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1. ABSTRACT

Human mitochondrial DNA (mtDNA) is a small 
maternally inherited DNA, typically present in hundreds 
of copies in a single human cell. Thus, despite its small 
size, the mitochondrial genome plays a crucial role in the 
metabolic homeostasis of the cell. Our understanding 
of mtDNA genotype-phenotype relationships is derived 
largely from studies of the classical mitochondrial 
neuromuscular diseases, in which mutations of mtDNA 
lead to compromised mitochondrial bioenergetic 
function, with devastating pathological consequences. 
Emerging research suggests that loss, rather than 
mutation, of mtDNA plays a major role across a range of 
prevalent human diseases, including diabetes mellitus, 
cardiovascular disease, and aging. Here, we examine 
the ‘rules’ of mitochondrial genetics and function, the 
clinical settings in which loss of mtDNA is an emerging 
pathogenic mechanism, and explore mtDNA damage 
and its consequences for the organellar network and 
cell at large. As extranuclear genetic material arrayed 
throughout the cell to support metabolism, mtDNA is 
increasingly implicated in a host of disease conditions, 
opening a range of exciting questions regarding mtDNA 
and its role in cellular homeostasis.

2. mtDNA: COMPOSITION, COPY NUMBER 
AND ORGANIZATION	

While the vast majority of the thousands of 
proteins present in mitochondria are encoded by nuclear 
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genes, a small, yet crucial, number are produced from 
mitochondrial DNA (mtDNA). Human mtDNA is a small, 
circular 16,569 bp DNA (1) encoding 13 polypeptides, 2 
ribosomal RNAs, and 22 tRNAs that are essential to the 
assembly and function of the mitochondrial respiratory 
chain, responsible for oxidative phosphorylation (2). 
Rapidly-dividing cells such as HeLas and fibroblasts 
typically have 1,000-2,000 copies per cell (3), while more 
energetically-demanding tissues such as myocardium 
and skeletal muscle have higher mtDNA content per 
diploid nuclear genome, consistent with their heightened 
mitochondrial content and energetic demand (4). Due 
to this high copy number, mtDNA comprises ~1% of all 
total cellular DNA, despite its small genomic size. In 
accordance with its endosymbiontic origin (5), mtDNA’s 
organization and genetics are very different from 
chromosomal DNA. Its circular structure, maintenance 
within a double membrane-bound organelle, and distinct 
genetic code are attributes that echo its prokaryotic 
background, while the abundance of mtDNA within the 
cell indicates that mitochondrial genotype-phenotype 
relationships are really ‘intracellular population’ genetics, 
rather than Mendelian inheritance patterns. Taken as a 
whole, then, mtDNA is crucial cellular genetic content 
with a very different set of ‘rules’ than chromosomal 
nuclear DNA.

The vast majority of ATP production in a 
mammalian cell occurs via oxidative phosphorylation 
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(OxPhos) in the mitochondrial inner membrane. The 
OxPhos system is composed of five multi-subunit 
complexes and two electron carriers (6). The five 
complexes are embedded within the inner membrane 
and consist of complexes I- IV and complex V, the ATP 
synthase. Complexes I, II, III, and IV utilize NADH and 
FADH2, the energy-rich molecules derived from the citric 
acid cycle, to pump protons out of the matrix, generating 
a proton-motive transmembrane potential (Dym) across 
the mitochondrial membrane. This gradient is used 
by Complex V, the F1F0 ATP synthase, which permits 
a single H+ to return to the matrix, thus driving the 
synthesis of ATP from ADP and Pi (6). Strikingly, 
while the mitochondrial proteome is comprised of 
thousands of proteins (7), only 13 are encoded by 
mtDNA. The polypeptides encoded by mtDNA are all 
subunit components of the OxPhos system, and are in 
fact essential to the proper assembly and functioning 
of these complexes in mitochondrial bioenergetics. 
While nuclear-encoded subunits are synthesized on 
cytoplasmic ribosomes and targeted for mitochondrial 
import via the mitochondrial outer membrane protein 
translocase (TOM) and mitochondrial inner membrane 
protein translocase complexes (8), mtDNA-encoded 
OxPhos subunits are produced at the mitochondrial 
ribosome, combined with the nDNA-encoded subunits, 
and inserted into the inner membrane (Figure 1). 
Thus, mitochondrial ATP production is dependent on 
contributions from both chromosomal and mitochondrial 

genomes. As such, defects in mtDNA-encoded subunits 
result in incomplete OxPhos complex assembly, 
causing mitochondrial dysfunction. Loss of mtDNA 
content is emerging as a common form of mitochondrial 
dysfunction across a range of highly prevalent human 
pathologies.

