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1. ABSTRACT 
 

In this work, the fundamental elements of 
statistical mechanics underlying the simulation of the 
protein-ligand binding process, such as statistical 
ensembles and the concept of microscopic estimators 
of macroscopic observables and free energy, are 
summarized in a self consistent fashion. Particular 
attention is then devoted to the introduction of some 
mathematical tools that are used in atomistic 
simulations aimed at estimating binding affinities and 
free energy profiles, and to the illustration of the 
origins of the difficulties encountered in this 
endeavor.  

 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Statistical mechanics provides a useful 
framework to describe and simulate, among many other 
systems, protein-ligand interactions. Estimating the binding 
energy of the process, in particular, is a task often 
addressed within this context. Indeed, the topic is relevant 
in many fields including Drug Design, and a large number 
of works on this topic can be found in the literature. In this 
paper, we wish to summarize the fundamentals needed to 
formalize the problem of protein-ligand binding, assuming 
a basic knowledge of classical Physics. We will emphasize 
the aspects introductory to the numerical simulation of the 
problem (the specific techniques will instead be discussed 
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in other contributions to the issue), point out the difficulties 
in obtaining an accurate estimate of the binding free 
energy, and indicate several potential pitfalls that can be 
encountered in these simulations. While some information 
is presented in complementary material at the end of the 
sections, a formal, and complete, derivation of the results 
presented is out of the scope of this work. Many exhaustive 
books on the topic exist and the interested reader will be 
referred to those for more in depth presentation and 
discussion. Our intention here is to present an introductory, 
self consistent framework where the researcher lacking a 
specific expertise in statistical mechanics can find a 
reasonably precise idea and form an intuitive picture of the 
theory underlying some of the most commonly used 
techniques for the simulation of protein-ligand binding. 
Occasionally, we hope to also suggest some deeper 
insights.  
 

The paper is organized as follows. We begin by 
introducing the basic concepts of the dynamics and the 
statistical mechanics of a system. We will stress, in 
particular, the connection between microscopic and 
macroscopic observables and the concept of a statistical 
ensemble. The laws controlling the evolution of an isolated 
system will be summarized first, followed by the extension 
to the case of a closed system in equilibrium with a thermal 
reservoir. Then, the key quantity for our problem, i.e. the 
free energy, is introduced. We shall briefly discuss its role 
as the generator of microscopic estimators for 
thermodynamic quantities such as the pressure of the 
system, and then move to a more detailed description of its 
part in characterizing the thermodynamics, mechanism and 
kinetics of activated processes such as protein-ligand 
binding. We have tried to introduce a reasonably general 
definition of the free energy and its properties but, given 
the specific interest of this issue, the illustration of these 
properties is restricted to the specific case at hand (and to 
some of its peculiarities). To set the stage for the 
computational approaches discussed in other contributions, 
we also point out some of the difficulties in calculating the 
free energy numerically. Finally, to highlight differences 
and similarities among the two quantities, we present a 
brief comparison of the free energy with the  potential 
energy of a physical system. We illustrate, in particular, the 
differences using a simple didactical example that, 
however, contains some of the ingredients of more complex 
systems. 
 
3. BASICS 
 

We will model our system, i.e. the protein, the 
ligand and the solvent, as a set of N interacting classical 
particles in a fixed volume V. The state of the system is 
completely specified by the knowledge of the set of the 
coordinates {ri, i=1,..,N} and momenta {pi

r, i=1,..,N} of the 
particles, ri = {ri,α, α=1,2,3} is the three dimensional vector 
identifying the position of particle i in Cartesian space, 
whereas in the following r indicates the 3N dimensional 
vector spanning both subscripts i and α, with similar 
notation for pi

r and pr. Together, positions and momenta 
define a point in the so-called phase space, that we shall 
indicate as Γ=(r, pr), of the system and that we shall 

consider as a classical microstate. The evolution of a 
system can be described by the dynamical trajectory {Γ(t)} 
= {r(t), pr(t)}, i.e. the set of points in phase space that the 
system visits in time (see the following for how to 
determine this sequence). Since the trajectory carries, for 
each value of the time, the complete information about the 
state of the system, it must be possible to express all 
experimentally measurable quantities (such as temperature, 
pressure, diffusion coefficients, spectra, etc.) as functions 
of the points in phase space visited by Γ(t). While this is in 
principle correct, experimental quantities are more 
conveniently characterized as time averages of such 
functions. To see why this may be so, consider that the time 
scale of displacement of a point in the phase space for a 
typical atomic system is of the order of the femtosecond 
(i.e. 10−15s), much smaller than the typical human scale 
observation time (millisecond or even second). Thus, it is 
reasonable to postulate that the result of an observation, the 
macroscopic observable , is given by the average over 
time of the corresponding microscopic observable O(Γ(t)). 
Thus, for an observation started at time t0: 

 

 (3.1)
 

The equation above is the cornerstone of classical 
statistical mechanics as first introduced by Boltzmann: it 
connects the microscopic dynamics of the system to the 
macroscopic observation via the operation of time average. 
In this context, the trajectory is not used to describe the 
evolution of the system “per se”. Rather, it is a tool to 
generate, as a function of time, a sequence of points in 
phase space where the value of the observable is computed 
and then averaged. In the following, we are interested in so-
called equilibrium properties of a system, where 
macroscopic observables can be taken as well-defined 
constants and the system has lost memory of the initial state 
at t=t0. For systems at equilibrium, it is possible to restate 
the calculation of the averages in a language in which the 
time-dependent trajectory is no longer present. To see how 
this can be done, we present an argument that, under 
appropriate hypotheses (such as ergodicity1) can be turned 
into a rigorous statement. Let us consider the discretized 
version of the integral (3.1). Dividing the total time τ-t0 into 
n steps of duration h, we can write: 

 

, (3.2) 
 
where Oj=O(jh). Let us now divide the phase space of the 
system in L (hyper-)volume elements of the same “size” dΓ 
and assume that they are small enough, and the observable 
smooth enough, that the value of O(Γ) in each element is a 
constant Ol. As the trajectory evolves, it visits any given 
cell more than once. The terms in the sum can then be 
rearranged based on the following observation: the 
equation above counts the contribution of each visit to a 
given cell to the total average by adding up the value of the 
observable every time that the trajectory enters the cell. If 
there have been nl incursions of the trajectory in cell Γl, 
these visits can also be accounted for by a single term of 
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the form nlOl. The average can then be computed by 
summing over the different cells as: 
 

 (3.3) 
 

Now, note that the ratio nl/n is in fact the 
frequency with which the trajectory visits the cell Γl (in 
other words, the number of steps at which it is in that cell 
over the total number of steps). In the limit n →∞ this ratio 
tends to the probability to find the system in the cell 
according to that specific trajectory, i.e. ρldΓ if ρl is the 
probability density. Thus, the average along the trajectory 
can also be expressed as: 

 

 

  (3.4) 
 
where the last relation becomes an equality for infinitesimal 
dΓ =drdpr and  is the whole phase space. The angle 
brackets <·> indicate the so-called ensemble average2. If 
the ergodic hypothesis is fulfilled, time and ensemble 
averages coincide, i.e. , for any possible initial 
condition of the, infinitely long, trajectory. This implies 
that ρ(Γ) is the stationary probability distribution that 
characterizes the system. In this case, then, macroscopic 
observables can also be computed as averages over the 
probability to find the system in a volume between Γ and 
Γ+dΓ in the phase space. In this picture, time and the 
trajectory no longer appear and they are substituted by the 
idea of a weighted average over all the possible states 
accessible to the system. This formulation of statistical 
mechanics is originally due to Gibbs (1). 
 
