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1. ABSTRACT

Anaplastic large cell lymphoma (ALCL) is an 
aggressive, highly proliferative, T-cell lymphoma with 
increasing incidence worldwide. Anaplastic Lymphoma 
Kinase (ALK) fusions occur in about 50% of all cases. Most 
ALK positive cases of ALCL harbor the t(2;5) translocation 
that leads to expression of Nucleophosmin-Anaplastic 
Lymphoma Kinase (NPM-ALK). NPM-ALK induces a 
variety of oncogenic signaling pathways that lead to 
malignant transformation of T-cells via Activator Protein-1 
(AP-1), STAT3 and other (transcription) factors. In addition 
to the commonly known AP-1 activators Mitogen-Activated 
Protein Kinases (MAPKs), there are other signaling 
pathways, such as PI3K/mTOR/AKT, which are implicated 
in AP-1 activation/expression in ALCL. The AP-1 factor 
JUNB was shown to drive ALCL proliferation and the 
expression of the characteristic ALCL Ki-1 antigen, CD30. 
cJUN and JUNB target PDGFRB, thereby leading to tumor 
progression and dissemination. Furthermore, aberrant 
gene expression in ALCL is frequently accompanied by 
changes in epigenetic regulatory mechanisms, such as 
DNA methylation patterns. Here, we discuss the role of 
AP-1 in the pathogenesis of ALCL and provide an overview 
of pathological epigenetic changes in ALCL cells. 

2. INTRODUCTION

Anaplastic Large Cell Lymphoma (ALCL) 
was first recognized as a distinct lymphoma category 
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in 1985. ALCL represents a group of highly malignant 
peripheral T-cell lymphoma, characterized by 
constitutive proliferation of large CD30 positive blasts 
with pleomorphic, often horseshoe-shaped nuclei (1-3). 
The lymphoid origin of ALCL cells was determined 
from the presence of clonal T-cell receptor (TCR) gene 
rearrangements and the expression of T-cell lineage-
associated antigens. Primary systemic ALCL has a peak 
incidence in childhood, accounting for approximately 
40% of all childhood lymphoma cases, but less than 5% 
in adults. During disease progression ALCL frequently 
involves extranodal sites (4, 5). In the fourth edition of 
the WHO Classification of Tumors of Haematopoietic and 
Lymphoid Tissues ALCLs are divided into ALK positive, 
and ALK negative ALCL. However, another category 
has recently been reported, which is associated with the 
presence of breast implants, leading to ALCL (iALCL) 
indicating previously unknown risk factors (6).

ALK is a receptor protein tyrosine kinase with 
a putative transmembrane domain and an extracellular 
domain. In healthy individuals its expression is restricted 
to neonatal brain tissue (7). Most ALK positive ALCLs 
carry a balanced reciprocal translocation t(2;5)
(p23;q35) resulting in a fusion of the ALK gene region 
coding for entire C-terminal-, catalytic-, cytoplasmic-, 
kinase- domain, with the oligomerization- domain of the 
nucleophosmin gene (NPM1) including its promoter. 
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Besides NPM1, other genes like TFG, TPM3, ATIC, 
CLTCL, RANBP2 and MSN have been identified as 
ALK fusion partners in ALK positive ALCL (8). In all of 
these cases the result is constitutive expression of 
activated ALK fusion tyrosine kinase (FTK). NPM-ALK 
is by far the most extensively characterized ALK FTK. 
It exhibits its oncogenic potential through proliferative 
and survival signaling pathways. Important examples 
are the phosphatidylinositol 3-kinase/AKT pathway (9), 
signal transducer and activator of transcription 3 (10) and 
5 activation (11), Src tyrosine kinase signaling (12) and 
diacylglycerol kinase (13) as well as PLCγ (14) signaling. 
These pathways are either upstream of, or interconnected 
to activator protein 1 (AP-1) activation (15-19).