3. LOSS OF mtDNA ACROSS HUMAN 
DISEASE

Consistent with the central role of mitochondria 
in cellular metabolism, particularly in energetically 
demanding tissues, mitochondrial dysfunction has long 
been associated with pervasive human conditions such as 
diabetes, cardiovascular disease, and aging. Despite an 
abundance of correlative data, however, it has remained 
mechanistically unclear how mitochondria are defective 
in these prevalent conditions. Recently, loss of mtDNA 
content, rather than inherited or sporadic mutation of 
mtDNA, has emerged as a pervasive driving force in the 
pathogenesis of these prevalent degenerative conditions. 
Loss of mtDNA represents a ‘sleeper’ mitochondrial 
genetic defect, which has until recently gone unnoticed 
as a mediator of mitochondrial dysfunction in conditions 
affecting large portions of the global population.

3.1. Diabetes and metabolic disease 
Given the shockingly high prevalence of 

diabetes in the U.S. (6.4.% of Americans, Centers for 
Disease Control), as well as the extensive co-morbid 
overlap of diabetes with cardiovascular disease and 
obesity, a massive amount of effort has been directed at 
determining the factors that drive insulin resistance and the 
pathogenesis of Type 2 diabetes. Increased inflammation 
has emerged as a major causative mechanism of insulin 
resistance in Type 2 diabetes, stemming from the 
seminal observations of Hotamisligil et al. that tumor 
necrosis factor alpha (TNF-a) is expressed at high 
levels in mouse models of both obesity and diabetes (9). 
Pro-inflammatory cytokines including TNF-a and IL-6 
circulate in the blood and activate inflammation, thereby 
inducing insulin resistance (9-11). Elevated inflammation, 
mediated by increased secretion of adipose-expressed 
cytokines, combines with lipid metabolism and changes 
in gut biota to mediate insulin resistance (12). 

Mitochondria appear to be a major intracellular 
target of cytokine-mediated inflammation, providing a 
mechanism to explain a long history of data correlating 
mitochondrial dysfunction with diabetes and metabolic 
disease. Decreased mitochondrial content and function 
have been shown in skeletal muscle from Type 2 
diabetics (13), while genomic and expression profile 
studies have found broad decreases in mitochondrial 
(both nuclear- and mtDNA-derived) gene expression in 
Type 2 diabetes (14). Patients with pathogenic mtDNA 
mutations frequently present with maternally inherited 
diabetes (15) and insulin resistance (16), demonstrating 

Figure 1. Nuclear and mitochondrial genomes contribute to the 
biogenesis of the OxPhos complexes. Complexes I-V of the OxPhos 
chain are composed of protein subunits derived from both mtDNA and 
chromosomal nuclear DNA. Nuclear-encoded polypeptides are targeted 
to the mitochondria and imported via the translocase of the outer 
mitochondrial membrane (TOM) complex. MtDNA (red circle) encodes 13 
polypeptide subunits of the OxPhos complexes. The translocase of the 
inner mitochondrial membrane (16) proteins work to combine both nuclear- 
and mtDNA-encoded polypeptides into functional complexes which are 
assembled and inserted into the mitochondrial inner membrane. With the 
exception of Complex II, each of the OxPhos complexes contains at least 
one mtDNA-encoded polypeptide subunits (indicated in red next to each 
complex). The presence of the mtDNA-encoded subunits is essential to 
the full assembly and functioning of these complexes in mitochondrial 
ATP production.
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that mtDNA-mediated mitochondrial dysfunction can 
be causative in the pathogenesis of insulin resistance. 
Consistent with this, mtDNA is normally present at 
~1,000 copies per cell (17), but is significantly decreased 
in blood (18,19), skeletal muscle (13,19,20), and adipose 
tissue (20,21) of Type 2 diabetics, as well as in blood of 
pre-diabetics (22). Collectively, these studies indicate a 
broad decrease in mtDNA copy number in diabetics, and 
suggest that cytokine-mediated mtDNA damage plays a 
strong role in insulin resistance.

3.2. Cardiovascular disease 
Cardiovascular disease (CVD) is the leading 

cause of death worldwide (23). In the U.S., 11.8.% 
of adults have been diagnosed with heart disease 
(National Center for Health Statistics, 2010), and is 
the cause of one in four deaths (24). As in diabetes, 
mitochondrial dysfunction has long been implicated in the 
pathogenesis of cardiovascular disease. Patients with 
end-stage heart failure have broad decreases in OxPhos 
activity (25), regardless of whether they are afflicted with 
dilated, hypertrophic, or ischemic cardiomyopathy (26). 
Decreased OxPhos enzymatic function and mitochondrial 
biogenesis are found in rodent hypertension models (27). 
The myocardium has the highest mitochondrial content 
of any human tissue due to the enormous bioenergetic 
demands of continuous cardiac muscle contraction (28). 
As such, it is logical that mitochondrial dysfunction should 
be highly correlated with cardiac disease. But how?