3.1. Fixed energy systems 

Let us assume that our system is isolated so that 
its energy is constant. The microscopic quantity 
corresponding to the total energy is the Hamiltonian H(r, 
pr). In the following we will assume that it is given by the 
sum of coordinate-independent kinetic energy, K, and 
momentum-independent potential energy, , so that: 
 

 (3.5) 
 
Note that, while the kinetic energy depends on the detailed 
nature of the system only via the atomic masses, the form 
of the potential energy function, which describes the 
interactions among the particles, is specific to a given 
system. Although this is not influential for the results we 
are presenting here, in the molecular systems of our interest 

 often depends on mutual particle positions and not on the 
absolute position with respect to a spatial reference system. 
Once an initial condition, i.e. a set of coordinates and 
momenta at a given time t0, is specified, the dynamical 
trajectory Γ(t)= {r(t; r(t0), pr(t0)), pr(t; r(t0), pr(t0))}, can be 
obtained, in principle, by solving the following set of 3N, 
coupled, first order differential equations: 
 

 

i= 1…N. (3.6) 

 
The equations above are Hamilton’s evolution equations 
and they guarantee energy conservation. It can in fact be 
easily verified by direct substitution of the Hamiltonian in 
the time derivative that, if the phase space variables obey 
these equations, dH(Γ)/dt=0 so H(Γ)=const.=E, where E is 
the total energy of the system. The explicit form of the 
probability density ρ(Γ) associated to this dynamics is 
obtained by assuming that, at equilibrium, all microscopic 
states compatible with the fixed energy constraint are 
equally probable. Thus, the probability to find the system in 
an infinitesimal volume dΓ around the point Γ must be zero 
if the phase space point is such that H(Γ)≠E and constant 
otherwise. This requirement is satisfied by choosing: 
 

 (3.7) 
 
where δ(·) is Dirac’s delta3. The constant λ can be exploited 
to ensure that ρ(Γ) satisfies a set of additional 
requirements: i) being normalized to one, ii) agreeing with 
the corresponding quantum probability density in the 
appropriate limit, iii) accounting for particle’s 
indistinguishability (i.e. reflecting the invariance of the 
Hamiltonian upon relabeling of particles of the same 
chemical species4). It can be shown (2), that these 
requirements are satisfied by λ=δE0/(ПηNη!h3NΩ(N,V,E)), 
with: 
 

 

 (3.8) 
 
where h is Planck’s constant, δE0 is the uncertainty in the 
measurement of energy, η counts over the different 
chemical species composing the system and Ση Nη=N.5 
Ω(N,V,E), known as the microcanonical partition function, 
can be interpreted as a counter of the microscopic states of 
the system compatible with the macroscopic NVE 
constraints. The condition on E resides in the δ(·) function, 
those on N and V in the domain D(N,V), the set of all the 
possible values of {r} compatible with the NV constraints, 
which is named configurational space and measures VN. 
 

The considerations above lead to the normalized 
probability density for an isolated system: 

 

 (3.9) 
 
The space of events associated to this density is known as 
the microcanonical ensemble, or NVE.  
 
3.2. Microscopic versus thermodynamic description 

Based on the discussion above, if we start from a 
microscopic point of view, macroscopic observables such 
as temperature and pressure, can be calculated as time or 
ensemble averages of appropriate functions of the phase 
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space of the system. On the other hand, if we start from a 
macroscopic point of view, there is a well-established 
phenomenological theory, thermodynamics, that expresses 
the same observables as partial derivatives of a suitable 
state function, the thermodynamic potential, with respect to 
the so-called control variables. For an isolated system, the 
control variables are N, V, E and the thermodynamic 
potential is the entropy S(N,V,E) (3). Since both 
approaches have been validated experimentally, it must be 
possible to reconcile them. In the case of isolated systems, 
the bridge is provided by Boltzmann’s relationship among 
the entropy and the partition function (note that these 
quantities depend on the same set of variables): 
 
S(N,V,E) = kB lnΩ(N,V,E) (3.10) 
 
where kB is Boltzmann’s constant. The relationship above 
is a fundamental ansatz, a prescription that identifies the 
macroscopic thermodynamic potential with an appropriate 
function of the microscopic ensemble. Note that, while we 
have previously identified observables with averages of 
suitable microscopic functions of the phase space, entropy 
in the NVE ensemble is related directly to the measure of 
the volume in phase space accessible to the system. The 
ansatz above, and in particular the presence of the 
logarithm, is validated by the consistency among the 
predictions based on the macroscopic and microscopic 
approaches. One immediate example is given by 
considering a situation in which we have two isolated 
subsystems, characterized by (N1,V1,E1) and (N2,V2,E2) 
that are brought in contact. Thermodynamics tells us that, if 
the systems do not interact, the entropy of the overall 
system is given by the sum of the two entropies; the same 
result must hold if we use the definition of the entropy 
based on the microcanonical partition function. This can be 
shown as follows: since the two systems are non 
interacting, the overall Hamiltonian is given by the sum of 
the Hamiltonians of the subsystems and it can be easily 
shown that these Hamiltonians are separately conserved by 
the dynamics (in this case the system is said to be 
separable). Indicating with Hi(Γi) the Hamiltonian of each 
subsystem (i =1, 2) and noting that the volume element for 
the combined system, dΓ, is equal to the product of the 
individual volume elements dΓi, we can write the partition 
function as: 
 

 

 

  
  (3.11) 
 
This is somehow intuitive, since the possible states for the 
union of two non interacting systems are obtained by 
selecting one state for the first and then, independently, one 
for the other. Substituting in equation (3.10) we have: 
 
S(N1+N2,V1+V2,E1+E2)=kBlnΩ(N1+N2,V1+V2,E1+E2)= 
               =kBln[Ω(N1,V1,E1)Ω(N2,V2,E2)]= 
               =kB[lnΩ(N1,V1,E1)+lnΩ(N2,V2,E2)]= 
               =S(N1,V1,E1)+S(N2,V2,E2)  (3.12) 
 

which indeed is consistent with the thermodynamic result. 
 

Having established the framework of statistical 
mechanics and shown its connection to thermodynamics, 
we are, in principle, in the position to use either Eq. (3.1) or 
Eq. (3.4) to obtain measurable quantities. In practice, 
however, to do so we must still solve two problems. The 
first one is the definition of the function of phase space that 
corresponds to a given observable. This can be done either 
by microscopic considerations or by means of the 
thermodynamic relationships involving the thermodynamic 
potential. We will show some examples of these definitions 
in the next section after introducing an ensemble, the 
canonical ensemble, which is more closely related to the 
typical conditions in an experiment. The second problem is 
that to compute the averages we must either be able to 
solve the evolution equations of the system (Boltzmann) or 
to sample configurations6 according to the ensemble 
probability density (Gibbs). Neither of these tasks can be 
performed analytically except for systems described by 
very simple Hamiltonians (free particle, harmonic oscillator 
and a few others). Both can however be tackled quite 
effectively by numerical methods that will be described in 
the next paper in this issue. In particular, the “Boltzmann” 
approach is realized using a set of techniques that go under 
the general name of molecular dynamics (MD), while the 
“Gibbs” approach is implemented via the so-called Monte 
Carlo methods (MC) (4-6). 
 
3.3. Fixed temperature systems 

We will now focus on the description of a closed 
system at fixed temperature, T. This situation is more 
interesting from the point of view of the connection with 
experiments since temperature is easier to control than 
overall energy. In statistical mechanics the ensemble 
corresponding to the new macroscopic constraints of fixed 
N,V,T is called canonical. This ensemble is modeled by 
considering a system σ that interacts with a much larger 
one, the so-called thermal reservoir ℜ, which is at fixed 
temperature. The characteristics of the interaction can be 
summarized as follows (3): 

 
• the overall system Σ composed by σ and ℜ, is isolated; 
• the number of degrees of freedom of ℜ is much larger 

than that of σ; 
• there is only a weak and non specific coupling between 

σ and ℜ; 
• the volume and the number of particles in each 

subsystem are kept constant as in the microcanonical 
ensemble. 