AP-1 was identified as a transcription factor 
(TF) already in 1987 (20). It is a sequence-specific DNA 
binding factor forming a dimeric complex and it comprises 
various members of the JUN (cJUN, JUNB, JUND), 
FOS (cFOS, FRA1, FRA2), ATF (activation transcription 
factor) and MAF (musculoaponeurotic fibrosarcoma) 
protein families (15). JUN-JUN and JUN-FOS dimers 
bind to phorbol 12-O-tetradecanoate-13-acetate (TPA) 
response elements (TRE) within promoter elements (18). 
AP-1 activity is regulated in a cell type- and state- specific 
manner by interactions between AP-1 and other TFs, 
upstream activators and cofactors (15). All AP-1 proteins 
have a conserved bZIP region, which comprises a basic 
DNA binding domain and a leucine zipper region. The 
latter is responsible for the dimerization, thus enabling 
DNA binding, and accounts for specificity and stability of 
homo- and heterodimers formed by the various JUN, ATF, 
and FOS proteins (15, 21). AP-1 regulates the expression 
of proteins involved in cell differentiation, proliferation 
and survival (22). Whereas cJUN is a known driver of 
malignant transformation (23), JUNB acts pleiotropic 
in tumorigenesis with reported pro- and anti- apoptotic 
functions (24). AP-1 proteins like cJUN can activate 
their own expression (15, 21) and therefore can drive a 
positive self-regulatory loop.

3. AP-1 IS IMPLICATED IN THE 
PATHOGENESIS OF ALCL

The importance of AP-1 proteins in the 
pathogenesis of Hodgkin lymphomas and ALCL was 
reported for the first time by Mathas et al. in 2002. They 
reported strong cJUN and JUNB expression in CD30 
positive Hodgkin/Reed Sternberg cells (HRS) and ALCL 
cell- lines but not in other lymphoma entities. Interestingly, 
in their hands MAPK-independent AP-1 activation 
promoted tumor cell proliferation. In HRS cells this is 
conferred via expression of cell cycle regulator CCND2 
(cyclinD2), the proto-oncogene cMET and the lymphocyte 
homing receptor CCR7. In the NPM-ALK ALCL cell line 
Karpas-299 AP-1 activation prevents apoptosis (25). 
Srzemska et al., described high cJUN, JUNB, cFOS 
and FRA1 levels in ALCL patient samples in 2003 (26). 

cJUN may contribute to uncontrolled cell-division and 
oncogenesis because siRNA mediated cJUN silencing 
inhibits ALCL cell proliferation and abrogates cell cycle 
progression (27). JUNB on the other hand is amplified in 
primary cutaneous T-cell lymphomas (28). Interestingly, 
NPM-ALK is capable of activating the mitogenic ERK 
MAP-kinase, which upregulates JUNB via ETS1 (29). 
JUNB interacts with the TNFRSF8 (CD30) gene promoter 
and activates CD30. Silencing of JUNB results in reduced 
cell growth and colony formation (30). Moreover, in ALCL 
JUNB knockdown decreases AP-1 activity in general 
and leads to reduced cell proliferation (17). These data 
suggest an oncogenic role for cJUN and JUNB in the 
pathogenesis in ALCL.

4. AP-1 COMPLEX AND NPM-ALK: NPM-ALK 
MEDIATES TRANSCRIPTION/ACTIVATION 
OF AP-1 COMPLEXES

NPM-ALK mimics activated TCR signaling by 
inducing AP-1 transcription factors, which bind to promoter 
elements found in a broad array of cytokine genes. AP-1 
activation is achieved via classical TCR activation cascade 
proteins, IRS-1, SHC, PLCγ and subsequent MAPK 
cascade activation via RAS and ERK (31). Nevertheless, 
NPM-ALK positive as well as NPM-ALK negative ALCL 
equally express AP-1 proteins (17). However, Staber et 
al., found in 2007 that target genes of AP-1 transcription 
factors like GM-CSFa, GM-CSFb, ARF-5, FAS, FASL 
and BCL-3 are stronger expressed in NPM-ALK positive 
than in NPM-ALK negative ALCL cell lines. This finding 
goes hand in hand with higher AP-1 activity in NPM-ALK 
positive compared to NPM-ALK negative ALCL cell lines. 
AP-1 expression pattern however, was dependent on the 
cellular origin, and results slightly differed from study to 
study. In all cases known to the authors of this current 
article though, JUNB, cJUN, cFOS and FRA proteins 
seem to be the most relevant AP-1 factors in ALCL (17, 
25). Leventaki et al., revealed a NPM-ALK induced cJUN 
activation mediated via the JNK pathway. Transfection 
assays in HEK293T and Jurkat cells with active and 
kinase-dead NPM-ALK carrying vectors and knock down 
experiments with JNK1 and JNK2 siRNA in NPM-ALK 
cell lines revealed NPM-ALK dependent phosphorylation 
and activation of JNKs and cJUN. NPM-ALK dependency 
of AP-1 transcriptional activity was further shown when 
cells were treated with the inhibitor WHI-P154, which 
inhibits ALK enzymatic activity (27, 32). 