Recent findings strongly suggest that 
mitochondrial dysfunction in cardiovascular disease is 
frequently mediated by loss of mtDNA content. In vivo 
models of cardiac-specific mtDNA depletion display 
massive apoptosis (29), while models of myocardial 
infarction (30) and high fat diet (31), as well as patients 
with end-stage heart failure (32, 33) show dramatic 
decreases in cardiac mtDNA content. Cardiovascular 
disease has strong co-morbidity with diabetes, as 
diabetics are twice as likely to die of heart disease 
relative to non-diabetics (34). Many of the mechanisms of 
mitochondrial dysfunction found in diabetes are likely to 
result in cardiac mitochondrial damage as well, causing 
or contributing to the co-morbidity of these two prevalent 
human conditions. These combined basic and clinical 
findings suggest strongly that damage to mtDNA and the 
concomitant mitochondrial dysfunction plays a profound 
role in the ‘vicious cycle’ of cardiovascular damage. 

3.3. Aging
Diminished mitochondrial function and oxidative 

capacity have long been appreciated as one of the 
leading manifestations of cellular aging. Denham Harman 
first proposed that oxidative radicals damage vital cellular 
processes in the free radical theory of aging (35,36), 
which he later amended to postulate that free radicals, 
a by-product of oxidative phosphorylation, directly 
damage mitochondrial lipids, proteins, and mtDNA, thus 

leading to metabolic dysfunction and diminished cellular 
lifespan (37). Experimental findings have revealed that 
oxidants, alkylating agents, and g-irradiation damage 
mtDNA more frequently than nuclear DNA (35,38,39). 
Whole-organism studies reveal age-related decreases 
in mtDNA copy number and mitochondrial function in 
skeletal muscle, liver, and heart (40,41). These model 
system studies are in agreement with findings of 
decreased mtDNA copy number in human aging across 
a range of disparate tissues, including pancreatic beta 
cells (42) and skeletal muscle (43), as well as age-
related decreases in mitochondrial protein synthesis and 
bioenergetic function in skeletal muscle (44). 

Taken together, these studies show loss of 
mtDNA, rather than mutation, represents a ‘sleeper’ form 
of mitochondrial damage that appears to be much more 
widespread than previously appreciated, and is a likely 
underlying mechanism of mitochondrial involvement in 
aging and other prevalent human diseases. The ‘ground 
rules’ of mtDNA genotype-phenotype relationships 
observed in the classical mitochondrial neuromuscular 
diseases provide crucial insights into mechanisms by 
which loss of mtDNA may negatively impact mitochondrial 
function, organization, and the homeostasis of the cell at 
large.

4. mtDNA MUTATIONS: HETEROPLASMY 
THRESHOLD EFFECTS, AND 
BIOENERGETIC FUNCTION

MtDNA, although small, is crucial to the ability 
of the organelle to produce ATP. The first pathogenic 
mtDNA mutations demonstrated this in the pathology of 
the classical mitochondrial neuromuscular diseases. As 
a result, much of our current understanding of mtDNA 
genotype-phenotype relationships is derived from 
studying diseases such as Kearns-Sayre Syndrome 
and Leigh disease, providing key concepts to apply 
towards understanding the contribution of mtDNA to 
the pathogenesis of conditions such as diabetes and 
cardiovascular disease.

4.1. MtDNA mutations 
The first pathogenic mtDNA mutations were 

first revealed in 1988, when it was shown that a single 
nucleotide change at nt11178 caused Leber’s Hereditary 
Optic Neuropathy (LHON) (45). Concurrently, Holt et al. 
showed that patients with mitochondrial myopathy 
carried mtDNAs that had deleted regions of ~7 kb, 
resulting in a smaller, ~9 kb circular mtDNA (46). These 
studies revealed the two major classes of pathogenic 
mtDNA mutations: point mutations (either in protein-
coding or tRNA-coding regions) or large-scale deletions 
(D-mtDNAs). This opened the door to further exploration 
of the mitochondrial genome in neuromuscular disease, 
which to date have described 260 pathogenic mutations 
and 120 rearrangements of the mitochondrial genome. 
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Point mutations in protein-coding regions result in loss 
of function only to the individual complex containing the 
mutated polypeptide. For example, the T8993G point 
mutation in ATP6 causes defective activity of the F1F0 
ATP synthase, but leaves complexes I-IV unaffected. 
Conversely, point mutations of mitochondrial tRNAs, 
as well as large-scale deletions encompassing one or 
more mtDNA-encoded tRNAs, result in global defects 
in production of mtDNA-encoded polypeptides, crippling 
the OxPhos machinery as a whole. For example, the 
A3243G point mutation in tRNALeu causes MELAS, while 
Kearns-Sayre Syndrome (KSS) is caused by D-mtDNAs, 
in which a large (usually several kb) region is missing, 
causing a smaller circular mtDNA. While the size and 
exact breakpoints of D-mtDNAs are highly variable, any 
deletion that eliminates a tRNA causes the same inability 
to produce mtDNA-encoded polypeptides. 