 
With these assumptions, the equilibrium probability density 
for the microstate represented by the point Γ=(r, pr) in the 
phase space of σ is the Boltzmann distribution (see details 
in Sect. 3.5.1.): 
 

 (3.13) 
 
Where  and Q is the canonical partition function, 
which, similarly to the NVE case, is a weighted counter of 
all the microstates: 
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 (3.14) 
 

When, as we are assuming in our systems, the 
kinetic energy depends only on momenta and the potential 
energy only on coordinates Q can be expressed as the 
product: 

 

 
  (3.15) 
 
The first term in curly braces can be calculated analytically 
since it is the product of 3N integrals of Gaussian form 
over the whole real axis. When the potential energy is 
independent on r, this integral is the only non trivial 
contribution to Q. This is the case for a system of non 
interacting particles (i.e. an ideal gas), so this term is often 
referred to as the “ideal” part of the partition function. The 
second term, in contrast, depends on the specific form of 
the interactions among the particles and cannot be 
computed analytically for a generic potential. It is called 
configurational integral and often indicated as Z. It 
accounts for the contribution in excess to the ideal one (due 
to this fact, the configurational contribution to any 
thermodynamic property is called the “excess” 
contribution). Performing the Gaussian integrals and using 
the definition of Z, the partition function can be written as: 
 

 (3.16)  
 
Excess quantities are of high interest and the relevant 
function for their description is the reduced probability 
density over the configurational space: 
 

 (3.17)  
 
3.3.1. Consequences of the Boltzmann distribution 

From the Boltzmann distribution, all statistical 
properties of any function of the coordinates can be derived 
as well as many important relationships among them. An 
important example descends from the expression of 
average value and variance of the energy of a canonical 
system. The internal energy U is the total energy of the 
system averaged in the canonical ensemble: 
 

 

  (3.18) 
 
The energy variance is given by: 
 

 

 

 (3.19) 
 

If we consider the definition of heat capacity, 

, and identify the thermodynamic 
internal energy with < E >NVT, we get Var(E) = . 
This expression relates the size of spontaneous energy 
fluctuations to a constitutive property of the physical 
system under consideration, such as the rate at which 
energy changes due to alterations in the temperature. Since 
both energy and heat capacity are extensive quantities, they 
are proportional to N and therefore the size of fluctuations 
relative to the average energy turns out to be inversely 
proportional to the square root of the number of particles: 

. Further analysis proves that, around the 
most probable energy value U of the energy E, the energy 
has the following Gaussian probability density: 

 (7). 
 

Based on the result above, and considering that 
for a macroscopic system N ∼ 1023 (i.e. proportional to 
Avogadro’s number), one can see that these fluctuations are 
negligible with respect to the mean energy of the system. 
Consequently, when macroscopic systems are considered, 
the distinction between fixed energy and fixed temperature 
ensembles becomes irrelevant, and so it is for the other 
statistical ensembles. In simulations, the affordable 
computational power sets a limit on the size of the system, 
represented by N. The size of the energy fluctuation is one 
of the (many) tests to validate the hypothesis that the 
simulated system is representative of its thermodynamic 
limit. 
 
3.3.2. Time evolution in the canonical ensemble 

The evolution equations of a system belonging to 
the canonical ensemble are more complicated than those of 
a Hamiltonian system since they must take into account the 
average interaction with the reservoir ℜ under the same 
assumptions mentioned at the beginning of Sect. 3.3. 
Several models, called thermostats, have been developed to 
mimic the effect of this interaction in the evolution 
equations of a system and to generate trajectories that 
“sample” the distribution in Eq. (3.13). For example, in the 
Nosé-Hoover  method the physical particles are coupled to 
a single extra degree of freedom whose evolution is tuned 
to influence the system’s momenta so as to keep the 
temperature fluctuating around a preassigned value 
(4,6,8,9). Another possibility, which will be described more 
in detail in the following, is to use the Langevin model 
(10). Depending on the specific thermostat employed, the 
trajectories of the simulated system will be different and, of 
course, they will also be different from the ones induced by 
Hamilton’s equations, which correspond to another 
ensemble. This is however not a problem since, to estimate 
the macroscopic observables, the only requirement on the 
trajectory is that it explores the phase space according to 
the correct statistics. Thus, as long as the microstates are 
visited with the frequency corresponding to the Boltzmann 
distribution, the details of the dynamics are irrelevant7. 
 

Let us now focus on the Langevin model. In this 
approach, each particle behaves as if it were undergoing a 
series of collisional events that can be modeled as a 
“viscous drag” force, opposite in sign and proportional in 
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intensity to the particle’s velocity, summed to a random 
force. The (non Hamiltonian) evolution equations are: 

 

 

(3.20) 

 
where Γi and Di are the viscous friction coefficient and the 
diffusion constant, accounting for the number of collisions 
occurring in the unit time. ni,α are white, i.e. delta-
correlated, Gaussian noise terms, whose statistical 
properties are described by the expectation values: 
 

E{ni,α ( t )}=0 ׊ t, E{ni,α(t1) nj,β(t2)}=2δi,j δ α,β δ(t1 - t2) (3.21) 

 
Due to the presence of the noise, Eq. (3.20) is a 

stochastic differential system, whose treatment needs 
suitable mathematical tools and whose solutions, i.e. the 
coordinates and momenta as a function of time, are a 
stochastic process. Many fundamental properties of this 
dynamical system can be derived by means of an important 
tool in the field of stochastic processes: the Fokker-Plank 
equation (11). In particular, see also Sect. 3.5.2., it can be 
shown that: 

 
• the noise on average injects energy into the system σ 

whereas the frictional force, as it might be expected, 
has a dissipative effect in a way such that the average 
total energy of the system has a constant derivative: 

  (3.22) 
 
• if the microscopic parameters are connected via the 

Einstein relationship: 

  (3.23) 
 

then the internal energy (U = <K+ >) of the system is 
conserved, and the Boltzmann distribution is a 
stationary probability distribution for the system, 
proving the validity of this approach for the simulation 
within the canonical ensemble. 

 
3.4. From microscopic quantities to macroscopic 
observables 

Microscopically, a thermodynamic equilibrium 
state can be defined as a weighted ensemble of all the 
microstates that can be explored by the system when a 
consistent set of macroscopic constraints, involving control 
variables such as T, {Nk}, V, P etc.., are imposed. The 
specific combination of control variables defines the state 
itself, decides the value of the weights and identifies, as we 
have seen, the correct form of the “counter” of the 
accessible microstates, namely the partition function. This 
latter quantity contains all the statistical information 
concerning the system in that ensemble. The 
thermodynamic potential is proportional to the logarithm of 

the partition function and can be used, for instance, to 
obtain other thermodynamic observables by derivation with 
respect to the control variables. In the canonical ensemble: 

 
 (3.24) 

 
where F(N,V,T) is the Helmholtz free energy, i.e. the 
thermodynamic potential macroscopically associated to the 
constant temperature ensemble. Trusting this link, it 
becomes possible to obtain explicit microscopic estimators 
of macroscopic observables by exploiting the relationships 
among the free energy and energy, pressure etc., 
established by thermodynamic derivatives. It is also 
possible to derive these microscopic estimators starting 
from purely microscopic results (for example, via the 
generalized equipartition theorem) (2). The fact that the 
results obtained using these two approaches coincide is a 
further validation of the consistency of statistical 
mechanics. In the following, for convenience, we shall take 
the first route and derive a few relevant estimators. 
 

We have already seen that the Hamiltonian is the 
microscopic estimator for the internal energy. If the kinetic 
energy term depends only on the momenta, we can derive 
another useful result: 

 
 

    
         

(3.25) 

 
Now, recalling Eqs. (3.15) and (3.16), one obtains: 
 

 

   (3.26)
 
This relationship is a particular case of the equipartition 
theorem and establishes the kinetic energy as the 
microscopic estimator of the temperature of the system (via 
the proportionality constant 3NkB/2). 
 

A further microscopic estimator, the one for the 
pressure, can be obtained from the thermodynamic 
derivative , again by substitution of the 
microscopic expression in Eq. (3.24) for the free energy, 
thus: 

 (3.27) 
 
The algebra in this case is more involved because the 
configurational integral depends on the volume via its 
boundaries so that taking the derivative above is not trivial. 
For most geometries of interest, however, the dependence 
can be transferred from the boundaries to the argument of 
the potential energy via an appropriate rescaling of the 
coordinates (see for example ref. (6) and references therein) 
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and it is possible to show that the microscopic estimator for 
the pressure is: 
 

 (3.28) 
 
where Fi,α is the α-th Cartesian component of the total force 
acting on the i-th particle. 
 

Thermodynamic quantities are equilibrium 
averages over all the phase space; however, it is sometimes 
useful to consider the microscopic definitions averaged 
over a reduced part of the phase space or over a limited 
time lapse to get a “local” or “instantaneous” version of 
these variables, e.g. an instantaneous temperature or a non 
equilibrium entropy. Numerical simulations give access to 
these variables as well as to the individual trajectories of 
any degree of freedom but it is important to remember that 
only equilibrium averages over the full phase space fulfill 
the laws of thermodynamics. 
 
