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Object recognition test for studying cognitive impairments in animal models of Alzheimer’s disease
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1.ABSTRACT

Animal models are essential resources in basic 
research and drug discovery in the field of Alzheimer’s 
disease (AD). As the main clinical feature in AD is cognitive 
failure, the ultimate readout for any interventions or the 
ultimate goal in research should be measures of learning 
and memory. Although there is a wealth of genetic 
and biochemical studies on proposed AD pathogenic 
pathways, the aetiology of the illness remains unsolved. 
Therefore, assessment by cognitive assays should target 
relevant memory systems without assumptions about 
pathogenesis. The description of several tests that are 
available for assessing cognitive functioning in animal 
models can be found in literature. Among the behavioural 
test, the novel object recognition (NOR) task is a method 
to measure a specific form of recognition memory. It is 
based on the spontaneous behaviour of rodents and 
offers the advantage of not needing external motivation, 
reward or punishment. Therefore, the NOR test has been 
increasingly used as an experimental tool in assessing 
drug effects on memory and investigating the neural 
mechanisms underlying learning and memory. This 
review describes the basic procedure, modifications, 
practical considerations, and the requirements and 
caveats of this behavioural paradigm to be considered 
as appropriate for the study of AD. Altogether, NOR test 
could be considered as a very useful instrument that 
allows researchers to explore the cognitive status of 

rodents, and hence, for studying AD related pathological 
mechanisms or treatments.

2.INTRODUCTION

The goal of this review is to discuss the novel 
object recognition (NOR) test as a valid test to assess 
cognitive impairments in Alzheimer´s disease (AD) 
and to test new treatments. There are some reviews in 
literature precisely describing some behavioural tasks 
commonly used for testing cognition in mice, such as 
contextual fear conditioning, radial arm water maze, or 
Morris water maze, but do not include NOR testing. Other 
excellent previous reviews have focussed on the NOR 
test provided a detailed explanation about methodology, 
brain structures involved or even the effects of different 
drugs on this test. However, those reviews do not fulfil the 
requirements and caveats of this behavioural paradigm 
to be considered as appropriate for the study of AD.

In the present review, a brief introduction of 
the neuropathological alterations in AD is followed 
by the description of NOR test protocol and specific 
modifications of the test that are available in the literature. 
In a third section of the manuscript, the results found in 
the literature using NOR testing in different experimental 
models of AD, both transgenic and non-transgenic 
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are discussed. In summary, the NOR test is a simple 
method that does not need external motivation reward 
or punishment and it can be completed in short-run, so 
animals do not feel stressed. Its reliability makes this test 
suitable for evaluating new drugs in AD experimental 
models.

3. PATHOGENIC MECHANISMS IN 
ALZHEIMER´S DISEASE

AD is a neurodegenerative disorder 
characterized clinically by progressive cognitive decline. 
Currently, AD is the most common type of dementia 
worldwide: according to the Alzheimer´s Association 
(www.alz.org) one in nine people aged 65 and about one 
third of people aged 85 and older suffers from AD. Since 
age is the biggest risk factor, its prevalence is expected 
to greatly increase over the next few decades. The huge 
economic and health care burden of AD will increase if 
the progression of the disease does not slow in future 
years (1). The Alzheimer´s Association (www.alz.org) 
estimates that any new drug that could delay the onset 
of AD by just five years could decrease the number of 
AD patients by 43 %. The neuropathological hallmarks 
of AD are toxic isoforms of amyloid beta (A beta) 
peptide as well as phosphorylated Tau proteins. These 
two key features of AD (A beta and Tau) are strongly 
implicated in mitochondrial dysfunction, synaptotoxicity, 
inflammation and neuronal loss in the illness (2). Amyloid 
plaques consist of insoluble extracellular deposits of A 
beta peptide and appear in cortex mainly. Nowadays, 
soluble oligomers of A beta are considered key factors 
in the development of disease (3). Neurofibrillary tangles 
(NFT) that consist of aggregates of hyperphosphorylated 
Tau, begin to deposit in enthorhinal cortex and 
hippocampus (2).

Unfortunately, despite decades of research, 
the aetiology of AD is mostly unknown, and many 
fundamental questions remain unanswered. Research 
into AD therapy has been only successful in terms of 
developing symptomatic treatments. The approved 
compounds for the treatment of AD include the 
acetylcholinesterase (AChE) inhibitors donepezil, 
rivastigmine and galantamine as well as the NMDA 
(N‑methyl-d‑aspartate) receptor antagonist memantine. 
This symptomatic treatment is only moderately effective 
in stabilizing or improving cognitive and functional 
symptoms for some months and may slow further decline 
thereafter. Therefore, continuing research into the basic 
underlying biology of AD as well as renewed efforts in 
developing disease-modifying drugs are necessary to 
address this problem  (4). Development in AD research 
needs to address the crucial therapeutic endpoint, 
which is the amelioration and/or prevention of cognitive 
dysfunction. There is an insidious onset in clinical 
symptoms in AD, with an initial loss of short-term memory, 
followed by progressive impairment of multiple cognitive 

functions and behaviour. Episodic memory processes 
(memory concerning past events) and working memory 
(cognitive abilities that are started “on the go” and that 
are necessary for performing a task) are impaired early in 
the illness (5), and these forms of memory are evaluated 
clinically by explicit recognition memory tasks. Spatial 
memory, associated with navigation, is strongly involved 
in episodic memory, which also includes recognition 
memory mechanisms (6, 7).