4.2. Heteroplasmy and threshold 
Mutations of these types have devastating effects 

on energetically demanding tissues such as skeletal 
muscle, nervous tissue, heart, and liver. Heteroplasmy, 
the presence of both wildtype (WT) and mutant mtDNAs 
together in the same organelle, cell, and tissue, is a 
hallmark of the classical mitochondrial neuromuscular 
disorders, and is a critical determinant of mitochondrial 
function (2). Specifically, the relative proportion of 
WT versus mutant mtDNA determines whether or not 
mitochondria are functional in heteroplasmic cells (the 
mitochondrial threshold effect) (47). While each cell 
carries ~1,000 copies of mtDNA, studies of mtDNA 
heteroplasmy reveal that well-defined thresholds exist 
for the WT mtDNA content required for function. The 
threshold ratio of WT mtDNA and Δ-mtDNA is of extreme 
importance determining mitochondrial function. Cells 
usually can withstand a high proportion of mutant mtDNA, 
but when the proportion of mutant mtDNA surpasses 
the threshold, OxPhos defects occur. For example, the 
overall mutation load for the 8993 T>G mtDNA mutation 
must exceed 95% before mitochondrial function is 
compromised, causing Leigh disease pathology (48). For 
D-mtDNAs, the threshold for loss of function is lower: the 
proportion of D-mtDNA must typically exceed 80% of total 
mtDNA before mitochondrial function is compromised in 
KSS patients (49-51). Thus, in both point mutations and 
D-mtDNAs, a relatively small overall proportion of WT 
mtDNA content is required to maintain normal OxPhos 
function. 

4.3. MtDNA depletion syndromes 
In addition to neuromuscular diseases 

caused by mutations of mtDNA, a major category of 
mitochondrial disease is caused by mutations in nuclear 
genes encoding factors involved in mtDNA maintenance 
and assembly of mitochondrial protein complexes. These 
conditions cause loss of mtDNA, leading to similar 
diverse phenotypes of ptosis, exercise intolerance, optic 
pathology, and diabetes. Mutations in genes encoding 

mitochondrial polymerase gamma (POLG), the Twinkle 
mitochondrial helicase, and thymidine kinase 2 (TK2) 
have been shown to cause loss of mtDNA content, 
leading to disease phenotypes similar to those found 
in patients with mutations of mtDNA (52,53). Cell-level 
studies recapitulate these findings, as cells depleted of 
all mtDNA (r0 cells) have similar fragmented morphology, 
loss of Dym, and loss of bioenergetic function as cells 
carrying D-mtDNAs (54,55), suggesting that a similar 
threshold may exist for the loss of mtDNA. However, it 
remains unclear what the threshold is for mitochondrial 
function in cells undergoing loss, rather than mutation, 
of mtDNA.

5. MECHANISMS OF mtDNA DAMAGE AND 
CELL-WIDE EFFECTS

Crucially, pathogenic mtDNA mutations cause 
the classical mitochondrial diseases, which affect ~1 in 
5,000 individuals (56). These diseases, caused by rare 
inherited or sporadic mtDNA mutations, have systemic 
and tissue-specific pathologies including maternally 
inherited diabetes and heart block, demonstrating 
a causative role for mtDNA-derived mitochondrial 
dysfunction in human disease. Mutations of mtDNA are 
an established causal mechanism of disease, yet are 
not highly prevalent (although less rare than previously 
thought, at 1:200 (57)).

The free radical theory of mitochondrial damage 
has frequently been interpreted to mean that oxidative 
stress causes an accumulation of different base-change 
mtDNA mutations, leading to diminished mitochondrial 
function. Richter et al. showed that gamma irradiation and 
oxidant agents induce 8-hydroxydeoxyguanosine lesions 
in both mtDNA and nDNA, but at a higher frequency 
in mtDNA (58). Transgenic mice with an exogenous 
mitochondrial polymerase gamma (POLG) mutation 
resulting in an increased error rate produce high rates of 
mutation and concomitant acceleration of aging (53,59). 
However, mtDNA genotype studies show that a single 
pathogenic mtDNA mutation must comprise a majority of 
the cell’s mtDNA population before function is lost: a single 
oxidatively-introduced base change mutation would need 
to be preferentially propagated and comprise ~60-90% 
of total cellular mtDNA before mitochondrial dysfunction 
would be negatively affected. The mitochondrial threshold 
effect has been consistently demonstrated in human 
neuromuscular disorders. D-mtDNA’s require a 60-80% 
threshold before mitochondrial function is compromised, 
while for point mutations, the threshold level is even 
higher (90% or greater!) (49). Critically, Shokolenko 
et al. found that there was no significant difference in 
base-change mutations in mtDNA from young versus 
old individuals (60). The notable exception to this is the 
clonal expansion of D-mtDNA species in the substantia 
nigra (61,62) and choroid plexus of the aging brain (63). 
Again, however, it must be noted that these examples 



Endangered species

	 113� © 1996-2015

are a single D-mtDNA expanding over time via replicative 
advantage, due to their smaller size (64), rather than an 
accumulation of many disparate mutations.

