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1. ABSTRACT 

 
Metagenomics commonly refers to the study of 

genetic materials directly derived from environments 
without culturing. Several ongoing large-scale 
metagenomics projects related to human and marine life, as 
well as pedology studies, have generated enormous 
amounts of data, posing a key challenge for efficient 
analysis, as we try to 1) understand microbial organism 
assemblage under different conditions, 2) compare different 
communities, and 3) understand how microbial organisms 
associate with each other and the environment. To address 
such questions, investigators are using new sequencing 
technologies, including Sanger, Illumina Solexa, and Roche 
454, to sequence either particular genes, called tag 
sequences, mostly 16S or 18S ribosomal RNA sequences or 
other conserved genes, or whole metagenome shotgun 
sequences of all the genetic materials in a given 
community. In this paper, we review computational 
methods used for the analysis of tag sequences. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Metagenomics is the study of genetic materials 
derived directly from a microbial community without 
culturing. The term “metagenome” was first used by 
Handelsman et al. (1) in 1998. Since then, many large-scale 
metagenomics projects have been undertaken, including, 
for example, the human microbial project (HMP, 
http://commonfund.nih.gov/hmp/), the MetaHIT project 
(http://www.metahit.eu/), the Global Ocean Survey 
(http://www.jcvi.org/cms/research/projects/gos/), ICOMM 
(http://icomm.mbl.edu/) and the Earth Microbiome Project 
(http://www.earthmicrobiome.org/). Enormous amounts of 
metagenomics data have resulted using sequencing 
technologies such as Sanger, Illumina Solexa, Roche 454 
and others. The challenges for metagenomics studies 
include the direct sampling of genetic materials from the 
microbial communities, data storage and data analysis (2, 
3). Here we review computational methods for analyzing 
particular genes, called tag sequences, which are mostly 
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16S or 18S rRNA sequences. It was found that 16S/18S 
rRNA genes can be horizontally transferred between 
different species and one species can contain multiple 
copies of 16S/18S genes. Thus, the use of 16S/18S rRNA 
genes may not be optimal for community comparison. 
Other single copy house-keeping genes such as rpoB (4) 
and other conserved genes (5) were also used for 
comparing microbial communities. The methods described 
in this review can equally be applicable to such sequence 
data.  

 
Microbes are key players and ubiquitous in 

almost all natural and man-made habitats. It is estimated 
that the population of bacteria may be as high as  on 
earth, far outnumbering all other life forms. They exist in 
all environments, every tissue of the human body, salt and 
fresh waters, within polar ice and boiling hot springs, in 
surface soils and deep bedrock, in acidic mine drainage and 
alkaline lakes. They can be found coating both the skin and 
gut of any animal, as well as the surface of any plant or 
fungus. The number of microbial cells in an average 
healthy human adult is about 10 times higher than human 
cells. 

 
Traditional microbiological studies heavily 

depend on in vitro studies. However, only a very small 
fraction of microbial organisms can be cultured, and the use 
of culturing techniques alone significantly limits our 
understanding of the microbial world. Various culture-
independent methodologies able to retrieve genetic 
materials directly from natural environments have been 
developed. These culture-independent techniques have 
revealed high microbial diversity present in many different 
environments. Among these techniques, profiling, or 
fingerprinting, methods provide information on the whole 
community at once, usually in the form of a list of gene 
fragments representing different operational taxonomic 
units (OTUs), and the OTUs are supposed to represent 
closely related organisms. These methods include T-RFLP 
(6, 7), DGGE (8, 9), and ARISA (10, 11). By allowing 
relatively easy analysis and simultaneous comparison of 
many samples, fingerprinting studies have revealed spatial 
and temporal patterns among the OTUs and environmental 
factors (12-14). However, profiling-based methods do not 
yield detailed information about the microbial organism 
composition within communities. Fortunately, with the 
rapid development of sequencing technologies and 
significant drop of sequencing cost, it is now possible to 
use new sequencing technologies to study community 
diversity. These studies have shown that changes of the 
microbial community structure within the human body are 
associated with human health, such as obesity (15-17) and 
clinically defined bacterial vaginosis (18). The human gut 
microbial community can significantly change after 
treatment with antibiotics (19, 20).  