Over the last decade, different behavioural 
paradigms have been developed for the evaluation of the 
cognitive functions in animal models, such as the Morris 
water maze, Barnes maze, passive avoidance, radial 
arm tests, fear conditioning or novel object recognition 
tests (8, 9). All these paradigms have strengths, caveats 
and specific requirements. Given the limited knowledge 
on disease aetiology, the assessment by cognitive 
assays offers the advantage of targeting memory without 
requiring assumptions about pathogenesis. Among the 
cognitive assays that test learning and memory processes 
in animals, this review will focus on the Novel Object 
Recognition (NOR) test. This cognitive task allows for the 
relatively fast assessment of several batches of mice in 
a short period. The aim of this review is to highlight and 
discuss practical considerations of this assay, as well as 
the protocols, guidelines and caveats of its use in various 
AD mouse models.

4. THE NOVEL OBJECT RECOGNITION TEST

NOR test is a useful paradigm for assessing 
cognitive status of rodents. NOR test is a task based on 
spontaneous behaviour, with the advantage that does 
not require any reward or punishment, and it can be 
performed quickly with a single learning phase (10). When 
exposed to a familiar object alongside a novel object, 
rodents spend more time exploring the novel than the 
familiar object. This apparent ‘unconditioned preference’ 
for a novel object indicates that a representation of the 
familiar object exists in memory and it forms the basis 
of the NOR task in the study of memory functions in 
rodents. It has been suggested that NOR eliminates 
possible bias in the interpretation of results deriving 
from behavioural modifications that could influence the 
memory performance and that are connected with drug-
related changes of pain perception, stress susceptibility, 
thermoregulation, and anxiety (11-13). Due to these 
advantages, NOR test is widely used to test recognition 
memory in different experimental models of AD (14).

4.1. Methodology
Ennaceur and Delacour (10) firstly described 

the use of the novel exploration activity of rodents to test 
their memory. This test was derived from some visual 
task performed in primates for evaluating their cognitive 
abilities (15, 16). A detailed and comprehensive review on 
the methodology used, and methodological modifications 
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of this test can be found in (17). In the initial description 
of NOR apparatus, Ennaceur and Delacour (10) used 
an open field box (arena) made of wood. The shape of 
the arena usually is rectangular or quadrangular. Less 
common are circular arenas (18). Regarding dimensions, 
Ennaceur and Delacour (10) used an arena of 65×45×65 
cm in size. Ideally, the arena should take into account 
the objective of work and be adapted to the features of 
animals, i.e., the study of Reger et al. (19), in which three 
sizes of arenas were used according to animals’ ages. 
The floor of the apparatus can be covered with sawdust or 
paper beddings. This cover should be agitated between 
trials or regularly replaced. Some laboratories have 
started to move away from bedding material because of 
the potential for the bedding to trap scents and cause 
olfactory complications. Objects that have been used 

in the NOR test vary widely in shapes, sizes, textures, 
materials, colours, and appearance. Many objects have 
been used in this test: cans, bottles, tins, pots, pyramids, 
tower, cylinder, box, Playmobil or Lego toys, coffee mugs 
or pet toys. The objects can be made of metal, glass, 
porcelain, glazed ceramic, rubber, durable nontoxic 
plastic, or aluminium. These materials are non-porous 
can be easily cleaned and animals cannot easily gnaw 
them. Concerning the object height, it varies between 4.5. 
and 24 cm, as long as it is high enough to avoid animals 
climbing or resting on it during trials. The object should 
be heavy enough that animals cannot move it. Most of 
the NOR test occurred in sound-isolated room. Light 
conditions might vary among laboratories: although tests 
were made with constant illumination, its intensity can 
range from <10 lx to 30–40 lx. Lighting is an important 
issue, as high levels of light can cause anxiety in rodents 
and result in poor learning/reduced exploration of the 
objects, as shown in Figure 1, in which a picture of a real 
setup for performing NOR testing is displayed. Practical 
issues should be considered include the necessity to 
clean thoroughly chamber and objects after each testing 
in order to eliminate olfactory interferences and to 
balance the order of the objects between testing to avoid 
preference for one of the objects. Based on the limited 
information on object recognition (perception) in rats and 
mice, it is necessary to try to maximize the difference 
between the new and old objects in order to ensure their 
affordances to the sensorial modalities of rats and mice 
without inadvertent induced-preference for one of the two 
objects (20).

Nowadays, the most widely used protocol in 
AD research consists of three phases (Figure 2): the 
habituation phase, the familiarisation phase and the test 
phase. In the habituation phase, animals are placed in 
the arena, and are allowed to explore for a considerably 
long time. In the familiarisation phase, animals are 
placed in the same arena again but, containing two 
objects similar in shape, size, colour, texture, etc., 
equidistantly placed within the chamber. The procedure 
in the test phase is similar to the familiarisation phase, 
but a new unknown object replaces one of the old ones. 
In animals that are cognitively competent, the natural 
curiosity of rodents (21, 22) induces them to spend more 
time exploring the new object. Nonetheless, rodents do 
not always show this mentioned natural curiosity (23). 
Sometimes they do not discriminate between the two 
objects, or furthermore, a ‘known’ object preference can 
appear. Several hypotheses have been proposed to 
explain this behaviour (20). To keep the natural curiosity 
of animals, it is necessary to control the environmental 
conditions as much as possible. Some features such 
as the size of the arena or the colour of the objects 
can affect the results of the task. Objects should be as 
different as possible in shape and colour –but similar 
in size- and, it is recommendable to use objects tall 
enough, so that the animal does not climb onto them 

Figure 1. Picture showing a real setup for performing NOR testing. In 
this case, this setup corresponds to the familiarization phase (two similar 
objects). Lighting is an important issue. For a detailed explanation, please 
check point 2.1. Methodology

Figure 2. Experimental protocol used in novel object recognition (NOR) 
experiments. A variation of NOR is object location (OL). For a detailed 
explanation, please check point 2.1. Methodology
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(animals might stand over them with no exploration). 
Computer recording and analysis systems are useful 
for avoiding distractions in the rodents. If not possible, 
manual recordings of exploration times are also 
affordable. Manual recordings can be essential for the 
data interpretation (in case tracking software does not 
accurately define head position or the location of the 
objects). These measurements can be done post-testing 
using video-recorded test runs.