5. AP-1 PROTEIN JUNB 
TRANSCRIPTIONALLY REGULATES CD30

ALCL and HRS cells exhibit a constant and 
characteristic cell surface expression of CD30 in 
all neoplastic cells. CD30 is a member of the tumor 
necrosis factor receptor (TNFR) superfamily. The CD30 
promoter consists of a downstream promoter element at 
positions +24 to +39 responsible for transcription start 
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site selection and a constitutive core promoter region at 
-38 to -241 containing three SP-1 and two ETS binding 
sites. Microsatellite sequences between -1,2 kb and 
-336 bp contain CCAT repeats, which repress the core 
CD30 promoter activity (33, 34). In classical Hodgkin’s 
lymphoma CD30 mediates proliferation through the NF-κB 
pathway via binding to TNFR-associated factors (TRAF) 
family members in a ligand independent manner (35). In 
NPM-ALK positive ALCL the recruitment and aggregation 
of TRAF proteins can be hampered by NPM-ALK, thus 
abrogating CD30-driven NF-κB signaling  (36). The 
signaling of CD30 in ALCL is therefore less clear and 
most likely independent from NF-κB. Watanabe et al. 
found CD30 signaling to be mediated by interaction with 
JUNB through an autoregulatory mechanism. CD30 
promoter activity was controlled by a self-activated 
CD30-ERK1/2-JUNB signaling loop in ALCL cell lines. 
Constitutive CD30 expression led to activation of the 
ERK1/2 MAPK pathway inducing JUNB, which in turn 
activated the CD30 promoter through binding an AP-1 site 
in a microsatellite region, thus relieving the suppression 
of the CD30 core promoter in ALCL cell lines (37). Hsu 
et al. also described a functional correlation between 
NPM-ALK and CD30 protein and reported that NPM-ALK 
induced CD30 expression. CD30 itself was regulated at 
transcriptional level and was mediated by JUNB (38). 
JUNB expression was in turn regulated by NPM-ALK and 
was inducible in normal ALK negative HEK293T cells by 
forced expression of ectopic NPM-ALK. Transactivation 
of CD30 via enhanced CD30 promoter activity mediated 
by JUNB binding to the AP-1 site occurred in a cell 
specific manner and was observed in Karpas-299 cells 
but not in HEK293T (38). Finally, JUNB was shown to 
be expressed not only in cases of classical Hodgkin 
lymphoma, cutaneous ALCL and CD30+ diffuse large 
B-cell lymphoma, but also in lymphomatoid papulosis. 
Patients with nodular lymphocyte-predominant Hodgkin 
lymphomas and diffuse large B-cell lymphomas that were 
CD30 negative did not express JUNB (39).

6. AP-1 AND THE ERK1/2, JNK, MTOR AND 
NF-ΚB PATHWAY 

In many tumor types, increased AP-1 expression 
is accompanied by activated ERKs (15). Whereas Mathas 
et al. found a MAPK-independent AP-1 activation by 
NF-κB in HRS cells (25), Staber et al. observed a MEK/
ERK- JUNB signaling in ALCL cells. JUNB transcription 
was dependent on the activation of the MEK/ERK 
pathway, and treatment of ALCL cell lines with the MEK-
inhibitor UO126 resulted in decreased JUNB (mRNA) 
levels (17). cJUN phosphorylation was not affected 
following MEK inhibitor (U0126) treatment of ALCL cells, 
indicating signaling via JNK (27). On a translational 
level, JUNB was associated with the mammalian target 
of rapamycin (mTOR) pathway as JUNB protein levels 
decreased after rapamycin treatment of ALCL cell 
lines. Consequently, JUNB mRNA shifted from larger 