 
Modern molecular techniques have revealed high 

microbial diversity in various human tissues. In the first 
phase of the HMP, investigators studied the composition of 
the microbial communities in various human tissues. In the 
second phase, the microbial communities associated with 
human diseases will be identified. Several studies have 

been carried out, including the study of microbial 
communities in the gut (21-23), saliva (24), skin (25, 26), 
vagina (18) and stomach (27). In addition to HMP, many 
other metagenomics projects, including marine and 
pedology studies (28-36), are underway or are in the 
planning stages. For instance, Dinsdale et al. (37) 
compared the metagenomic communities of 45 distinct 
microbiomes and 42 distinct viromes and found that they 
have distinct metabolic profiles. To date, most studies of 
microbial diversity have used ribosomal RNA (rRNA) 
sequences, in particular 16S and 18S, because they are 
ubiquitous and largely well conserved during evolution 
(38). Other types of gene sequences have also been used (4, 
5). These sequences are sometimes called tag sequences. 
Because tag sequences are generally short, very deep 
sequencing is possible. Tag sequences are generally highly 
conserved and they can be used to study the microbial 
organism compositions in communities. However, it is 
impossible to study the functions of individual genes based 
on tag sequences. To study functions of genes and 
pathways, whole genome shotgun sequences are needed.  

 
With the accumulation of enormous amounts of 

sequence data, there is an urgent need for novel 
computational tools able to analyze them and link the 
results to knowledge databases, such as Greengenes (39) 
and SILVA (40), to learn how different organisms interact 
with each other and with the environment. In this paper, we 
review computational methods for the analysis of tag 
sequences, including  how to 1) classify the tag sequences 
into OTUs, 2) compare different communities, and 3) study 
the association of OTUs and environmental factors. 
 
3. OPERATIONAL TAXONOMIC UNIT (OTU)-
BASED ANALYSIS OF METAGENOMICS 
COMMUNITIES 

 
The comparison of different communities is an 

important problem in many different fields, including 
ecology and microbiology. Many different measures, 
termed beta diversity, have been proposed to compare 
communities, and many of the methods were reviewed in 
(41). Some studies comparing communities based on gene 
contents and their metabolic functions (32, 42) depend 
heavily on the accuracy of the functional  annotation 
process. Here, we concentrate on operational taxonomic 
unit (OTU)-based methods using tag sequences. In this 
section, we review computational methods for defining 
OTUs and for comparing communities based on  OTUs. 

 
3.1. Computational methods for the identification of 
OTUs 

Tag sequences can be grouped into different 
clusters such that the sequences in each cluster are similar, 
but sequences in different clusters have relatively large 
differences. The sequences in each cluster form an 
operational taxonomic unit (OTU). The motivations of  
using OTUs are as follows. Microbial communities are 
usually highly diverse, containing hundreds to thousands of 
microbial organisms. However, tag sequences of only a 
small fraction of these organisms are known and well 
studied.  Thus, studies based on the relationships of known 
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tag sequences maybe biased and do not present full 
understanding of the microbial diversity in communities. 
On the other hand, OTUs do not depend on the available 
information about the known tag sequences and thus 
present an unbiased view of the microbial diversity. 
However, the OTUs do depend on the algorithms used and 
it is still an active area of research for the optimal definition 
of OTUs. Although the definition of OTUs is conceptually 
simple, the computational implementation for the 
identification of biologically meaningful OTUs has turned 
out to be a very challenging problem, and optimal methods 
are still being debated and developed. The difficulties in 
defining biologically meaningful OTUs can be attributed to 
several factors. First, there is a large quantity of tag 
sequence data from metagenomics projects, which 
mandates that the computational algorithm be both storage 
and computationally efficient. Second, errors are present in 
sequence reads which can make the number of predicted 
OTUs much higher than the true number of OTUs present 
in microbial communities. Third, many different clustering 
approaches are available, and it is not clear which 
clustering methods give the most biologically meaningful 
results. Recent active studies on this topic have begun to 
answer some of these questions. 