An important issue to consider is the evaluation 
of data in the NOR test. The points to consider are time 
spent by the animal in exploring individual objects during 
each phase and total time spent by the animal in exploring 
both objects during in each phase. Performance can then 
be evaluated through different indexes, as discrimination 
index, recognition index, or preference index depending 
on the aim of each study. Discrimination Index (DI), 
allows discrimination between the novel and familiar 
objects, i.e., it uses the difference in exploration time 
between exploration of familiar and novel object, but then 
dividing this value by the total amount of exploration of the 
novel and familiar objects. This result can vary between 
+1 and −1, where a positive score indicates more time 
spent with the novel object, a negative score indicates 
more time spent with the familiar object, and a zero 
score indicates a null preference (24,25). Recognition 
Index (RI) is the time spent investigating the novel object 
relative to the total object investigation, and it is the 
main index of retention (26, 27). Preference Index is a 
ratio of the amount of time spent exploring any one of 
the two objects over the total time spent exploring both 
objects, i.e., in the test phase, time in novel object/(total 
time exploring (novel+familiar))×100 (%). Therefore, a 
preference index above 50% indicates a novel object 
preference, below 50% familiar object preference, and 
50% no preference (28, 29).

4.2. Modifications to the basic protocol
Several modifications have been described to 

improve the reliability and reproducibility of the assay 
(reviewed in (17)). Sample trial durations can last between 
1 and 10 minutes, although some authors measure until 
reaching a threshold of total object exploration (30). The 
inter-trials delays last typically between 1 hour (31) and 24 
hours (32). Longer delays are not recommended, as the 
task might be too demanding for even healthy animals, 
and this would decrease the sensitivity of the assay. 
Some authors also repeat several times the familiarisation 
phase to make animals to learn deeper  (33). All these 
modifications in the NOR test protocol have led to the 
proposal for the standardisation of the NOR task, which 
seems to be necessary to allow for the comparison of 
results from different studies (34). In this sense, Leger 
et  al. (34) recently proposed the use of a selection 
criterion based on a minimal time of exploration for both 
objects during each session (familiarization and test 
sessions).

Although the NOR test is the most used test 
for evaluating object recognition abilities in AD models, 
the object location (OL) test can be very useful too. This 
paradigm is analogous to the NOR, but in the test phase 
instead of changing the object, its location is changed 
(Figure 1). This performance evaluates the spatial 
memory rather than the recognition memory (35).

As ageing is the most important risk factor in 
AD (36), the NOR test has been used to evaluate cognition 
in aged rodents. Some authors pointed out a decrease of 
novel exploration associated with an increase of age (37). 
Cognitive impairment in the NORT test associated to 
ageing is a controversial point and some authors have 
reported cognitive competency in aged healthy rats (38). 
In aged animals, in case it is necessary to dissociate 
cognitive impairments associated with ageing from 
cognitive impairments associated to other causes, it 
might be necessary to build variations in the procedure 
to evaluate memory in aged rodents. In this sense, 
Platano et al. (33) proposed a modification of the NOR 
test, consisting of a 3 day lasting familiarisation phase 
with 5 object recognition trials. Following this procedure, 
memory consolidation improves and aged rodents show 
a competent performance. It has to be noted as well 
that evidence has been shown suggesting that object 
recognition in rodents is influenced by sex, gonadal sex 
hormones and gonadectomy (see review by (12).

Episodic memory refers to the ability to 
encode and recall events and experiences. The specific 
components of those memories consist of a particular 
object or person (memory for “what” happened), the 
context or environment in which the experience occurred 
(memory for “where” it happened), and the time at 
which the event occurred (“when” it happened). The 
ability to integrate these “what,” “where,” and “when” 
features of an event is considered fundamental to the 
subjective experience of human episodic memory (39). 
However, work over the past few decades on episodic-
like memory across a number of animal species has 
suggested otherwise, and several mouse behavioural 
tasks designed at assessing episodic-like memory 
have been developed  (40). These tests (41, 42) are 
designed to evaluate the three components of the 
episodic memory, i.e. the object recognition, spatial and 
temporal components respectively. One such task is the 
What-Where-Which Task (WWWhich), an adaptation of 
the NOR test. In this task, the animal must integrate the 
location of a particular object with specific contextual cues 
to form an episodic-like memory (43). Other adaptations 
have been employed to distinguish “what,” “where,” and 
“when” information, such as the What-Where-When task 
(WWWhen) that shows spatio-temporal context memory, 
the What-Where task that is used for object location-
associative memory, or the What-Which task for object-
context memory that involves association of object, 
location, and contextual information (41, 42).
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The one-trial object recognition task was initially 
developed for rats (10), and later on adapted to mice 
with only minor modifications (44-46). However, cognitive 
aspects displayed in this task by both species do not 
need to be similar. In fact, other memory tasks such as 
the Morris Water Maze show consistent differences in 
the procedure protocol requested by the two species. 
Compared to rats, mice typically show lower levels of 
total exploration, both in terms of the number of contacts, 
as well as the time spent exploring the objects (12), 
probably due to a higher tendency to neophobia in 
mice (47). This fact conditions that NOR trials in mice last 
typically longer than in rats (12). There is also a study 
revealing differences between rat and mouse depending 
on the inter-trial delay (48). In this study, rats performed 
competently the task with 3 hours of delay whereas mice 
showed impairment with delays longer than 2 hours. In 
spite of this study, the NOR test is widely used to evaluate 
object recognition memory in rodents, both mice and rats, 
and lead itself well cross-species generalization (19, 26).