3.5. Complementary material to section 3 
 
3.5.1. Derivation of Boltzmann distribution for the 
canonical ensemble 

Let Σ be the union of a system σ, weakly and 
non-specifically coupled to a much larger thermal reservoir 
ℜ. Σ belongs to the microcanonical ensemble and has 
constant energy EΣ. Let us now consider the α microstate 
for σ, it will have energy Eσ=εα, with εα << Eℜ = EΣ - εα, the 
corresponding energy of ℜ. We are interested in the 
equilibrium probability of σ to be in the state α. The 
weakness of the coupling implies that, apart from the 
overall energy conservation, the events in σ and ℜ are 
independent. Therefore, the desired probability, which is 
the probability that σ is in state α and that ℜ is in any 
compatible state, can be expressed as follows:  

 
(σ in α / Eσ=εα) = 

=  (3.29) 
 
Due to the principle of equal a priori probabilities each 
probability is proportional to the number of states that 
fulfill each energy constraint: 
 

(3.30) 
 
By definition of microcanonical entropy and 
thermodynamic temperature, and again due to the 
assumption that the only effect of σ on ℜ is to exchange a, 
minimal, amount of energy, one can derive that:  
 

 

  (3.31) 
 
(The Taylor expansion of  has been performed and 
truncated at the first order term). Considering that the first 
factor does not depend on α, that , and that since 

ℜ and σ are in thermal contact and at equilibrium, the 
Zeroth Law of Thermodynamics guarantees that Tℜ = Tσ = 
T, one finally gets the Boltzmann distribution:  
 

 (3.32) 
 
The denominator in the formula embeds all the 
thermodynamic properties of σ and is named canonical 
partition function of σ : 
 

 (3.33) 
 
This derivation is consistent with both a discrete energy 
spectrum, more typical of a quantum description, and the 
classical continuous energy spectrum. In this latter case, the 
microstate α can be associated to an elementary phase 
space volume Γα where energy can always be assumed to 
be uniform. Consistency with Quantum Mechanics 
suggests a lower bound for this volume, namely h3N. In this 

case,  
and the normalization of the probability takes the 
form: . The final result is very similar to 
the discrete case, with the probability density for the 
continuum representation being: 
 

 (3.34) 
 
3.5.2. The Fokker-Plank equation 

The Fokker-Plank equation is the equation that 
describes the evolution of the probability density W(r,pr) 
for a stochastic dynamical system such as the one in Eq. 
(3.20) and can therefore also describe the evolution of 
average quantities starting from a given initial state. This 
equation takes the form:  
 

 

  (3.36) 
 
The different contributions to the evolution of the system 
can easily be identified, the first two addends in the right 
hand side descend from the usual Hamiltonian dynamics, 
i.e. those described by the Liouville equation; the third and 
fourth terms are due to the viscous drag while the last one 
is caused by the noisy force. If we introduce the 
temperature T of the thermal bath, by means of the Einstein 
relationship: 
 

 (3.37) 
 
then, Eq. (3.36) admits the Boltzmann distribution as 
stationary solution. 
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4. TOOLS AND CONCEPTS FOR THE 
DESCRIPTION OF THE BINDING PROCESS 
 
4.1. Role of the free energy and of the internal 
constraint 

In the previous section, we have used the free 
energy to generate, by differentiation, the microscopic 
estimator of the pressure (we could have done the same for 
the temperature). However, the importance of free energy is 
much broader. In the following, we will describe how it can 
be used to characterize the thermodynamics, mechanism, and 
kinetics of the protein-ligand binding process which is the 
focus of this contribution. Before doing so, we shall 
summarize the relationship between the free energy and the 
work necessary to bring a system from one state to another and 
point out some of the difficulties in a direct calculation of this 
(or any other) thermodynamic potential. Our considerations 
will refer to the NVT ensemble. In the field of chemical 
reactions and biological processes, the experimental conditions 
are usually NPT so we should focus on the Gibbs, rather than 
Helmholtz, free energy. However, in most cases of interest, the 
system can be approximated as incompressible, so the two 
thermodynamic potentials are essentially equivalent. 
Furthermore, simulations in the canonical ensemble are 
simpler to describe and the results presented in the next 
sections can be easily transposed to the NPT ensemble. 
 

As a first step to appreciate the role and meaning 
of the free energy, let us consider an important 
consequence of the second law of thermodynamics: the 
maximum entropy or minimum energy principle. Let’s 
imagine bringing a system to an out of equilibrium 
configuration, this can be done, for instance, by means of 
an internal constraint (12). An internal constraint limits the 
accessibility to a number, possibly large, of microstates 
without necessarily affecting the original control variables. 
A simple example is provided by a mechanical barrier 
dividing an adiabatic container full of gas in two parts at 
equilibrium. If we compare the situations with and without 
the barrier, we see that, although some variables, such as in 
this case T, V and N, may be unaffected, placing a 
constraint corresponds in general to forbidding some 
regions of the phase space, and this of course can result in 
possibly different values of some other quantities. From the 
microscopic point of view, this can be seen as the addition 
of a further control variable imposed by fixing the value of 
a function ξ(r) of the spatial coordinates of the particles of 
the system. More complex control variables, involving the 
momenta, could be considered, but we will not do so in this 
work. The second law of thermodynamics tells us that, 
upon instantaneous removal of the constraint, the system 
relaxes to the equilibrium state of the unconstrained 
configuration, increasing its entropy. At the same time, 
both internal and free energies decrease. In other words, 
removing all internal constraints gives to the system the 
maximum freedom compatible with the remaining control 
variables and this leads to larger entropy and lower free and 
internal energies. This fact has interesting consequences for 
isothermal processes: let us imagine removing the internal 
constraint and observing the overall system until the new 
equilibrium state is reached. We know from the first law of 
thermodynamics that ∆U = δQR+δw, where δQR = T∆SR is 

the heat entering the reservoir and δw is the work 
performed on the system. Due to the second law, ∆SR + ∆S 
≥ 0, which implies: δw ≥ ∆U - T∆S = ∆F. Thus, the free 
energy variation is always less or equal than the work 
performed on the system. The equality holds only for 
reversible processes, i.e. in absence of dissipation. 
 
4.1.1. Obstacles to absolute free energy calculation 

Let us now consider again, this time from a 
computational point of view, the microscopic expression 
for the free energy of a system in NVT: 
 

 

  (4.1) 
 

The direct calculation of this quantity poses 
several problems. First of all, Eq. (4.1) is not in the form of 
the average of an observable over the probability density 
(see Eq. (3.4)), but involves the evaluation of the 
configurational integral defined in Eqs. (3.15) and (3.16). 
While the methods mentioned in Sect. 3. are well suited to 
compute averages, they do not allow a direct and reliable 
calculation of Z(N,V,T). This difficulty can be 
circumvented to a certain extent using advanced methods, 
such as those mentioned later in this work or in other 
contributions to this issue, that take advantage of the fact 
that the relevant information is usually related to free 
energy differences (that can be expressed as averages) 
rather than absolute free energy values. Here, however, we 
will focus on the structure of the configurational integral to 
gain further insight on the free energy and to illustrate 
(some of the) difficulties in its evaluation. 
 

The brute force numerical evaluation of Eq. (4.1) 
requires discretizing the configurational space volume in 
regions where the quantity exp(−β (r))can be assumed to 
be uniform8. In principle, the discretization process should 
involve the whole configurational space; this is a very 
challenging, if not impossible, task in high dimensional 
systems. Furthermore, the configurations that make 
contributions to the integral can be classified in three main 
categories:  
 
• “low β (r)” regions, where the integrand contribution 

is large; 
• “wide intermediate β (r)” regions, where the limited 

potential energy contribution is balanced by the 
entropic contribution provided by the large number of 
the corresponding microstates; 

• high potential energy regions, that the exponential 
nature of the integrand makes negligible. 

 
This qualitative classification underlines that the value of 
the potential energy alone is not sufficient to decide 
whether a configuration contributes appreciably to the 
integral or not. The entropic contribution, reflected by the 
numerosity of the microstates corresponding to a given 
potential energy, can have two opposite effects: making 
negligible low potential energy configurations 
corresponding to a vanishingly small part of the space, and, 
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conversely, making sets of configurations relevant not 
because of their “energetic convenience” but rather because 
of their numerousness. This is the main origin of the 
difference between potential energy surface and free energy 
surface. In Sect. 4.5., we will discuss a simple example 
highlighting this difference, that can have profound 
consequences extremely relevant in Drug Design. 
 