 
Two steps are frequently used in algorithms for 

defining OTUs. The first step is the calculation of distances 
between any pair of sequences. Some programs used 
multiple sequence alignment (MSA) to first align the 
sequences. Afterwards, the distance between any pair of 
sequences is calculated on the basis of this alignment (43, 
44). Schloss (45) and White et al. (46) studied factors that 
can significantly affect estimating the diversity of 
individual communities, termed alpha diversity, and 
comparing multiple communities, termed beta diversity. 
These factors include the quality of the MSA, the 
inclusion/exclusion of variable regions along the tag 
sequences, and the distance calculation methods between 
groups of tag sequences. It is well known that MSA for a 
very large number of sequences, e.g., on the order of , 
is computationally challenging, and no efficient algorithms 
are available to align such a large number of sequences. In 
addition, there is no guarantee that MSA of the sequences 
will give better results than distances calculated based on 
pairwise sequence alignment (PSA) of tag sequences. 
Therefore, as an alternative to MSA, Sun et al. (47) 
proposed using PSA to calculate the distances between any 
pair of sequences. Surprisingly, they showed that pairwise 
distances calculated from PSA yield more biologically 
meaningful OTUs than those based on MSA. The use of 
PSA also reduces the computation time significantly 
compared with the use of MSA.  

 
The second step in defining OTUs is to cluster 

the sequences based on the pairwise distances (43, 44, 47, 
48). Some programs used complete linkage in hierarchical 
clustering (43, 44) where the distance between two groups 
of sequences is defined as the maximum distance between 
sequence pairs from the two groups. However, recent 
studies showed that average linkage, where the distance 
between two groups of sequences is defined as the average 
distance between sequence pairs from the two groups, may 

give more biological meaningful OTUs than using 
complete linkage (47, 49, 50). Previously, defining OTUs 
has required a threshold value so that the distances between 
any two clusters would be above the threshold. However, if 
OTUs correspond to actual species, then no such threshold 
values exist as confirmed by recent studies (51). In addition, 
experimental errors such as the PCR errors and the 
sequencing errors are unavoidable, and as a result, the 
hierarchical clustering over-estimate the number of OTUs. 
To avoid using a threshold value in clustering, a 
probabilistic Bayesian clustering method, termed 
Clustering 16S rRNA for OTU Prediction (CROP), was 
recently proposed to cluster sequencing data and define 
OTUs (48). CROP models the sequencing data with a 
Gaussian mixture model, and uses a soft threshold for 
clustering. It was shown to accurately estimate the number 
of OTUs when applied to a sequence dataset of mixtures of 
cultures (48). Ye (52) proposed AbundantOTU to group 
sequences from closely related abundant species. The 
algorithm does not depend on pairwise or multiple 
sequence alignments, but is based on a consensus 
alignment algorithm that defines abundant OTUs. This 
algorithm can avoid the problem of relatively high error 
rate as in next generation sequence technologies. However, 
it cannot align sequences belonging to rare OTUs and these 
sequences can be analyzed using other approaches 
described above. 