4.3. Brain regions involved
Several cerebral structures are crucial for 

the competent performance of the NOR test (reviewed 
by (12)). The results of the NOR paradigm are influenced 
by both hippocampal and cortical lesions (49, 50). The 
hippocampus receives inputs from the perirhinal cortex, 
which is itself the site of several information entrances as 
visual, olfactory, and somatosensory stimulus, all of them 
involved in object recognition (51). The perirhinal cortex 
is involved in the proper perception of the objects (52, 53) 
and when lesions in this brain region exist, the impairment 
in object recognition memory could be observed (24). 
The other main area that projects into the hippocampus 
(i.e. the enthorinal cortex) (54) also influences strongly 
the performance of the NOR test. The hippocampus, 
enthorinal and perirhinal cortex are highly integrated, but 
these structures show also some specific functionalities. 
The perirhinal cortex is involved in object recognition 
after short retention intervals and it is necessary to 
represent basic information about familiarity or novelty, 
whereas the hippocampus is responsible for long-term 
object recognition (19). Memory consolidation but not 
persistence seems to be hippocampus-dependent. 
Other structures like the nucleus basalis (37) and the 
nucleus accumbens (55) might also play a role in the 
appropriate performance of the NOR test. Interestingly, 
these structures have been shown to be damaged both in 
AD (56-59) and AD animal models (60, 61). To conclude 
this section, it is worth mentioning the neurotransmitter 
systems that have been described to be involved in NOR 
behaviour. As reviewed in (12), there seems to be a 
significant implication of the glutamatergic and cholinergic 
system in the NOR behaviour. The dopaminergic and 
serotonergic system seems to be also involved.

Brain circuitry involved in OL is different from 
NOR  (62). Evidences showing an implication of the 

hippocampus seem to be much more solid (35, 62). The 
medial septum area and the nucleus basalis magnocellularis 
might also play a role in OL performance  (63). The OL 
test can also detect an impairment induced by lesions in 
the nucleus accumbens (64).

5. NOVEL OBJECT IN ANIMAL MODELS OF AD

In AD basic research and drug discovery, 
mouse models are essential resources for uncovering 
biological mechanisms, validating molecular targets and 
screening potential compounds. Both transgenic and 
non-genetically modified mouse models enable access to 
different types of AD-like pathology in vivo. The ideal AD 
animal model should present an increase in A beta levels 
and/or hyperphosphorylated tau along with synaptic 
and memory deficits as well as synaptic and neuronal 
loss (i.e. a human AD-like phenotype). Aetiology of AD 
is multifactorial, with both genetic and environmental 
factors implicated in its pathogenesis. The disease is 
basically classified into 2 types, sporadic AD (SAD), the 
common form accounting for 90% to 95% of the cases for 
which no defined cause is known, and familial AD (FAD) 
that shows autosomal dominant inheritance. In SAD, 
advancing age appears to be the greatest risk factor for 
AD. Its incidence increases in people of 60 years and 
older. Other risk factors may include cardiovascular risk 
factors, insulin-resistance, chronic stress, depression or 
hypertension (65, 66).

Based on this premises, both genetic 
(transgenic) and non-transgenic models of AD are 
available. In most of the animal models, the first goal is to 
simulate the neuropathological findings of AD followed by 
the correlation of cognitive function.

5.1. Transgenic models of AD
Transgenic mice are the most commonly used 

animal models for studying AD. These models are an 
essential tool in studying in vivo pathophysiology. With 
the identification of the genetic factors involved in AD, 
the development of several transgenic mouse models 
has taken place. The common rationale employed in 
creating transgenic model of AD is the overexpression 
of the transgene carrying FAD mutations under different 
promoters. Genes, namely amyloid precursor protein 
(APP), presenilin-1 (PS1) or presenilin-2 (PS2) and 
Tau are used to construct transgenic mouse models 
of AD. Although about 90 multi- and single transgenic 
mice modelling AD have been created, only a few 
of them recapitulate most of the neurophatological 
characteristics of AD, and currently, there is no model 
that can reproduce all the aspects of AD (Table 1). Some 
given reasons are that only a few recent models of AD 
suffer from neurodegeneration (67), that the aberrant 
protein accumulation progression does not correspond to 
progression described in the brain of AD patients or that 
FAD account for only up to 5% of the total AD cases (68). 
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However, there is a very high degree of phenotypic 
similarity between FAD and sporadic late-onset AD, 
suggesting that mechanistic information obtained about 
FAD would also be directly relevant for SAD (69). In 
addition, it has to be considered also that the genetic 
background can affect their behavioural phenotype (70). 
Numerous works in literature describe the performance 
of the different transgenic models in NOR test. It is 
described here a brief overview of the results found in 5 
of the most commonly used different AD transgenic mice 
using the NOR test.