4.1.2. Free energy differences calculation 

As mentioned, the difficulties discussed above 
can be bypassed, to some extent, observing that the 
absolute value of the free energy is rarely needed since 
much information is contained in the free energy difference 
between two states of the system. To understand why this 
allows progress let us recall that, in statistical mechanics, a 
macroscopic state is a collection of microscopic 
configurations of the system (in general in phase space, but 
in this context we will assume that only coordinates are 
relevant). For example, in the protein-ligand binding 
process we could identify the unbound and bound states, A 
and B respectively, as the sets of microscopic 
configurations characterized by different mutual protein-
ligand distances. Using the sole distance as a characterizing 
quantity is a very crude approximation and we will 
comment more on it in the following, it is however 
sufficient for introducing the following useful conceptual 
tools. 
 

Let us consider the indicator function of the 
macrostate A (an analogous definition holds for B), χA(r), 
which equals 1 if r belongs to A and zero otherwise. The 
probability to find the system in state A can now be 
expressed as: 
 

 
  (4.2) 
 
where, in the first equality, DA is the region of 
configurational space such that r belongs to A. The 
expression in Eq. (4.2) is quite natural, since it writes the 
probability of state A as the ratio of the number of 
microstates included in A over the total microstates 
number, each one weighted by its own probability. 
Moreover, importantly, it corresponds to the average value 
of a microscopic function, namely χA(r). If now we identify 
the partition function corresponding to a macrostate with 
the integral of the probability density over all its 
constituting microstates, and using Eq. (3.24), we can 
express the free energy difference between two macrostates 
as: 
 

 (4.3) 
 
where the second equality holds only if the definition of 
state A does not constrain the kinetics of the system 
differently from that of B so that the integrals over the 
momenta cancel out (see also endnote 12 after Eq. (4.10)). 
 

The computational advantage of expression in Eq. 
(4.3) with respect to that in Eq. (4.1) is that it requires to 
evaluate the ratio of two average values that can be in principle 
computed, via Eq. (4.2), once a “configuration generator” 
compatible with the Boltzmann probability is available. This is 
the task of both MD and MC methods. Evaluating free energy 
differences with these techniques is still not trivial, due to the 
potentially very complex structure of the set DA and to the 
nature of the microscopic observable to be averaged: the 
indicator function of a set is in fact a highly irregular function, 
abruptly changing from 0 to 1. A number of advanced methods 
have been developed to overcome these difficulties and are 
described in later contributions of this issue. 
 

To conclude, we briefly mention that there are 
other possible approaches that estimate the free energy 
difference by separately estimating the free energy of the 
single states according to the following scheme: 
 

 (4.4) 
 
where each absolute free energy refers to a consistent set of 
control variables T, V, {Nk}. The difficulties in a full free 
energy calculation are in this expression often faced by 
means of implicit solvent and mean field approximations. 
 
4.2. Free energy profiles and reaction paths 

The ideas described in the previous subsection 
focus on evaluating the free energy difference between the 
initial and final states of a process, but provide no 
information on how the system evolves from one state to 
the other. A more detailed description is necessary if one is 
interested, for instance, in the mechanism or the rate of 
occurrence of the process. Considerable progress can be 
achieved by identifying the reaction coordinate, that is a 
variable whose values  characterize the state of 
advancement of the process. It is indeed possible to identify, 
by tackling the problem in the framework of the theory of 
stochastic processes, a “universal” and exact reaction 
coordinate (usually referred to as the committor function) that 
fulfills this task (13). The committor is however usually 
impossible to calculate (or to relate to an intuitive description 
of the process), so suitable approximations are commonly 
sought instead. In particular, in the following we shall use 
the fairly general assumption that the values of the reaction 
coordinate ξ are observable (and thus, in our scheme, 
“macroscopic”) and can be obtained via a function ξ(r) of 
the coordinates of the system alone (no momenta). This 
function can map one, but usually more, microscopic 
configurations to a specific . Now, given a set of samples 
of the configurational space, generated by MC, MD or any 
other ad hoc tool, we can, through the ξ(r) mapping, obtain 
the corresponding samples in the  space, that can be 
interpreted as realizations of a putative random variable ξ. 
The importance of knowing the statistics of this random 
variable will be discussed in a moment.  
 

A few more comments should be made on the 
nature and the choice of the mapping. Typically, the 
reaction coordinate is approximated by one or more 
quantities that are expected to be influential on the process 
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to be studied. In the protein-ligand case, the most intuitive 
is the distance between some atoms of the ligand and some 
of the binding site. This variable alone, however, may not 
be sufficient to univocally identify the binding process and 
is therefore complemented by other variables such as 
relative orientation, contact maps, water coordination 
values and so on. The reaction coordinate approximants 
usually undergo the name of collective variables (CVs), or 
order parameters or reaction variables, depending on the 
specific context; they may lead to a ξ(r) which is a 
vectorial, rather than scalar, function. CVs can in principle 
be either continuous or discrete variables, but we will 
assume in the following the former kind. The number of 
CVs is usually much smaller than that of the coordinates of 
the system, this dimensional reduction implies, in general, 
that many configurations correspond to the same  value.  
 

Having said that the statistics describing the 
equilibrium distribution in the configurational space can be 
reduced, as far as the description of the reaction is 
concerned, to the statistics of the ξ random variable, we can 
use this latter to derive the probability of different states. 
We can also extend the ideas of Sect. 4.1.2. to characterize 
not only the free energy difference between initial and final 
states but also the free energy profile along the reaction’s 
progress, provided our mapping ξ(r) provides a good 
approximation of the reaction coordinate. As it is 
customary in probability theory, the probability density of 
the ξ variable can be obtained by differentiation with 
respect to  of the corresponding cumulative distribution 
function represented by the probability of all of the 
microstates compatible with the  condition. The 
indicator function in this case takes the form of a step 
function: 
 

 (4.5) 
 
where Θ(·) is the Heaviside function, so that3: 
 

 

  (4.6) 
 
Here, the Dirac’s delta can be interpreted as a counter of 
the microstates compatible with the condition . 
Consequently, the probability of a state can be expressed as 
the integral of (4.6) over the values that correspond to that 
state and Eq. (4.3) can be used to derive the free energy of 
any state with respect to a given reference9. With this 
definition, the free energy becomes a parametric function 
of the states described by , whose plot is referred to as the 
free energy profile (or surface, FES, for multidimensional 
CVs). From the practical point of view, if we can assume a 
smooth behavior of the probability density in Eq. (4.6), and 
if we have a suitable set of configurational samples of our 
system, we can partition the samples in bins of size ∆ with 
respect to  and use the relative frequency of samples per 
bin as an estimator Pest of the probability to find the system 
in a state characterized by a given  value10: 
 

 

  (4.7) 
 

A possible alternative way to get to the 
expression above for the free energy relies on the concept 
of internal constraint introduced in Sect. 4.1. Adopting this 
thermodynamic point of view, the collective variable is 
seen as a further control variable that can be applied to the 
system, i.e. a constraint. In this interpretation, FNVTξ is the 
actual free energy of the system where we imposed the 

 constraint. Evidently, while the conceptual or 
computational imposition of such a constraint is not 
particularly problematic, its experimental counterpart could 
be even impossible to realize in practice. One interesting 
consequence of this observation and of the minimum energy 
principle is that the system exerts a force on the constraint 
pushing it in a way that lowers the free energy. In partial 
analogy to the classical mechanical case, where the force 
exerted by a conservative field is the opposite of the 
gradient of the potential energy, we can observe what 
happens when ξ(r)=[r1;…;rn<<N]. In this case FNVTξ 
coincides with the so-called Potential of Mean Force and 
one can write (14): 

 

 (4.8) 
 
where  is the force acting on the n constrained particles11. 
 

Another useful consequence of the internal 
constraint perspective can be seen if we multiply both sides 
of Eq. (4.6) by Z(N,V,T), and obtain the following 
expression: 
 

 
  (4.9) 
 
In this context Z(N,V,T, ) can be interpreted as the 
configurational integral of the system where the function 
ξ(r) is constrained to assume the value . Analogously, an 
expression very similar and substantially equivalent to that 
of Eq. (4.7) can be used to indicate the free energy of the 
constrained state: 
 

 (4.10) 
 
where C is a constant which accounts for the reference state 
and dimensional consistency12. 
 
4.2.1. The case of an harmonic restraint 

The application of a holonomic, i.e. of the form 
, constraint is sometimes tricky to be imposed in a 

simulation (15). A commonly adopted alternative is to 
restrain the value of the CV via a biasing potential of the 
form:  
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Figure 1. Schematic representation of the free energy 
profile in a binding process as a function of the reaction 
coordinate value . ∆F is the free energy difference between 
the unbound and the bound states. 