 
When comparing different methods for defining 

OTUs, investigators designed some benchmark data by 
either experimentally sequencing a community with known 
microbial species (49, 53) or computationally selecting a 
set of species and introducing errors in these sequences 
according to the sequence error models of sequencing 
technologies (46, 50, 51). One criterion used to evaluate 
algorithms for defining OTUs is comparing the number of 
OTUs given by the algorithms with the known number of 
species in the simulated community. Recently, Sun et al. 
(51) proposed using normalized mutual information (NMI) 
(54) and F-score (55) to evaluate algorithms for defining 
OTUs. The NMI score evaluates overall clustering by 
penalizing two types of errors: assignment of sequences 
from different species into the same OTU and assignement 
of sequences from the same species into different OTUs. 
The NMI score is 1 if the clustering completely agrees with 
the species, and it is close to 0 if the clustering of 
sequences is not related to the species where the tag 
sequences come from. As a complementary evaluative 
method, F-score was proposed to compare clustering of 
sequences from an algorithm with true underlying species 
classification of sequences (51). Given N sequences from 
m species (S1, S2, ..., Sm), we suppose that an algorithm 
clusters the sequences into n clusters (C1, C2, ..., Cn) . Let 
aij be the number of sequences from species Si that are 
clustered into cluster Cj, i = 1, 2, ..., m; j = 1,2, ..., n. For 
species i and cluster j, the precision and recall are defined 
as  

 

 
 

and the F-score is defined by  



Computational methods for metagenomics tag sequence analyses 

1336 

 

 
 

Finally, the F-score for the clustering from the 
algorithm is defined as  

 

 
 

Thus, the F-score will be one if the clusters from 
the algorithm are the same as the species classification of 
the sequences. Otherwise, the F-score is small. Both NMI 
and F-score have been used to evaluate the quality of OTU 
classifications using known sequences from a mixture of 
species.  

 
The number of tag sequences in metagenomics 

studies is generally huge, usually on the order of . Thus, 
the storage of pairwise distances, as discussed above, 
between any pair of sequences is challenging and cannot be 
done in most situations. Similarly, the clustering step is 
computationally time-consuming. To address the storage 
issue, some algorithms used sparse matrix techniques, 
where only distances between closely related sequences are 
kept to represent the distance matrix. This step can 
overcome the storage problem because only a relatively 
small fraction of sequence pairwise distances are stored (44, 
47). To overcome the computational issues related to 
clustering, several other algorithms, including CD-HIT (56), 
UCLUST (57) and ESPRIT-Tree (58), do not even need to 
generate pairwise distances. Instead of clustering all the 
sequences simultaneously, sequences are simply clustered 
as added, which reduces the computational burden 
significantly. It should be noted that CD-HIT and UCLUST 
were developed to cluster protein sequences and they were 
adapted to the identification of OTUs. Sun et al. (51) 
compared the three approaches and showed that ESPRIT-
Tree generally gives the highest accuracy, followed by 
UCLUST, with CD-HIT having the lowest accuracy. On 
the other hand, UCLUST takes the least amount of time 
and ESPRIT-Tree is slightly faster than CD-HIT. These 
developments significantly speed up algorithms for 
defining OTUs and have made large-scale analysis of 
OTUs possible. This is an area of continuing active 
research. 
 
3.2. Comparison of communities based on OTUs 

Suppose that there are multiple microbial 
communities and that tag sequences from each of the 
communities are obtained. How can we compare the 
communities based on the tag sequences? One commonly 
used approach is to cluster all the tag sequences from all 
the communities into OTUs and then measure the 
differences among the communities using some distance 
measures, termed beta diversity, based on the distribution 
of OTUs in the different communities. Various beta 
diversity measures (41, 59) can be used to compare the 
communities. Specifically, beta diversity measures can be 
grouped into qualitative or quantitative measures. 
Qualitative measures, such as classic versions of Jaccard, 

Lennon, and Dice, consider the presence/absence of OTUs 
within communities without considering their abundance. 
On the other hand, quantitative measures, such as classic 
versions of Bray-Curtis, Canberra, Euclidean, and Chao’s 
statistic (60), take the abundance of OTUs into 
consideration. Recently, Kuczynski et al. (61) studied 14 
quantitative and 9 qualitative beta diversity measures based 
on OTUs. They showed that these measures have varied 
abilities to identify the relationships between community 
microbial composition and 1) environmental changes,  or 2) 
community clusters. For example, Chi-square and Pearson 
correlation distances perform extremely well in identifying 
environmental gradients of the communities, while Gower 
and Canberra distances perform well in identifying 
community clusters. These beta diversity measures have 
been incorporated into several metagenomics analysis 
pipelines, including QIIME (62) and  SONS (63), which is 
currently incorporated into MOTHUR (44). Another novel 
network-based community comparison method was 
reported in (22), where OTUs and communities were 
abstracted to nodes in a bipartite graph. In this scheme, an 
OTU is connected to a community if the OTU is present in 
the community. The weight of the edge is the number of 
sequences in the OTU belonging to the community. 
Network analysis tools such as Cytoscape 
(http://www.cytoscape.org/) can then be used to analyze the 
network. 