One of the most widely-used models is the 
Tg2576 mouse line (Promoter: Hamster PrP Promoter, 
Symbol: Tg (APPSWE) 2576Kha, MGI ID: 2385631), 
which overexpresses human APP with two point 
mutations (K670N, M671L) that were originally identified 
in a Swedish family with FAD (71). These mutations 
are located by the beta secretase site and bias APP 
processing toward the amyloidogenic pathway, leading 
to higher overall levels of A beta (72) Tg2576 mice have 
numerous parenchymal A beta plaques by 11-13 months 
with some vascular amyloid, tau hyperphosphorylation, 
but without tangles. An important point to consider is the 
age at which cognitive deficits could be detected with 
the NOR test in this mouse model and the protocol used 
(inter-trial intervals). NOR test has been reported to be 
impaired in this transgenic model already at the age of 6 
months, and still detectable at age of 12 months (73). Or 
even in younger mice if the protocol is demanding enough: 
cognitive deficits could be detected in the NOR test using 
a 4 and 24 h retention interval in 5-months-old Tg2576 

mice, which could be reversed by acute inhibition of 
calcineurin with FK506 (74). Tg 2576 mice aged 9 months 
old showed deficits in the NOR test that were reverted by 
chronic propranolol treatment (75). Immunotherapy with 
oral vaccine using a recombinant adeno-associated viral 
vector carrying A beta cDNA, administered once at the 
age of 10 months, alleviated the progressive cognitive 
impairment at the age of 13 months (76). Interestingly, 4 
months-old Tg2576 mice that were cognitively trained for 8 
weeks and, after a lag of 8 months, long-lasting beneficial 
effects of the cognitive training on cognitive abilities could 
be detected using NOR test (24 h interval) (77). On the 
other hand, 14-month-old Tg2576 mice showed no deficit 
in NOR test using two item object arrays in 1, 3 and 24 
h intervals. However, in the same set of experiments, 
these mutant mice failed in the OL memory, suggesting 
the effects of hippocampal damage in these rodents (78), 
likely to a sensitivity of Tg2576 mice to object-location 
analogue of visuospatial paired associate learning. This 
could be of particular interest as AD patients, in addition 
to the impairment in recognition memory, show a high 
sensitivity to paired-associated learning that involves 
object-location associations (79).

The J20 mouse model (promoter: Platelet-
Derived (PDGF), Symbol: Tg (PDGFB-APPSwInd) 
20Lms, MGI ID: 3057148) was developed by (80). The 
J20 model expresses human APP with the Swedish 
KM670/671NL, and London (V717I) mutation. This model 
is unique in that the first presented cognitive deficits are 
observed very early (at 2-3 months of age) in recognition 
memory (81). These deficits in recognition memory are 

Table 1. Neuropathological characteristics of some common experimental models of Alzheimer’s disease
Model Description Pathological 

increase in 
Aβ production

Aβ 
burdens

NFT Synaptic 
deficit

Memory 
deficit in 

NOR

Reference

Transgenic models

Tg 2576 APP swedish mutant (K670N/M671L) Yes Yes No Yes Yes (72‑79)

J20 Double mutant: APP (KM670/671NL) and APP (V717I) Yes Yes Yes Yes Yes (80‑85)

3×Tg Triple mutation: APP (K670N/M671L), PS1(M146V), 
and Tau (P301L)

Yes Yes Yes Yes Yes (86‑92)

5×FAD 5 fold mutant: APP (K670N/M671L), APP (I716V), 
APP (V717I), PSEN1 (M146L), PSEN1 (L286V)

Yes Yes Yes Yes Yes (93‑94) 

APPSwe/PS1dE9 Double mutant: APP (KM670/671NL) and PS1dE9 Yes Yes No No* Yes (ol) (97‑101)

Non‑transgenic models

Cholinergic lesions Surgical or toxic depletion of cholinergic neurons No No No No Yes (109)

Aβ administration Cerebral administration of Aβ toxic species. Yes No No Yes Yes (118,120)

Ageing Senescent animals Yes Yes No Yes Yes (129‑130)

Stress Chronic exposure to variable hostile agents Yes No No Yes Yes (137‑140)

*Controversial results. NFT: Neurofibrillary tangles, NOR: Novel object recognition, OL: Object location; APP: Amyloid precursor protein, 
Aβ: Beta ‑amyloid peptide
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present when assessed at several other time points (82-
84). However, they do not appear to progress with the 
age of the animal and there has even been one report 
of no recognition memory deficits in aged animals in 
advanced stages of the disease (85).

The 3×Tg-AD transgenic mouse (Promoter: 
Thy-1, Symbol: Tg (APPSwe,tauP301L) 1Lfa, MGI 
ID: 2672831) × (Promoter: Endogenous, Symbol: 
Psen1tm1Mpm, MGI ID: 1930937) carries AD transgenes 
for APPSwe, PS1M146V and TauP301L. It shows a 
neuropathology that include both plaque and tangle 
restricted to the hippocampus, amygdala, and cerebral 
cortex, extracellular A beta deposits by 6 months in 
frontal cortex (more extensive by 12 months) and Tau 
pathology manifested at 12 months (86). The NOR task is 
particularly efficient in 3xTg-AD mice in part because this 
model often shows signs of anxiety (87). The use of NOR 
testing is thus favoured as it involves less stressful tasks 
compared to water maze-based paradigm and other 
tests involving the generation of anxiety in the animals. 
Cognitive impairment in this strain in the NOR test have 
been observed at 9 (88) or 13 months (89). Different 
treatments have proven effective in reversing cognitive 
deficits in the NOR test in this mice model (90-92).

5XFAD mice (Promoter: Thy-1, Symbol: Tg 
(APPSwFlLon, PSEN1*M146L*L286V) 6799Vas, MGI 
ID: 3693208) with mutations in APP KM670/671NL 
(Swedish), APP I716V (Florida), APP V717I (London), 
PSEN1 M146L, PSEN1 L286V (67) show amyloid 
pathology that deposits at 1.5 months. A beta 42 also 
accumulates intraneuronally in an aggregated form 
within the soma and neurites starting at 1.5 months. By 4 
months it is observed neuronal loss and deficits in spatial 
learning. 6-8 months old 5XFAD mice showed deficits in 
the NOR test (10 min, 30 min and 24 h after training) that 
were reversed by diosgenin treatment (93). Even more, 
2-months-old 5XFAD mice, which could be referred as 
“prodromal stage AD”, showed cognitive impairments 
in the NOR test (5 min exploring, 1 h delay and 5 min 
retention test) that were reverted after 2 months of 
treatment with an 5-HT4 agonist (94).