 

 (4.11) 
 
where k is the spring constant, the higher its value, the 
stiffer is the spring and the stronger is the restraint. The 
probability density corresponding to this situation is: 
 

 

   (4.12) 
 
By multiplying both numerator and denominator by 
Z(N,V,T) and after some algebraic manipulation, the 
expression above becomes: 
 

 

  (4.13) 
 
Due to the fact that the Dirac delta can be approximated by 
a Gaussian function, as the width of this latter tends to zero, 
we see that:  
 

 (4.14) 
 
which is, a we will see later, the probability density of the 
system in the constrained configurational space obtained by 
fixing  as well as NVT. 
 

The practical usefulness of the harmonic 
restraint stems from the fact that it can be imposed by 
simple addition of a biasing potential. Importantly, it 
also provides an estimator of the free energy gradient 
with respect to the CV. Adding the biasing to the 
physical potential in Eq. (4.1) and differentiating 
with respect to  one obtains: 

 

 

  
  (4.15) 
 
Note that when CVs are not just linear combinations of the 
Cartesian coordinates of the system, the equation above is a 
generalization of the definition of mean force. Expression 
(4.15) has an intuitive interpretation that relates the free 
energy gradient to the average elastic force exerted on the 
harmonic restraint by the system.  
 
4.2.2. Characteristics of the free energy profile 

Let us now consider a simplified description in 
the case of protein-ligand binding; the function 
ξ(r):D(N,V)→[0;+∞], that could be, for instance, the 
distance from the ligand to the binding site, maps a set of 
coordinates {r} on the scalar parameter . In the mentioned 
context of bound and unbound states, the “unbound” region 
A can be mapped to the  interval while the “bound” 
region B is mapped to , with 13. Intermediate 
values of the parameter  correspond to a continuum of 
intermediate states that can be visited during the process and 
that depend on the specific mapping induced by ξ(r). The 
presence of states which are neither bound nor unbound is 
physically sound since it accounts for a gradual “switching on” 
of the interaction and for the possible existence of states where 
protein and ligand interact in a way which is non functional to 
the sought biological activity. A typical free energy profile in 
protein-ligand binding is shown in Figure 1. It is characterized 
by regions of low free energy separated by a barrier. These 
regions (which correspond to high probability values for ξ) 
are associated to the  values that identify the reactants 
(unbound state “A”) and products (bound state “B”) of the 
binding process.  
 

The free energy profile contains more 
information than just the equilibrium population of some 
states. In fact, free energy, through its gradient, indirectly 
rules the average force acting over the system as the 
reaction progresses, and its complete profile accounts not 
only for thermodynamic but also for average kinetic 
properties. When the reaction can be schematized as the 
transition between two basins separated by a barrier, the 
overall free energy difference affects the equilibrium 
population of the two states, but the energy profile 
encountered by the system during the reaction decides the 
rates at which the transitions occur. More specifically, the 
inward barrier height determines the rate of binding, 
namely kon, while the outward barrier height determines of 
the unbinding rate, koff. The shape of the profile indicates 
that there are low (free) energy “long lived” states, namely 
bound and unbound, where the system spends most of the 
time but there are also unlikely configurations, which in the 
 representation are positioned around the top of the barrier, 

that, although energetically unfavorable, must be visited 
when the system moves from A to B and vice versa, i.e. 
during the (un)binding events. The state corresponding to 
these configurations is named transition state (TS). When  
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Figure 2. a) potential energy landscape of a 2D paradigmatic example; the depth is color coded as shown in the right bar, from 
brown to white. b) free energy profile (red) and potential energy (green) of a (NVT ) constrained system, where =x. Vertical 
sky-blue bars indicate the choice of unbound and bound states, A and B, respectively. 
 
the barrier is considerably larger than kBT the 
computational evaluation of the free energy profile 
becomes very expensive. This is qualitatively 
explained by the fact that a high barrier implies a low 
probability of sampling the TS. For instance, if the 
sampling is done via a MD simulation it will be 
unlikely that the trajectory, mapped on the ξ space, 

crosses the barrier. If, in contrast, the configurational 
samples are obtained through MC, the probability 
that a MC move pointing to the TS is accepted is 
extremely low, leading to a bad characterization of 
the TS. So called enhanced sampling techniques, 
described in other contributions of this issue, aim at 
improving the sampling in low probability regions, 
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such as the TS, which are however important for the 
description of the reaction. 
 
4.3. The definition of bound and unbound states and the 
reaction coordinate 

A thorough characterization of bound and 
unbound states is far from trivial, see Gilson et al. for 
reference, especially if the protein and the ligand 
form a loosely bound complex or if there are 
peripheral interaction sites (16). Basically, the region 
of the configurational space that must be counted in 
the bound (B) state should include all the 
configurations where protein binding site and the 
ligand make a strong interaction while all non 
interacting microstates contribute to the unbound 
state (A). Differences in momenta space are also 
plausible, with lower instantaneous kinetic energy 
values for bound than for unbound states, but a clear 
distinction is made unlikely by the large fluctuations 
of kinetic energy of the solvated ligand. It is not 
expected, however, a strong dependence of the 
bound/unbound free energy difference on the precise 
definition of the states, this aspect could be seen as a 
defining characteristic of a complex (16). It is 
important to note, however, that the definition of A 
and B might depend on many factors, such as the 
experimental protocol one aims at describing. For 
instance, considering the signal provided by a FRET 
experiment, one obtains basically a two-state 
characterization of the process, where all the 
microstates involving some ligand-protein interaction 
occurring out of the binding site are to be assigned to 
the unbound state A (17). This latter is a different 
definition from the one given previously and may 
well lead to numerical discrepancies in the free 
energy estimates. From the energetic point of view, 
we should imagine the unbound state as a very large 
free energy basin, substantially flat, whereas the 
bound state is more limited and likely presents a 
rougher landscape and several different minima. 
There are basically no rules concerning the landscape 
of the remaining part of the configurational space, 
although a rough profile with plenty of peaks and a 
few valleys is to be expected. 
 

An accurate identification of the reaction 
coordinate is even more complicated than the 
definition of the states, as already mentioned. We 
would like to stress again that the free energy profile 
relies crucially on the choice of the CVs and that 
there exists a rigorous and “universal” definition of a 
reaction coordinate, called the committor, derived in 
the context of Transition State Theory (TST), whose 
description is out of the scope of the present 
contribution and whose calculation in practice is 
prohibitive (13). Testing whether a particular choice 
of CVs is good or not is again a topic pertaining to 
TST and usually heuristic approaches are adopted to 
select putative CVs to be tested later. We should also 
stress that such a test should be always performed 
since a bad choice of the CVs can, and in several 
cases does, lead to misinterpreting the process. As an 

example, distance per se cannot exhaustively describe 
the binding process; for instance, it does not uniquely 
identify the relative position of the ligand with 
respect to the binding site (18). Most likely, it is 
flawed thinking to believe that the same set of 
collective variables can describe the protein-ligand 
process in all cases, since Biology got us used to 
seeing very different mechanisms adopted in different 
cases, according to the specific needs of the process.  
 

As it has already been mentioned, following 
the reaction coordinate is not mandatory for the 
correct estimation of the free energy difference but 
only for reconstructing the intermediate phases; as a 
matter of fact, there are techniques that envision the 
transition occurring along unphysical, sometimes 
called “alchemical”, paths and that provide 
nonetheless a reliable estimation of the free energy 
difference. 
 
