 
dominant-negative mutant of VPS4 (vacuolar protein sorting 
4), an AAA+-type ATPase required for ESCRT-I function, 
results in similar effects (86, 87). Furthermore, the ESCRT-III 
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component CHMP3 (charged multivesicular body protein-3) 
also localizes to the midbody and CHMP3 mutant expression 
studies implicate it in cytokinesis (89). Given that recent 
studies indicate that ESCRT complexes can induce membrane 
deformation, it is possible that the ESCRT machinery 
contributes to the membrane remodeling events that allow 
closure of the intercellular bridge during abscission (90-92). 
These ESCRT-mediated membrane remodeling events may be 
regulated by the aforementioned TTC19 protein as TTC19 was 
recently shown to interact with the ESCRT-III component 
CHMP4B (charged multivesicular body protein-4B) (75). 
  
4. PERSPECTIVES 
 

Considerable advances in our understanding of 
the roles of the endocytic protein machinery have been 
achieved over the past decade. This information reveals a 
picture whereby several different mechanisms ensure 
appropriate targeted delivery of endosomes which serve 
multiple functions during the final stages of cell division 
(Figure 2). These data also underscore the crucial 
requirement for spatial and temporal regulation of 
numerous components of the cytokinetic protein machinery 
ranging from small GTPases to ESCRT complexes. So 
what specifically are the primary endosomal functions 
during cytokinesis? While endosomal function during 
cytokinesis is multifaceted, the preponderant evidence 
indicates that endosomes are crucial for the delivery of 
proteins needed for abscission. It seems likely that within 
the midbody these proteins serve diverse functions such 
anchoring the midbody to the surrounding matrix, tethering 
incoming vesicles at the correct spatial location, delivering 
and facilitating local enrichment of signaling molecules 
required to bring about completion of cytokinesis, and 
remodeling the membrane topology during abscission. 
These intriguing possibilities, as well as identification of 
the entire signaling events that lead to abscission, await 
further research and represent exciting challenges for the 
future. 
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