Thus, while mitochondrial damage has been 
extensively demonstrated in aging and disease, the 
accumulation of oxidative mtDNA base-change mutations 
faces major conceptual hurdles as a general mechanism 
of mitochondrial dysfunction in aging and disease. 
Alternatively, damage and loss of mtDNA copy number 
appears to be a major contributor to metabolic dysfunction 
in a wide range of human diseases. While individual point 
mutations must clonally accumulate to very high levels to 
produce mitochondrial dysfunction, damage that results 
in strand breakage and loss of mtDNA may have rapid, 
negative impacts on mitochondrial bioenergetic capacity. 
In the following section, we explore the macromolecular 
packaging of mtDNA and mechanisms of damage, as well 
as the organellar impacts and cell-wide consequences of 
decreased mtDNA content.

In another similarity to prokaryotic genetic 
organization, mtDNA is maintained in DNA-protein 
complexes called nucleoids. MtDNA is present at ~1,000 
copies per cell. Mitochondrial nucleoids package one 
or more mtDNA molecules into punctate assemblies 
through interaction with a variety of DNA-binding and 
accessory proteins, providing an efficient integration 

of replication, transcription, and translation, while 
simultaneously ensuring that mtDNA is distributed 
throughout the mitochondrial network of the cell. The 
mitochondrial nucleoid is thought to be composed of 
both ‘core’ and ‘peripheral’ components. Chief among the 
core components is Transcription Factor A, Mitochondrial 
(TFAM), which, although originally identified as a 
transcription factor, is equally invaluable as an mtDNA-
packaging protein. TFAM has been shown to actively bind 
DNA (65) and accurately mirrors the abundance of mtDNA 
within the cell. Thus, while mtDNA has traditionally been 
described as naked due to its high mutation rate (relative 
to nuclear DNA), mtDNA is highly packaged by TFAM, with 
~100 TFAM molecules binding per mtDNA molecule (66). 
Other core nucleoid components include the mitochondrial 
polymerase g (POLG), the helicase Twinkle (17), and the 
Lon protease, which appears to regulate mtDNA copy 
number by proteolytically modulating TFAM content (67). 
Peripheral nucleoid factors are more transiently associated; 
several of these (including prohibitin and ATAD3) have 
major signaling functions elsewhere in the cell and 
may mediate mtDNA’s involvement in cell signaling. 
These factors collectively organize mtDNA into a tightly-
packaged segregating unit that is distributed throughout 
the mitochondrial network of human cells, appearing as 
punctate foci (Figure 2). However, the impact of cellular 
stress and genomic insults on the mitochondrial nucleoid 
remains a pathogenic mechanism in need of exploration.

Figure 2. MtDNA nucleoids are distributed throughout the mitochondrial network. Confocal microscopy of 143B osteosarcoma cells stained for 
mitochondria with MitoTracker (red) and immunolabeled for the mtDNA-binding protein TFAM (green). Nuclei were visualized with DAPI (blue). 
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Recent studies demonstrate that disruption of 
mtDNA’s integrity, rather than base-change mutation, is 
much more common than previously appreciated, and 
likely to lead to a rapid decrease in bioenergetic function. 
Shokolenko et al. found that oxidants such as hydrogen 
peroxide (H2O2) introduced significant levels of strand 
breakage, rather than base-change mutations (60). 
Strikingly, cytokine-mediated inflammation directly attacks 
mitochondria and mtDNA, resulting in loss of mtDNA copy 
number (68, 69). These studies strongly indicate that 
mitochondria and mtDNA are major cell-intrinsic targets 
of inflammatory and oxidative insults. These findings 
open a host of questions in need of answers. What are 
the impacts of strand breakage on nucleoid organization? 
What are the dynamics of mtDNA-associated factors 
when mtDNA content is lost? When mtDNA is damaged 
and ‘lost’ how does this occur? EndoG is the only known 
mitochondrial endonuclease and is chiefly famous for 
degrading DNA upon release to the cytosol during 
apoptosis. Recent findings suggest that mtDNA is actually 
released both from the organelle and the cell, and can 
have pro-inflammatory effects (70,71). The molecular 
pathobiology of mtDNA damage thus presents a host of 
dynamic, unexplored questions.