4.4. Potential versus free energy surface 

The most intuitive energetic landscape where the 
system evolution can be represented is the potential energy 
surface (PES) in the 3N-dimensional configurational space. 
PES is also the natural landscape for constant energy 
(isolated) systems. However, we have seen that for systems 
in thermal equilibrium with the environment and when 
discussing the evolution between “macrostates” specified 
by collective variables, the free energy is the right potential 
to consider. The Free Energy Surface (FES), is defined in a 
space with the same dimension of . In order to better 
understand similarities and differences between the two 
quantities, the following considerations can be useful. First, 
let us imagine to employ as CVs the 3N coordinates of the 
system  so that . 
In this case, by means of Eqs. (4.6) and (4.10), the free 
energy coincides with the potential energy: 
 

 (4.16) 
 

This result leads to the following 
observations: i) if really all coordinates are necessary 
to characterize the advancement of the process 
(which is extremely hard to imagine), then the only 
relevant effects are those coming directly from the 
physical interactions within the system. In this case 
the free energy “looses” its thermodynamic aspect 
and the evolution of the system is described by 
mechanics alone. ii) If, on the other hand, ξ(r) lives 
in a space of lower dimension than 3N, the behavior 
of free energy is richer. Eq. (4.6) and (4.10) state that 
any arrangement of the coordinates resulting in the 
same value of the collective variable (weighted by 
the corresponding Boltzmann factor) contributes to 
the free energy at a given . The Dirac delta acts as a 
selector of these configurations. This provides 
information about the multiplicity of the microscopic 
configurations that correspond to the same value of 
the “control variable” ξ and corresponds to the 
entropic contribution in the thermodynamic definition 
of the free energy. The argument above becomes 
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more evident in the classical low temperature limit, 
where it is possible to show that 

, with r* being the 
configuration of minimum potential energy, see 4.7.1. 
Consistently with the intuitive interpretation that a 
fully classical system at low temperature is confined 
in the lowest potential energy basin, the free energy 
tends to the absolute minimum of  (see Eq. (4.1)). 
 

Two possible ways of comparing potential energy 
versus free energy differences follow: 
 
• comparing two individual configurations, namely  

and . In this case the correct comparison is between 

 and . 
This analysis is not very informative since in the free 
energy the individual contribution of the  and  
microstates is not very meaningful and it should not be 
distinguished from that of all the other microstates that 
are mapped by the function ξ(·) to the same value of 
the CV; 

• comparing the collective states identified by two 
different values of the internal constraint in the NVT 
ensemble. In this case, the relationship to be 
considered is . 
Since different values of the constraint do not affect 
the kinetic energy, the following expression holds for 
the energy differences: 
 

  
  (4.17) 

 
Changes in free energy, which drive processes, 

may therefore result from changes in average potential 
energy or in entropy, which may work in synergy or against 
each other. It can be interesting, in this context, to describe 
how the average of a microscopic function can be 
expressed in a system where also a CV is constrained. In 
the case of potential energy, from expression (4.9) of the 
configurational integral, we obtain: 
 

 

  (4.18) 
 
This relationship outlines the role of 

 as the 
correct probability distribution of the system in the 
constrained configurational space obtained by fixing  as 
well as NVT. 
 

The next section describes a very simple example 
where the different contributions to Eq. (4.17) emerge in a 
simple two-dimensional case. We will, for example, 
illustrate the fact that knowing the global potential energy 
minimum of a system is inessential when entropy accounts 
for a sizeable fraction of its free energy. 

 

4.5. A didactic example 
The example that follows highlights some of 

the peculiarities of the energetic characterization of a 
reaction. The key aspect we wish to stress is the role 
of entropic contribution, here a measure of the 
number of states having the same potential energy 
value, in the free energy behavior. Let us consider a 
system made of two one-dimensional particles 
moving in the piecewise constant potential energy 
represented in Figure 2a. The configurational space 
here is identified by {r = (x,y)}. In the figure, the 
PES, that is the graph of (r), is shown in a color 
coded fashion. The PES presents three pronounced 
minima: one, m1, is very deep and narrow around the 
point (0,0); the other two, m2 and m3, are less deep 
but much wider disjoint minima with x∈(1;2). 
Between x=2 and x=4 and between x=5 and x=7 we 
have two featureless regions where there are no 
significant interactions. Notice however that, as x 
increases, so does also the number of accessible 
states. In between these regions there are two passes 
of different height. Finally, for x greater than 7, there 
is a plateau of null potential energy and maximum 
number of accessible states. We use this landscape as 
an extremely simplified model for the binding of a 
ligand and a protein. Intuitively, one would expect 
that deep minima in the potential represent bound 
states of the system, while regions of no interactions 
model the free ligand and protein. Given the features 
of the potential in Figure 2a, a simple (and 
reasonable) choice of CV seems to be ξ(r)=x. The 
region where  represents the bound state, 
whereas  the unbound one. In Figure 2b 
the FES (in red) and the average potential energy of 
the constrained system (green) profiles are shown. 
For this simple system all the statistical mechanical 
quantities can be analytically expressed both in the 
unconstrained and in the constrained system. With 
the potential represented in panel a, one gets the 
following probabilities of observing states B and A, 
respectively:  and . This results 
in a free energy difference in kBT units, see Eq. 
(4.3), of , implying, 
counterintuitively, that the unbound state, A is the 
most stable between the two.  
 

We would like to point to some very 
important facts that can be generalized to high 
dimensional spaces: 

 
• the definition of bound and unbound states can 

be somehow ambiguous; the actual “bound state” 
could just correspond to m1 rather than to the 
union of m1, m2 and m3; 

• the identification of the reaction coordinate is far 
from trivial and needs some knowledge of the 
phenomena. Even in our toy system, the 
constraint ξ(r)=x does not distinguish, for 
example, region m2 from m3. If only one of these 
regions corresponded to the interaction with the 
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biologically relevant site, this choice would not 
correctly represent the process; 

• while the average potential energy is remarkably 
sensitive to the presence of low potential energy 
regions and much less to their size, the free 
energy is largely influenced by the number of 
accessible states to the energy minima. This 
entropic phenomenon is very well illustrated by 
the fact that in our case the global FES minimum 
is between x=1 and x=2 whereas the minimum 
average potential energy is between x=0 and 
x=1; 

• another entropic effect is visible in the FES that 
decreases as the number of accessible states 
increases (see intervals [2;4] and [5;7]), and vice 
versa (see interval [4;5]). 

 
4.6. Volumetric effect on the unbound state 

If we look at the behavior of the free energy 
in the previous example for x belonging to the [2;4] 
and [5;7] intervals, we can notice a decrement 
corresponding to the increase of the number of 
accessible microstates, without any other change in 
the potential energy. This often occurs when, as it is 
commonly done, the distance between ligand and 
protein is taken as the collective variable for 
representing the binding process. It is therefore worth 
considering it in more detail.  
 

Let us separate the potential energy in two parts, 
namely , where the subscript LP 
indicates the direct interaction between the ligand and the 
protein; we assume, as it is usually done, that the 
dependence of  on rP and rL is additive. Then, let us 
define our collective variable as the distance between rP 
and rL, , P and L being one atom of the 
binding site and one of the ligand, respectively. The 
constrained configurational integral can be written as 
follows14: 
 

(4.19) 
 
If we now make a change of variables where the vector (rP 
− rL) is expressed in spherical coordinates, so to move from 
r to 15 and observe that only  depends on the 
displacement of the ligand with respect to the protein, we 
get the following relationship: 
 

 
 

  
  (4.20) 
 
If the ligand is constrained to stay far enough from the 
protein so that it can explore the whole solid angle without 
making any direct interaction with it, then  can safely be 
assumed to be null, regardless of the values of θ and φ. In 
this region: 
 

 (4.21) 
 
If we define the unbound state as the one that corresponds 
to the interval , where Rp is the radius of a sphere 
centered in the origin so that out of it there is no direct 
interaction between protein and ligand, we obtain: 
 

 

  (4.22) 
 
One can see that the free energy of the unbound state 
contains a term, i.e. 4π[R3-(RP)3]/3, corresponding to the 
volume of the space region where the ligand is free to 
move; its independence from the potential energy indicates 
its entropic nature. A few remarks should to be made, to 
compare this derivation to a real case scenario; i) in a real 
case application, a more precise choice of the CV would be 
appropriate, considering the distance between an average 
position of atoms composing the binding site and that of the 
ligand, this complicates the calculations but does not affect 
the results. ii) The spherical shape for the unbound state is 
clearly an approximation made to simplify calculations. A 
more proper description would involve more complex 
geometries but the concept of available volume of no 
interaction would still remain valid. Finally, iii) we must 
recall that the external radius R cannot be taken arbitrarily 
large, since there is a global constraint on the volume of the 
system and this has to be chosen compatibly with the 
experimental concentration of reactants. 
 