APPSwe/PS1dE9 mice (Promoter: PrP, 
Symbol: Tg (APPswe, PSEN1dE9) 85Dbo, MGI ID: 
3524957) expressing mutant APP Swedish (APP 
KM670/671NL) and mutant presenilin 1 (PS1dE9) have 
high A beta 42 levels and induces amyloid deposition 
by 4-6 months of age (95, 96) and shows hippocampal 
functional deficits from 7 months (97). This genotype 
triggers a cognitive impairment in NOR in 7-month-old-
females with an intertrial delay of 4 hours (98), but not 
with 1  hour  (99). 7 months old APPSwe/PS1dE9 mice 
showed an improvement in spatial memory measured 
by OL task after administration of a brain-derived 
neurotrophic factor (BDNF) agonist on TrKB in only 
1 hour delayed between first and second trial (not at 24 

h delayed) (100) 6.5 months aged APPSwe/PS1dE9 
mice had an impairment at 1 h and 4 h intertrial delays 
in the OL test that was reversed (at the 4 h interval) by 
a treatment of subcutaneous injections of a isoform of 
phosphodiesterase type 4 inhibitors (GEBR-7b) (101).

5.2. Non-transgenic models of AD
Trying to solve limitations in the use of 

transgenic AD models, some other strategies have been 
developed to model AD in animals (sporadic AD). Based 
on the cholinergic hypothesis, scopolamine induced 
amnesia and excitotoxic lesions of the basal forebrain 
have been used to assess cognitive deficits. Current 
symptomatic drugs for AD were successfully evaluated in 
these models, but their etiological relevance is low (102). 
Senescence-accelerated mice or mice exposed to well-
known risk factors for developing AD, such as insulin-
resistance or animals chronically stressed, are also 
commonly used for the study of sporadic AD (Table 1).

5.2.1. Models of AD based on the induction of a 
cholinergic deficit

Following the demonstration of cholinergic 
deficits in AD, the classical cholinergic hypothesis of 
memory was established, stating that the cause of the 
illness is a deficit in cholinergic neurotransmission (103). 
This theory was responsible for the appearance of the 
first successful AD therapies, the acetylcholinesterase 
inhibitors. Nowadays, depletion or blockade of this 
neurotransmitter system is still used to evaluate the 
efficacy of new AD treatments that addresses the 
cholinergic system.

The muscarinic antagonist scopolamine has 
been used to induce a functional cholinergic deficit in 
the brain, eventually causing a cognitive impairment in 
several behavioural tests, including NOR or OL test (to 
mention a recent example (104)). Acetylcholinesterase 
inhibitors currently used for the clinical treatment of 
AD, such as galantamine, have been shown to possess 
memory-enhancing effects in two conditions that reduced 
object discrimination: scopolamine-induced deficits and 
when a longer retention interval was used (105). Similarly, 
several candidates for the treatment of AD based on 
enhancing cholinergic neurotransmission have been 
shown to be effective, such as the M1 agonists  (106), 
or cholinesterase inhibitors like memoquin  (107). Other 
techniques have shown to be capable of diminishing 
cerebral acetylcholine levels, although there can be 
other concomitant damage mechanisms. Sodium 
azide, an inhibitor of the cytochrome oxidase IV, 
decreases cholinergic tone in the brain and causes 
cognitive impairment in the NOR test. In this model, 
the acetylcholinesterase inhibitor ladostigil reversed the 
cognitive dysfunction (108).

Selective lesions of specific cholinergic basal 
nuclei have been used to study the participation of 
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specific cholinergic pathways in memory. Lesions in 
cholinergic neurons of the medial septum that project to 
the hippocampal formation with the selective cholinergic 
immunotoxin 192-IgG-saporin induced no significant 
effect on NOR, but produced a significant impairment 
in OL, support a role for septo-hippocampal cholinergic 
projections in memory for the location of objects, but not 
for novel object recognition (109).

The surgical removal of the olfactory bulb of 
rodents causes AD related changes, including cognitive 
impairment, depressive-like behaviour and cholinergic 
alterations (110). Interestingly, olfactory bulbectomy 
increases A beta production too (111). Rivastigmine, 
another cholinesterase inhibitor used in the clinical 
treatment of AD, improves NOR test performance in 
bulbectomized animals, highlighting the importance of 
the cholinergic damage in this model (112).

5.2.2. Beta amyloid cerebral administrations as 
AD model

Intracerebral administrations of A beta have 
been used to test whether beta amyloid peptide is toxic for 
the brain. A beta 42 is considered the most pathological 
species of A beta. However, as natural A beta 42 
exhibits low solubility, the much more soluble fragment 
A beta 25-35 is frequently used. This peptide fraction 
has shown to be the essential fragment that possesses 
toxic activity  (113) and is preferred for intracerebral 
administrations in many experiments.

The intracerebroventricular administration of 
the peptide uses the ventricular system of the brain 
for spreading the A beta peptide across the brain. 
It has been successfully used to cause a cognitive 
impairment in the NOR test performance, and several 
therapies have been tested by this procedure. Many 
therapies reduce the A beta 25-35 damage and reverse 
the cognitive impairment in NOR test associated with 
A beta administration, such as the gamma secretase 
inhibitor BMS-299897 (114), the toxin Tx3-1 (115), the 
MAO-B inhibitor selegiline  (116), the flavonoid derive 
silibinin (117), the PPAR-alpha inhibitor GW7647 or the 
palmitoylethanolamide (118).