5.1. The network is down: Impacts on 
organellar structure and bioenergetic function

In addition to the genetic material itself, damage 
and loss of mtDNA has severe, direct consequences for 
mitochondrial ultrastructure and bioenergetic function. 
As an organellar network, mitochondrial organization 
is increasingly revealed to be highly dynamic and 
responsive to cellular cues. The dynamics of the 
mitochondrial network are inextricably and directly linked 
with bioenergetic function, particularly the Dym across 
the inner membrane. As such, loss of mtDNA causes 
severe disruption of this elegant balance of mitochondrial 
structure and function. 

Rather than a static collection of organellar 
‘batteries’, mitochondria are increasingly emerging as a 
highly dynamic organellar network distributed throughout 
the cell, providing ATP and integrating into cellular 
homeostasis by participation in a range of cell signaling 
pathways. As a metabolic network, mitochondria can 
exist in two states: as a united reticulum of threadlike 
organelles or as a fragmented population of individual 
organelles. These morphological transitions, described 
as the ‘thread-grain’ transition (72), are genetically 
regulated, maintaining a balance of organellar fission 
and fusion events. Mitochondrial fission and fusion are 
governed by different sets of interacting factors: fission 
involves recruitment of the cytosolic dynamin-related 
protein DRP1 to the mitochondrial outer membrane 
by the mitochondrial factors FIS1 (73) and MFF (74). 
Conversely, fusion of the mitochondrial outer membrane 
is mediated by mitofusins 1 and 2 (75), while inner 
membrane fusion is mediated by OPA1 (76,77). 

Strikingly, mtDNA maintenance is elegantly coordinated 
with mitochondrial fission/fusion balance. Mitochondrial 
nucleoids are distributed at regular intervals throughout 
the mitochondrial network (Figure 2). The packaging of 
mtDNA into nucleoids is coordinated with mitochondrial 
fission and fusion to ensure that mtDNA is not lost. 
When the mitochondrial network undergoes fission, 
each individual mitochondrion will carry at least one 
mtDNA nucleoid (78), such that mitochondrial fission 
events take place on either side of, but not at, nucleoid 
foci (79), with DRP1 and MFF localizing to mitochondria 
immediately adjacent to nucleoid sites (80), allowing 
for distribution of mtDNA throughout the mitochondrial 
network and efficient transmission of mtDNA during cell 
division. Within the mitochondrial matrix, nucleoids are 
closely, albeit indirectly, tethered to the inner membrane 
through a series of protein-protein interactions that 
serve to coordinate mtDNA transcription and translation 
with the mitochondrial ribosome (81). Thus, mtDNA 
is efficiently integrated into the overall ultrastructure 
of the mitochondrial network, in which the molecular 
interactions responsible for fission/fusion balance and 
nucleoid maintenance act in concert to ensure that 
the organellar network has evenly distributed mtDNA 
content, regardless of the morphological state of the 
network. However, loss of mtDNA has profound effects 
on mitochondrial organization.

While mitochondrial dynamics are regulated as 
a balance of fission and fusion, they are also inextricably 
tied to function. Maintenance of a fused reticular network 
requires an intact Dym across the inner membrane: both 
pharmacological uncoupling of Dym (3) and depletion 
of mtDNA (82) results in fragmented mitochondrial 
morphology and inability to accomplish mitochondrial 
fusion. Dissipation of Dym (via uncoupling agents 
such as CCCP and valinomycin) causes complete 
fragmentation of the mitochondrial network (3), as does 
inhibition of mitochondrial protein synthesis (83). Dym-
dependent changes in mitochondrial morphology are 
a result of loss (76) or proteolytic cleavage (84) of the 
OPA1 fusion protein, in which the long isoforms of OPA1 
(L-OPA1) are cleaved to short isoforms (S-OPA1) in 
response to decreased Dym. Head et al. (85) and Ehses 
et al. (86) concurrently identified OMA1, a mitochondrial 
metalloprotease, as the protease responsible for Dym–
sensitive cleavage of the fusion-competent long isoforms 
of OPA1. OMA1 and OPA1 have thus emerged as crucial 
factors in mediating the interaction of mitochondrial 
fission/fusion balance and bioenergetic function. 