4.7. Complementary material to section 4 
 
4.7.1. The zero temperature limit for free energy 

In order to study the low temperature limit 
for the free energy, we will use the multivariate 
Laplace method of integration, which is a useful tool 
for approximating the integral of exponential 
functions when the exponent tends to minus infinity 
(19). We will adopt the so called harmonic 
approximation, in which the potential energy is 
expanded in Taylor expansion around its global 
minimum, so to retain the most relevant contribution 
to the integral: 
 

 
  (4.23) 
 
where r* are the coordinates of the minimum, 
(assumed here to be non degenerate),  is 
the gradient of the potential energy in r*, that in our 
case is null since we are in a minimum, and H(r*) is 
the Hessian matrix of the potential in r*, i.e. the 
symmetric matrix containing the second partial 
derivatives of the potential with respect to the 
coordinates. The fact that we are in a minimum 
guarantees that this matrix is positive definite. If we 
now substitute the second order, i.e. harmonic, 
approximation of the potential in the expression of 
the configurational integral, we obtain, (∆r = r-r*): 
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  (4.24) 
 
With the same argument we can study the behavior of the 
NVT average of a generic well behaved microscopic 
function h(r), which is linearly Taylor-expanded around the 
r* point (details have been skipped): 
 

 

  (4.25) 
 
This is the definition of a Dirac delta3 so that: 
 

 (4.26) 
 
The free energy limit can be derived by the use of (4.24) 
and the definition of free energy: 
 

 

  (4.27) 
 
In this representation, the first term is the potential energy 
in the minimum and also the NVT average potential energy 
in this limit due to (4.26). The remaining term, which tends 
to zero as the temperature approaches the absolute zero, has 
therefore an entropic origin and depends on the shape, in 
particular the curvature, of the potential energy around its 
minimum, through its partial derivatives with respect to the 
coordinates. 
 
5. CONCLUSIONS 
 

In this paper, we reviewed some of the basic 
ingredients for studying, using computer simulation, 
ligand protein binding. We begun by formulating a 
suitable microscopic model of the system, and by 
quickly reviewing its (classical) evolution equations. 
We stressed the connection among microscopic and 
macroscopic observables, and showed how some 
significant thermodynamic quantities, e.g. 
temperature, pressure, can be obtained as averages of 
suitable functions of the microscopic configurations 
of the system in phase space. We also illustrated the 
equivalence, under the ergodic hypothesis, of the 
concept of time and ensemble average which underlie 
molecular dynamics and Monte Carlo simulations, 
respectively. These ideas were presented both for an 
isolated system, microcanonical ensemble, and for a 
system in thermal equilibrium with the environment, 
canonical ensemble; the equivalence of these two 
ensembles was briefly discussed. We then introduced 

the key quantity of this contribution, the (Helmholtz) 
free energy, and argued how it can be used, once an 
appropriate set of collective variables has been 
identified, to characterize the progress of an activated 
event, such as the protein-ligand binding, from the 
reactants to the product and vice versa and to obtain 
insights on the mechanism and the rate of the 
process. We discussed some of the difficulties of a 
brute force calculation of the free energy and the 
similarities and differences among free and potential 
energy. These concepts were illustrated on a simple 
toy model. We concluded with an analysis of some 
specific issues related to the evaluation of the free 
energy for ligand protein binding.  
 

The material contained in this introductory 
review is, inevitably, incomplete and, probably, 
biased by the experience and taste of the authors. 
Excellent in depth discussions of the topics presented 
here can be found in the scientific literature and in 
text books (some present in our bibliography). Our 
goal was to illustrate how the very general concepts 
and tools discussed are useful for addressing many 
different aspects of the ligand protein binding 
process. In this spirit, we attempted to present a 
coherent framework that may be useful as a first 
“guide'' to the concepts discussed and that sets the 
stage for more specialized contributions. 
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Endnotes: 
 
1 During its exploration of the phase space, an ergodic 
system will go, in the long run, arbitrarily close to every 
conceivable microstate. Ergodicity is assumed in all of the 
systems studied in this kind of works, albeit for complex 
systems, such as biological ones, it is impossible to be 
proven. 
 
2 That is, the average over many statistically equivalent 
replicas of the system. This condition is resembling 
experimental situations where the same observable is 
measured over several equivalent samples. 
 

3 For the scope of the present work, the Dirac’s delta has to 
be seen just as an integral kernel such that, for a suitable 
class of test functions f(x), it happens that ∫f(x)δ(x-
x0)dx=f(x0), provided that the domain of integration 
contains the point x0. The physical dimension of a Dirac’s 
delta is the reciprocal of that of its argument. It can be 
thought as the generalized derivative of the Heaviside step 
function. Its behavior can be approximated by the limit of a 
Gaussian function as its width goes to zero: 

. 
 
4 The assignment of the volume element dridpr

i to the 
particle “i” is somehow arbitrary since the Hamiltonian 
would remain unchanged upon re-labeling of particles of 
the same chemical species. To avoid over-counting of the 
(different) microscopic states accessible to the system, a 
prefactor containing the factorial of all the numbers of 
identical particles, must be included. 
 
5 In this concise description, the number N stands for the 
composition of the system and can be thought either as a 
synonym of Nη in the NVE expression or as ΣηNη in 
expressions such as h3N or ΣN

i=1(·). The subscript η spans 
over all the chemical species composing the system. In the 
present formulation two entities are chemically identical if 
the Hamiltonian is not affected by their exchange; this 
should not engender any ambiguity in the chemical context 
where a whole molecule can be considered as a chemical 
species. 
 
6 Unlike in (bio)chemistry, where the terms configuration 
and conformation have two precise and different meanings, 
in this context we will identify a configuration with a point 
in phase space after integration of the momenta, 
characterized by the conformation(s) of the 
macromolecule(s) as well as by the positions and 
orientations of solvent molecules.  
 
7 This statement applies since we restrict our attention to 
time-independent equilibrium properties. More care would 
be necessary in discussing, for example, equilibrium time 
correlation functions. 

 
8 Throughout the work we distinguish between time-
invariant, i.e. constant, quantities, and space-invariant, i.e. 
uniform, quantities. 
 
9 Here we imagine, having the protein-ligand case in mind, 
that, both bound and unbound states correspond to intervals 
of values of the CV. If we use their mutual distance d as 
CV, for example, we can associate the unbound state with 
the values d > dth, where dth is a given threshold value. 

 
10 It is possible to connect this result to the one in Eq. (4.4) 
by thinking that state B corresponds to the state of the 
complex and that in state A the protein and the ligand do 
not interact, therefore F(N,V,T,unbound state) = Fprotein 
+Fligand. To avoid any misinterpretation, we would like to 
stress that extensive quantities can be algebraically added 
only when the corresponding subsystems are non-
interacting (or at least interacting weakly and non 
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specifically) so that their state distributions can be 
considered independent. This can be proven trivially in the 
following cases: 
 
- Internal energy: 
 
 , 
keeping in mind that the global Hamiltonian can be written 
as the sum of different individual Hamiltonians only if the 
subsystems are independent. 
 
-Entropy: 
 

 
=SA+SB, also this identity is true only if the two systems A 
and B are independent, so that the joint probability  is 
equal to the product  (see Sect. 3.2.). 
 
11 If the CV is not a linear combination of the Cartesian 
coordinates of the system, the gradient with respect to ξ 
does NOT correspond to the force acting on the constraint 
but there is an additional term containing the Jacobian of 
the coordinate transformation from the Cartesian set to one 
that include the CV (see ref. (15)). 
 
12 With the internal constraint concept in mind, it is easier 
to understand that constraining configurations affects also 
momenta. Actually, the expression of the free energy 
contains also a term which depends on momenta:  
 

,  
where d is the dimensionality of the constraint ξ (if it is a 
scalar then d = 1). It is to be pointed out that the last term, 
the detailed form of which is out of the scope of this work, 
takes into account how the kinetics of the system is affected 
by the application of the configurational constraint and 
depends on the constraint itself via its structure, that is its 
dimensionality and its gradient with respect to the Cartesian 
coordinates, but it does not depend on the particular value 
of . This useful observation allows us to say that the 
kinetic term cancels out when free energy differences with 
respect to a given CV are calculated. 
 
13 The descriptor of binding inspiring us here is the distance 
between site and ligand, which is one of the most widely 
used. Other descriptors can be envisioned, however, so that 

 and that  and 
, this latter example, however, involves more 

complex mathematics and is left to more advanced 
discussions. 

 
14 The imposition of null global momentum subtracts 3 
degrees of freedom to the configurational space D(N,V), 
whose measure now becomes V3N-3. 

 
15 In polar coordinates, a vector is represented by means of 
its modulus ρ and two angles, θ and φ. Here, the modulus 
coincides with the collective variable that we chose to 
describe the binding.  
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