The cerebral A beta accumulation plays a very 
important role in the development of the AD, but do not 
fulfil many pathological hallmarks of the illness, such 
vascular alteration (119). In this sense Choi et al. (120) 
combined the intracerebroventricular administration of 
A beta25-35 with an artery obstruction in the brain to 
induce a mild hypoxia and therefore a misuse of nutrients 
in the brain. The combination of both factors worsens 
the impairments of A beta 25-35 in the NOR test. It is to 
mention that in this experiment only the combination of 
both A beta 25-35 administration with the artery occlusion 
was capable of triggering a cognitive impairment in the 
Morris water maze paradigm.

An important limitation of the 
intracerebroventricular administration of A beta is the lack 
of temporal pattern in the progression of the pathology. 
Whereas the AD pathology seems to start in structures of 
the temporal lobe, the ventricular administration cannot 
reproduce this feature. Sipos et al. (121) tried to model 
the first steps of the AD pathology by administering A beta 
42 selectively in the entorhinal cortex. This paradigm 
triggered a cognitive impairment in the NOR test that was 
not revealed in the Morris water maze paradigm.

5.2.3. Senescence models
Ageing is the most important risk factor for the 

development of AD. Almost every experimental model 
of the illness is combinable with ageing to form a more 
consistent approach of the illness. Therefore, delaying 
senescence associated impairments would constitute 
an alternative for preventing the development of AD 
pathology, suggesting that it can be also possible to 
evaluate possible AD therapies in aged animals  (122). 
Several treatments have shown to improve the age 
associated cognitive impairment in NOR test and 
are, therefore, are likely to be active against AD, 
such as the phosphodiesterase 5 inhibitors, sildenafil 
and vardenafil  (123) and the cholinesterase inhibitor 
metrifonate (124).

It has to be mentioned that murine animals 
might be far from the reality of the human senescence. 
Life expectancy in murine species is no longer than 
30 months, so they might be not capable of developing 
some of the causal factors that appear along life in 
humans, who live much longer. Interestingly, senescence 
accelerated models have been developed to overtake this 
limitation. These strains, such as SAMP8, develop faster 
several markers of ageing (reviewed by (125)), including 
gliosis (126), learning deficits (127) and increased radical 
oxygen species production in the brain (65). Interestingly, 
SAMP8 shows an increase production of APP, A beta and 
p-Tau (128). This mouse strain has shown a cognitive 
impairment in the NOR test that can be reverted by 
pramlintide (129) or propranolol (130).

5.2.4. Stress related models
There is growing consensus that environmental 

stressors may increase the probability of risk for AD. 
Clinical data suggest that a stressful lifestyle can be a 
risk factor for AD (131) and stress-related psychiatric 
disorders (e.g. major depression) have been identified as 
a risk for developing AD (132). There is a dysregulation 
of the hypothalamic-pituitary-adrenal (HPA) axis in 
AD and cognitive status was negatively associated 
with glucocorticoid levels (133, 134) . Csernansky 
et al. (135) also showed that initially higher serum 
glucocorticoids in the pre-dementia clinical stage of AD 
predict a more rapid cognitive decline. This view gained 
support from studies in transgenic mouse models of AD 
in which stress or glucocorticoids exacerbated AD like 
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neuropathology  (136). This strong relationship between 
those three factors -stress, depression and AD- suggests 
not only the existence of common physiopathological 
pathways in the course of these illnesses, but also the 
possibility of using animal models of chronic stress to 
reproduce and study these common physiopathological 
pathways.

Different stressors have been cognitively 
evaluated with the NOR test. Stressful events in the early 
stages of the life in rats (such as maternal separation) 
have been reported to cause adult cognitive impairment in 
the NOR test that could be reversed by the 5-HT6 receptor 
agonist, SB271046 (137), and by the antidepressant drug 
venlafaxine (138). Chronic stressors during the adult life 

Table 2. Examples of compounds found to ameliorate cognitive deficits in the novel object 
recognition (NOR) or object location test in Alzheimer’s disease (AD) mouse models

Compound Action Behavioral task Model tested References

FK506 Ca+2/calmodulin‑dependent protein 
phosphatase calcineurin inhibitor

NOR Tg2576 mice (75)

Propranolol β ‑blocker NOR Tg2576 mice (75)

Oral vaccine Aβ Inmunotheraphy NOR Tg2576 mice (76) 

Enriched environment/
physical activity

Cognitive stimulation NOR Tg2576 mice (77)

Cannabidiol CB receptor agonist NOR Tg2576 mice (32)

MMBO GSK‑3 inhibitor NOR 3×Tg‑AD mice (89)

DHA Long‑Chain Omega‑3 Oil NOR 3×Tg‑AD mice (90)

Diosgenin Ligand of steroid‑binding 
protein (1,25D3‑MARRS)

NOR 5XFAD mice (93)

RS67333 5‑HT4 agonist NOR 5XFAD mice (94)

7,8‑DHF TrKB agonist OL APPswe/PS1dE9 mice (100)

GEBR‑7b PDE4 inhibitor OL APPswe/PS1dE9 mice (101)

Neuropeptide S NPRS ligand NOR/OL Cholinergic lesion (104)

Ladostigil Acetylcholinesterase inhibitor NOR Cholinergic lesion (108)

Memoquin Anti‑oxidant, others NOR Cholinergic lesion and Aβ cerebral 
administration

(107)