Loss of mtDNA can rapidly disrupt this balance 
of organellar structure and function, leading to severe 
consequences for the cell. King et al. (87) first showed 
that mtDNA could be depleted from live cells in culture by 
treating with ethidium bromide, which preferentially inhibits 
mitochondrial POLG, rather than nuclear-localized DNA 
polymerases, thus leading to decreased mitochondrial 
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respiratory function (88). These mtDNA-depleted r0 cells 
rely entirely on cytosolic glycolysis, but can nevertheless 
be passaged in cell culture. The inability to produce 
mtDNA-encoded polypeptides leads to incompletely-
assembled OXPHOS complexes (89), resulting in electron 
transport deficiency (55) and decreased Dym (90). r0 
cells maintain a minimal Dym, which is likely due to the 
presence of an intact F1 ATPase, reversing H+ transport 
to permit growth (91). This lack of bioenergetic function 
has dramatic effects on mitochondrial ultrastructure, 
causing a completely fragmented morphology, with a 
swollen matrix and loss of cristae (54, 82). This disruption 
of organellar homeostasis may activate mitochondria-to-
nucleus ‘retrograde’ stress signaling, and predispose the 
cell to apoptosis.

5.2. Cell-wide impacts of mtDNA loss: 
apoptosis and signaling impacts

While the loss of mtDNA directly causes loss of 
OxPhos function, the consequences for the rest of the 
cell are also emerging. Crucially, loss of mtDNA appears 
to have serious effects on cell viability, insulin signaling, 
and apoptosis, as well as broadly altering cell-signaling 
pathways via ‘retrograde’ mitochondria-to-nucleus 
signaling (Figure 3).

Apoptosis, derived from the Greek meaning 
“falling off”, was first described by Kerr et al. as the 
morphological features surrounding a distinct form of cell 
death, including cytoplasmic and nuclear compression 
followed by fragmentation and dispersal of the cell (92). 
Apoptotic cell death is essential to normal development 
and tissue homeostasis (93), and occurs in response to 
a range of stimuli, including cell stress, DNA damage, 
deprivation of growth factors, and other stimuli (94), 
and can function as a defense mechanism towards 
disease or cellular damage (95). Caspases are a family 
of genes that carry out proteolytic cleavage, and are 
activated by two major cellular pathways, the intrinsic 
and the extrinsic pathways (96), both of which activate 
caspase-3, resulting in DNA fragmentation and cell 
death (97). The extrinsic pathway is activated by cell 
surface death receptors such as tumor necrosis factor 
(TNF) related family (Fas) (98) The TNF superfamily 
includes TNFR1, Fas, APO-1, DR3, TRAIL-R1 and DR5. 
The extrinsic pathway is initiated by the binding of death 
receptor ligands, allowing procaspase-8 to be recruited 
to the death-inducing signaling complex, binding to a 
FAS-associated death domain (FADD). Dimerization 
then occurs in the procaspase-8 and caspase-8 is 
then activated (99). The intrinsic pathway involves the 
release of factors, particularly cytochrome c, from the 
mitochondria and can be activated by DNA damage, 
cytoskeletal disruption and other stimuli (100), initiating 
dimerization of caspase-9 (101). When cytochrome c 
is released from the mitochondria, it binds apoptotic 
protease-activating factor-1 (APAF1) (102) inducing 
activation of caspase-9 (103).

The discovery that mitochondria directly 
participate in apoptosis prompted an explosion of interest 
in mitochondrial cell death mechanisms (29, 104-108). 
Mitochondrial outer membrane permeabilization (MOMP) 
is a crucial step of early-stage apoptosis, allowing Bax 
and Bak from the Bcl 2 family to be translocated to the 
outer mitochondrial membrane (109) and concentrate into 
submitochondrial punctate foci (110), which then allows 
release of cytochrome c (111). In addition to the release 
of cytochrome c, Smac/Diablo, apoptosis-inducing factor 
(AIF) and Endo G (112-114) are pro-apoptotic factors 
that are released from mitochondria during apoptosis. 
Release of these mitochondrial factors leads to assembly 
of the apoptosome, activating procaspase-9, which in 
turn is then able to activate caspase-3 and caspase-7, 
triggering a cascade leading to oligonucleosomal DNA 
fragmentation (115).

Due to mitochondrial control of cell death, there 
has been widespread interest in potential roles of mtDNA-
derived mitochondrial dysfunction in apoptosis. In  vivo, 
cardiac-specific TFAM knockout mice have mtDNA 
depletion, and show both mitochondrial dysfunction and 
massive apoptosis (29). Decreased OxPhos activity and 
increased fission have been proposed as mechanisms 