 
4. PHYLOGENY-BASED METHODS FOR 
COMPARING METAGENOMICS COMMUNITIES 

 
Phylogenetic methods are those that take 

evolutionary relationships of the sequences into 
consideration in the comparison of communities. Here, we 
briefly review some of the approaches, while a more 
complete comparison of such methods is given in (64). 
 
4.1. The  test and the phylogenetic (P) test 

OTU-based beta diversity measures have two 
main disadvantages. The first, as we have seen in 
subsection 3.1, involves the difficult problem of accurately 
defining OTUs. Mistakes in defining the OTUs may lead to 
misleading results about community relationships. 
Secondly, OTUs are treated as equal in terms of 
presence/absence or abundance levels, even though some of 
them may be closely related and some may not. To 
overcome these shortcomings, Martin (65) introduced two 
statistics borrowed from population genetics and 
systematics for comparing samples,  and phylogenetic 
(P) test, which take evolutionary relationships of sequences 
into consideration. 

 
The  statistic assesses the difference between 

communities by comparing the genetic diversity within 
each single community to the total genetic diversity in the 
combined community consisting of all sequences from both 
communities. The  is defined as: 

 
where  is the genetic diversity of the combined sample, 
and  is the average genetic diversity within each sample 
(65). 
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There are various statistics for estimating genetic 
diversity in a sample. One that is commonly used takes the 
average nucleotide differences between two randomly 
chosen sequences from the sample, as calculated by 

 

 
 

where k is the number of distinct sequences,  and  are 
the frequencies of the ith and jth sequences, respectively, 
and  is the number of differences between the ith and jth 
sequences (65). 

 
The phylogenetic (P) test, also known as the 

parsimony test (66), can be described as follows. First, a 
phylogenetic tree, including all the sequences in the 
samples, is generated using a phylogenetic analysis tool 
such as PHYLIP 
(http://evolution.gs.washington.edu/phylip.html). Each 
sequence is labeled according to the community the 
sequence comes from. Based on this observed tree, the 
minimum number of changes needed to explain the labels, 
termed parsimony score, is calculated. If the two 
communities are the same, the labels of the sequences and 
the phylogenetic tree should be unrelated. In the literature, 
two randomization methods were proposed to test the 
hypothesis that the two communities are the same. The first 
approach is to randomize the tree for the sequences and 
keep their labels. The second approach is to randomize the 
labels of the sequences without changing the phylogenetic 
tree. For each approach, the p-value is approximated by the 
fraction of times that the resulting parsimony score for the 
randomized sample is equal to, or smaller than, the 
parsimony score for the original data. The p-values 
obtained from the two randomization approaches can be 
different because of the different randomization processes. 
Actually, the two randomization approaches test for 
different specific hypotheses. By randomizing the tree, the 
P-test tests the hypothesis that sequences from the two 
communities associate with each other through a random 
phylogenetic tree. By randomizing the labels of the 
sequences, the P-test tests the hypothesis that the sequences 
from the two communities are randomly distributed along 
the leaves of the observed phylogenetic tree. Both 
approaches have been used to compare communities. As a 
test strategy, the phylogenetic (P) test cannot be used as a 
measure of beta diversity because the p-value depends on 
the number of sequences in each individual community in 
addition to differences among all communities. The 
phylogenetic (P) test has been implemented in TreeClimber 
(63), which is now included in MOTHUR (44). 