BMS‑299897 Gamma secretase inhibitor NOR Bulbectomy‑cholinergic lesion (112)

Selegiline MAO‑B inhibitor NOR Aβ cerebral administration (116)

Pramlintide Amylin analog NOR SAMP8 mice (129)

Propranolol β ‑blocker NOR SAMP8 mice (130)

SB271046 5‑HT6 receptor agonist NOR Stress related models (137)

Venlafaxine Selective serotonin/norepinephrine 
reuptake inhibitor

NOR Stress related models (138)

Mifepristone GR antagonist NOR Stress related models (143)

GLP‑1 Incretin glucagon‑like peptide NOR Model of sporadic AD based on 
induction of insulin‑resistance

(147)

GIP Incretin glucose‑dependent 
insulinotropic polypeptide

NOR/OL Model of sporadic AD based on 
induction of insulin‑resistance

(148)

Aβ: beta‑amyloid peptide; NOR: novel object recognition; OL: object location ; MMBO: 2‑methyl‑5‑(3‑{4‑((S)‑methylsulfinyl) 
phenyl}‑1‑benzofuran‑5‑yl)‑1,3,4‑oxadiazole; GSK‑3: glycogen synthase kinase 3; DHA: docosahexaenoic acid; APP: amyloid precursor protein; 
AD: Alzheimer’s disease; 1,25D3‑MARRS: 1,25D3‑membrane‑associated rapid response steroid‑binding protein; FAD: familial Alzheimer’s disease; 
5‑HT4: serotonin receptor 4; TrKB: tropomyosin related kinase B; PDE4: phosphodiesterase 4; CB: cannabinoid receptors; NPRS: neuropeptide S 
receptor; MAO‑B: monoamine oxidase B; SAMP8: senescence mouse; 5‑HT6: serotonin receptor 6; GR: glucorticoid receptor; GLP‑1: glycogen‑like 
peptide 1; GIP: glucose‑dependent insulinotropic polypeptide
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have also been described as cognitively deleterious. 
Animals subjected to chronic mild stress procedure 
perform poorly in the NOR test, and venlafaxine has 
shown to reverse this cognitive impairment (139, 140). 
Other authors have found a similar effect of the chronic 
mild stress in males, but they fail to reproduce this finding 
in females (141, 142), showing that there are likely sexual 
differences that are poorly understood.

The hypothalamus-pituitary-adrenal axis is 
the main mediator in the chronic stress response in 
mammals, mainly by increasing the levels of circulating 
glucocorticoid levels in response to stressors. 
Interestingly, the stress triggered impairments in the 
NOR test can be prevented by a prior administration of 
a glucocorticoid receptor antagonist, the mifepristone. 
This effect has been seen in stress protocols, such as 
maternal separation (143) or chronic mild stress (139). 
Stress and glucocorticoids have also strong metabolic 
effects, such as increased glycaemia and increasing the 
risk of metabolic syndrome and diabetes, which have also 
been described as risk factors for developing AD (see 
point 5.2.5.). This way, the chronic oral administration 
of glucocorticoids can provoke a cognitive impairment 
in the NOR (75), apparently involving activation of the 
mineralocorticoid receptor and the JNK pathway (144).

5.2.5. Models of sporadic AD based on 
induction of insulin-resistance

There are several AD risk factors associated 
with metabolism, like obesity, hypercholesterolemia or 
diabetes mellitus. Metabolic hormones like insulin and 
leptin have not only been associated with metabolic 
disorders, but also with AD and cognitive impairment in 
animal models. Diabetes mellitus and hyperglycemia has 
been shown to be risk factors for the development of AD in 
later life (145). In fact, it is well known that a state of insulin-
resistance induces cognitive impairment (75, 144, 146). 
Some authors have also detected a cognitive 
improvement with glucose pathways mediating agents. 
For instance, incretin glucagon-like peptide 1 plays a 
beneficial effect in the NOR test, but not in OL (147). The 
incretin glucose-dependent insulinotropic polypeptide 
might also may show an improvement in NOR and OL 
tests (148).

6. CONCLUSIONS

Evaluation of cognition in animal models 
has become a fundamental tool in multiple areas of 
translational neuroscience and is useful for studying both 
the mechanisms underlying neurological disorders and 
the efficacy of novel drugs in reversing cognitive deficits in 
disease models. This is particularly useful in the AD field, 
as the main clinical hallmark of the disease is memory 
loss. Toward this end, Table 2 lists some drugs that have 
provided positive results in the NOR test. However, it is 
important to keep in mind that NOR test or other cognitive 

tasks are incomplete analogues of human cognition. 
Indeed, this fact could contribute to the continuous clinical 
trial failures with drugs that showed promising efficacy in 
preclinical behavioural tasks. In any case, in the absence 
of practical alternatives, animal models will continue to 
be essential for testing new therapeutic strategies.

NOR test is a very useful instrument that allows 
researchers to explore the cognitive status of rodents. The 
NOR test is a simple method that does not need external 
motivation reward or punishment, but a little training or 
habituation is required, it can be completed in short time 
so animals do not feel stressed, and it can assess the 
recognition memory after only one trial, which gives it 
an advantage over other methods. Its application is not 
limited to a field of research and enables that various 
issues can be studied, not only memory and learning, but 
also preference for novelty, influence of different brain 
regions in the process of recognition, all of those relevant 
areas in the field of AD research. Its proven reliability, 
as well as its useful variations make this test suitable for 
evaluating new drugs and their effects in AD experimental 
models. We suggest here that combinations of different 
cognitive assays and experimental models will allow 
investigating different aspects of AD pathology and 
disease progression and further developing strategies in 
the treatment of AD.
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