Figure 3. Cell-wide impacts of mtDNA loss. In response to loss of mtDNA 
copy number, a variety of cell types reveal decreased bioenergetic 
function, Dym, and ATP synthesis. In addition, the mitochondrial network 
loses the capability to maintain a united, networked morphology, instead 
assuming an obligately fragmented morphology, with concomitant 
increased production of mitochondrial reactive oxygen species. This 
collapse of mitochondrial homeostasis has profound effects on the cell at 
large, causing increased apoptosis, insulin resistance, and alterations in 
a variety of cell-wide signaling networks.
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by which mitochondrial dysfunction may cause increased 
apoptosis, as both have been mechanistically connected 
with apoptosis (94, 106). Strikingly, strand breakage 
of mtDNA itself has been implicated as a trigger for 
apoptosis (116). As an electron carrier, cytochrome c is 
crucial for a stable membrane potential. Thus, removal 
of cytochrome c from electron transport to the cytoplasm 
results in decreased membrane potential and ATP 
synthesis (106). HeLa cells undergo apoptosis with little 
change in Dym, suggesting that membrane potential is 
decreased in late-stage apoptosis, but is not a crucial 
step of early apoptosis (106). ρ0

 cells maintain a minimal 
membrane potential and undergo apoptosis (117), but 
this Dym is due to reversal of ATP synthase proton flux, 
rather than electron transport (91). Thus, cytochrome c 
is available for apoptotic signaling and is not required 
for electron transport in r0 cells. Kwong et al. suggested 
that OxPhos activity may regulate apoptosis in a context-
dependent manner: ρ0 cells are protected against 
apoptosis because of the complete absence of electron 
transport, while cells with decreased electron transport 
have heightened sensitivity to apoptosis (118).

Alternatively, the increased organellar fission 
associated with loss of mtDNA may mechanistically 
activate apoptosis. Recent studies have sparked 
controversy whether fission is required for apoptosis. 
Several apoptotic stimuli cause mitochondrial 
fragmentation mitochondria via DRP1 and FIS1 (119). 
Down-regulation of DRP1 has been reported to prevent 
release of cytochrome c, but not Bax/Bak-dependent 
apoptosis, suggesting that fission is not important in 
Bax/Bak-dependent apoptosis (119). On the other hand, 
mitochondrial recruitment of DRP1 may be concurrent 
with Bax activation during early apoptosis (120). Stable 
DRP1 is involved in apoptotic events such as cristae 
remodeling (121) which leads to the release of cytochrome 
c and eventually to the complete loss of Dy (120). 
Staurosporine (STS) causes translocation of DRP1 to the 
mitochondrial outer membrane during apoptotic induction, 
while DRP1-negative cells can block apoptosis (122), 
suggesting that mitochondrial fission is necessary in 
order for apoptosis to occur. More recently, mitochondrial 
DRP1 has been shown to stimulate oligomerization of 
Bax and cytochrome c release (123), while decreased 
OPA1 fusion leads to apoptotic sensitivity (124). These 
findings strongly indicate that disruption of mitochondrial 
structural dynamics in mtDNA-depleted cells leads to 
increased apoptotic sensitivity. 

In addition, mitochondrial dysfunction appears 
to disrupt the delicate web of cellular signaling events 
via ‘retrograde’ mitochondria-to-nucleus signaling. 
While the nuclear signaling pathways regulating 
mitochondrial biogenesis have become increasingly 
well characterized, centering on the PGC-1a master 
regulator of mitochondrial biogenesis and related 
factors, mitochondria appear to feedback to the nucleus, 

modulating key pathways. Nuclear-encoded signaling 
factors tightly regulate mitochondrial content within 
the cell, modulating expression of nuclear-encoded 
mitochondrial proteins, as well as mtDNA copy number 
(via TFAM expression) and expression of mtDNA-
encoded genes (29). Strikingly, however, it is also 
becoming clear that mitochondria can communicate with 
the rest of the cell via ‘retrograde’ signaling pathways. 
The loss of mtDNA has profound effects on the rest of the 
cell through retrograde modulation of signaling pathways 
and apoptotic modulation (116), and appears to act via 
modulation of both AMP kinase, ROS-mediated NFKB 
signaling pathways (125). Thus, while loss of mtDNA 
causes an immediate bioenergetic deficit, the effects on 
cell signaling reverberate throughout the cell, impacting a 
wide variety of pathways crucial to homeostasis, yet not 
directly involved in energy metabolism.

6. CONCLUDING REMARKS

Originally, the idea of pathogenic mtDNA defects 
was highly controversial. How could a defect in something 
so crucial as ATP production not be intrinsically lethal? 
Following the sequencing of the human mitochondrial 
genome, it became clear that mutations of mtDNA are 
causative in an enormous range of disease pathologies, 
particularly concentrated in neuromuscular disorders. 
The evolving face of mitochondrial biology is revealing 
that loss of mtDNA is equally serious (and in many cases 
phenotypically identical), playing a strong role in many 
of the most prevalent diseases facing public health. 
The complex interplay of mtDNA with mitochondrial 
ultrastructure, metabolic functions, and cellular signaling 
paints an increasingly dynamic picture of the integral role 
of the mitochondrial network in cellular homeostasis. 
As such, many of the mechanistic and pathology-based 
questions raised here will provide crucial information for 
preventive and therapeutic approaches.
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