 
4.2. UniFrac, weighted UniFrac and variance adjusted 
weighted UniFrac 

Two other widely used phylogenetic methods for 
comparing communities are UniFrac and weighted UniFrac 
(W-UniFrac), both proposed by Lozupone et al. (67, 68), 
and they have been widely used in many studies, e.g. (22, 
69, 70). Similar to the phylogenetic (P) test, a phylogenetic 
tree composed of sequences from all the communities is 
needed, and each sequence is labeled according to the 

sample it comes from. UniFrac measures the distance 
between communities by the fraction of branch length of 
the tree that leads to descendants from each  of two single 
communities, but not from both communities (67), whereas 
weighted UniFrac takes abundance information into 
consideration and weights each branch length by the 
difference of the fractions of sequences from the two 
communities belonging to the branch (68). UniFrac and W-
UniFrac are calculated using the following equations: 

 
UniFrac  

W-UniFrac
 

 
where n is the number of branches in the tree, and  is the 
length of branch i. , if there are sequences that 
descend from branch i in community A, and  
otherwise. The case is similar for .  and  are the 
numbers of sequences that descend from branch i in 
communities A and B, respectively, and  and  are the 
total numbers of sequences in communities A and B, 
respectively. m is the number of different sequences in the 
two communities, is the distance from the root to 
sequence j, while  and  are the number of times 
sequence j is observed in communities A and B, 
respectively. All the above numbers of sequences should be 
counted with multiplicity, except m. These two statistics 
are implemented in the ``Fast UniFrac'' software package 
(71). 

 
Based on UniFrac and weighted UniFrac, we 

recently proposed a new quantitative measure (72), termed 
variance adjusted weighted UniFrac (VAW-UniFrac). 
Compared to weighted UniFrac, this new statistic adjusts 
the weights of branch lengths according to the variance of  

 under the null model that the labels of the 
sequences are randomly distributed on the leaves of the tree. 
VAW-UniFrac is calculated as follows: 

 

VAW-UniFrac

 
 

where  is the number of sequences belonging 
to the i-th branch,   is the total number of 
sequences in the tree, while the other annotations remain 
the same as in UniFrac and W-UniFrac. It was shown in 
(72) that VAW-UniFrac is always more powerful than W-
UniFrac and is more powerful than UniFrac when the 
sequences from each community are not uniformly 
distributed along the tree, meaning that VAW-UniFrac is 
more likely to detect differences and find meaningful 
gradient among various communities.  

 
Despite the wide applications of UniFrac and W-

UniFrac, some potential problems have been observed (64) 
when they are used to cluster communities based on the 
observation that their mean values decrease with the 
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number of sequences from the two communities. The 
simulations used by Lozupone and colleagues agreed with 
this observation; that is, when the number of sequences is 
relatively small, e.g., less than 1000, then the mean values 
of UniFrac and weighted UniFrac decrease with the number 
of sequences from the communities, but their mean values 
become stable when the number of sequences is greater 
than 1000 (73). Thus, UniFrac and W-UniFrac depend on 
the number of sequences from the communities. To 
overcome this potential problem, Lozupone et al. (73) 
suggested using bootstrap to sample the same number of 
sequences from the communities, thus providing a method 
of comparison when the number of sequences from some 
communities are relatively small. As an extension of W-
UniFrac, VAW-UniFrac experiences this same problem; 
hence, the bootstrap strategy should be employed when the 
concern warrants it. Another more philosophical issue 
about UniFrac is that it assumes that “differences” between 
communities are proportional to the phylogenetic distances 
of their constituent members. This may be true for some 
questions, but not all. It depends on how the distance is 
interpreted, as factors like ecological roles do not uniformly 
follow phylogeny. So the “ecological scale” of 
phylogenetically close and far distances is inherently not 
predictable. 

 
5. ASSOCIATION NETWORKS OF OTUS AND 
ENVIRONMENTAL FACTORS 

 
Microbial organisms do not function 

independently in communities. Instead, they interact with 
each other and with environmental factors (ENV). Without 
precise knowledge about organisms within communities, 
we can study the association of OTUs and, as a 
consequence, form OTU networks. Given the distribution 
of OTUs in a community under multiple time points, 
locations, or environmental conditions, Pearson correlation 
or Spearman correlation can be used to study the 
association of OTUs and ENVs. An OTU/ENV network 
can then be constructed, assuming that two OTUs are 
connected if their abundance levels are significantly 
associated. For presence/absence of OTUs across many 
different time points, locations, or environmental 
conditions, an OTU co-occurrence network can also be 
obtained as in (74). Two OTUs are connected if they are 
more likely to co-occur than expected, for example if they 
prefer similar environmental conditions or if they facilitate 
each other’s survival, as in cooperative relationships like 
symbioses. Network analysis tools, such as Pajek (75) and 
Cytoscape (76), can be used to analyze microbial 
OTU/ENV association networks. Note there are also 
significant negative associations that may imply 
interactions like competition or predation, or preference for 
opposite seasons. 

 
With metagenomics data from a series of time 

points, i.e., time series data, it is possible to define time-
delayed-local association between OTU/ENVs, as defined 
in (77). Standard statistical approaches, such as Pearson or 
Spearman correlation, may not be able to capture such 
complex interactions in reality. For example, it was found 
that two OTUs may only associate within a subset of the 

time interval of interest. Moreover, it is possible that one 
OTU, OTU1, may have a time-delayed response to the 
abundance changes of another OTU, OTU2, thus creating a 
time-delayed association, as might, for example, be the 
case in the administration of antibiotics or host immune 
response to pathologic overload. As suggested, linear 
regression and Pearson or Spearman correlation will most 
likely fail to detect the relationship between OTU1 and 
OTU2 in such situations in that these statistics can only 
detect global linear relationships between OTU/OTU and 
OTU/ENV pairs. Obviously, these problems call for the 
exploration of alternate analytical methods, and in order to 
identify such complicated relationships between OTU/OTU 
and OTU/ENV pairs, we developed local similarity 
analysis (LSA) with time delays to study the relationship 
between OTU/OTU and OTU/ENV pairs (77). The 
following procedures were used to identify potentially 
time-delayed-local associations. First, the abundance levels 
of each OTU across the time series are normalized so that 
they can be considered samples from the standard normal 
distribution. Second, a dynamic program algorithm is then 
used to find potentially time-delayed-local intervals with 
highest absolute correlation. Third, a p-value is then 
calculated by randomization of the normalized abundance 
levels of the OTUs. Fourth, the p-values are then 
transformed to q-values for each pair of sequences, and an 
OTU network can be constructed by thresholding on the p-
values or q-values. In most biological studies, both 
technical and biological noises are unavoidable. Here 
technical noise indicates errors introduced by the 
experiments and biological noise indicates randomness 
introduced during the sampling process. To study the 
effects of these noises on the local similarity score, 
biological/technical replicate experiments are usually 
carried out. We recently extended the original LSA to the 
situation with replicates termed extended LSA (eLSA) (78). 
With replicates, we are able to obtain the boostrap 
confidence interval for the LS score. The LSA software can 
be downloaded from http://meta.usc.edu/softs/lsa. The local 
association network approach has been applied to several 
environmental biological studies, and interesting results 
about the association of OTUs and environmental factors 
were obtained and discussed, e.g., findings reported in (79-
83). For example, Steele et al. (81) built the largest most 
comprehensive ecological network using LSA in the ocean. 
We expect that network-based analysis of OTU/ENVs will 
play more important roles as more time series data are 
available. 

 
6. DISCUSSION 

 
Metagenomics is a rapidly developing field, and 

both tag and whole-genome shotgun sequence data are 
available. However, because of the large amounts of data, 
there is an urgent need for efficient computational tools to 
analyze these large datasets in order to understand 
microbial organism assemblage under different conditions, 
compare different communities, and understand how 
microbial organisms associate with each other and the 
environment.  In this paper, we reviewed computational 
approaches for tag sequence analysis, including the 
definition of OTUs, the use of OTU- and phylogeny-based 
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methods to compare metagenomics communities, and the 
construction of OTU/ENV networks to study how OTUs 
associate with each other and with the environments. 

 
We have seen that classifying sequences into 

different OTUs is an extremely difficult problem. Many 
shortcomings of the available methods for defining OTUs 
have been identified, but problems associated with new 
algorithms have not yet come to light. Clustering itself is an 
exploratory tool and can give deep insight into the 
microbial diversity of communities at various levels of 
phylognetic resolution. Due to the highly complex nature of 
the evolution of genomes, we recognize that OTUs based 
on one or a few tag sequences cannot perfectly correspond 
to microbial species (the characterization or even formal 
existence of which is still frequently debated), however the 
distribution of OTUs defined by clustering still has 
interesting and valuable ecological interpretations, e.g. (84). 
Although average linkage in hierarchical clustering tends to 
yield more stable and biologically meaningful OTUs than 
complete linkage, we doubt that hierarchical clustering is 
the optimal strategy for defining OTUs. Importantly, for 
short sequences in particular (as currently determined by 
the next-generation sequencing approaches like Illumina), 
the information in the distance matrix between the 
sequences may not be enough to cluster the sequences into 
clusters with certainty. Instead, probabilistic clustering may 
be a more reasonable alternative to hierarchical clustering 
of tag sequences. Specifically, it is not possible to 
determine if two specific sequences are definitely in the 
same cluster. Instead, we only know the probability that 
they are in the same cluster. To accommodate this idea, we 
developed a new method, termed CROP (48), which does 
not force a sequence into one cluster, but rather into 
different clusters based on probabilities for them to be in 
each cluster. At the same time, however, it has to be 
acknowledged that probabilistic clustering is 
computationally demanding and difficult to explain to non-
statisticians. Despite the shortcomings of probabilistic 
clustering, we expect that further improvement in the 
computational speed of CROP will, in turn, improve OTU 
definition.  

 
Once the OTUs are defined, many beta diversity 

measures can be used to compare communities. For 
instance, the study of Kuczynski et al. (61) highlighted the 
differences among a variety of beta diversity measures in 
recovering environmental gradients and clustering 
communities. However, it is not clear how the mis-
specification of OTUs affects the results from different beta 
diversity measures.  

 
We also reviewed phylogeny-based methods for 

comparing communities, including the parsimony test, 
UniFrac, weighted UniFrac, and our newly developed 
variance adjusted weighted UniFrac. UniFrac has been used 
in over 150 metagenomics studies, and important biological 
insights have been gained. On the other hand, all the 
methods we reviewed assume that the tree is given and is 
correct, that the tag sequences correctly place the sequence 
in a single place on the tree, and that the distances of 
interest between communities are reflected by phylogenetic 

distances. Placement on robust trees are most accurate 
when we match longer tag sequences unambiguously to 
existing RNA classification schemes, such as RDP of 16S 
RNA sequences, since the 16S RNA sequences are well 
studied, and detailed phylogenetic relationships among 
them are known. On the other hand, for short sequences 
that match multiple sequences in differnt parts of  the tree 
nearly equally well, and for other types of tag sequences 
(non-16S) where the phylogenetic relationships are not 
clear, problems may emerge based on potential errors in 
properly placing the sequences on  the phylogenetic tree, 
thus suggesting the need to further study the effects of such 
errors on phylogeny-based beta diversity measures.  

 
Understanding how OTUs associate with each 

other and with the environment is another very important 
problem. Initial efforts to establish OTU co-occurrence 
networks have highlighted the importance of such an 
approach (74). Our previous analysis of marine time series 
data using ARISA showed interesting association patterns 
among OTUs and environmental factors (77, 81). Time 
series tag sequence data are now available (84), and local 
similarity analysis of such data, as described above, is 
giving us more detailed information on the association of 
microbial organisms. Nonetheless, more sophisticated local 
similarity analysis approaches are needed to identify other 
association patterns that cannot be discovered by the 
current version of LSA. 
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