polysomes into monosomes and RNPs. Translational 
regulation of JUNB was presumed since JUNB mRNA 
harbors a 5’TOP-like motif in its 5’-UTR near the 
transcriptional start site (16). Pharmacological inhibition 
of mTOR could therefore represent an alternative in the 
treatment of ALCL. 

7. IMMUNMODULATORY EFFECTS OF AP-1

NPM-ALK positive ALCLs are of T/null 
immunophenotype and the normal cellular counterpart 
of an ALCL cell is presumed to be the cytotoxic 
T-lymphocyte. Cytotoxic T-cells as well as ALCL tumor 
cells often bear cytotoxic granules like Granzyme B (GzB) 
or Perforin in the cytoplasma. Interestingly, JUNB binds 
to the GzB promoter and acts as a direct transcriptional 
GzB activator. Moreover, GzB as well as perforin 
transcription are promoted by NPM-ALK. Signaling 
through NPM-ALK and JUNB affects the expression 
of cytotoxic molecules in NPM-ALK positive ALCL. 
Therefore, Pearson, Lee et al., came to the interesting 
conclusion that in NPM-ALK positive ALCL - GzB and 
perforin are not only expressed due to the T-cell origin but 
also are actively promoted by oncogenic signaling (40). 
Interestingly, AP-1 might also be involved in immune 
system modulation by ALCL tumors. Galectin-1 (GAL1) 
is an immune- modulatory glycan- binding- protein 
regulated by an AP-1-dependent promoter element that 
leads to an immune-suppressive T-cell environment. 
Together with AP-1, GAL1 was selectively expressed 
in malignant HRS- as well as in ALCL- cells. Therefore, 
Rodig et al., suggest a common mechanism for tumor 
immunotolerance in these diseases (41).

8. AP-1 AND PDGFR-B

Laimer et al, used a CD4-NPM-ALK mouse model, 
with endogenous T-cell lymphoma development at about 
8 weeks after birth, to study the role of AP-1 in lymphoma 
development. They reported a prolonged overall survival, 
reduced tumor cell proliferation and diminished spread of 
tumor cells when both AP-1 genes cJUN and JUNB were 
conditionally deleted in T cells of NPM-ALK transgenic 
mice. Deletion of either one of the two AP-1 components 
showed no effect on survival rates. Further, the authors 
deduced that PDGFRB, which carries an AP-1 consensus 
sequence within its promoter, is a direct transcriptional 
target of cJUN and JUNB, and that PDGFRB is a major 
factor in driving proliferation, tumor cell survival and 
tumor dissemination in NPM-ALK positive ALCL. Most 
interestingly, the tyrosine kinase inhibitor imatinib, which 
can also target PDGFRB, substantially increased overall 
survival of CD4-NPM-ALK mice resulting in reduced tumor 
cell proliferation and enhanced apoptosis. The observed 
tumor size reduction directly correlated with reduced 
PDGFRB expression. Also, PDGFRB and PDGFRA 
expression was observed in a high proportion of human 
ALK- positive and ALK- negative ALCL samples (42-44) 
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However, PDGFRB expressing ALK- positive tumors 
have a significantly worse prognosis than ALCL which do 
not express the PDGFRB (Kenner et al., unpublished). In 
one ALCL patient so far, off label use of imatinib resulted 
in complete and sustained clinical remission after 10 days 
of imatinib treatment (43). In addition, imatinib treatment 
was extended to other T-cell lymphomas sometimes with 
surprising success (45). Recently lobatin B treatment 
was shown to inhibit the expression of NPM/ALK, JUNB 
and PDGFRB. This was due to cell cycle arrest of ALCL 
cells in late M phase, resulting in attenuated proliferation 
rates  (42). It might also be worthwhile to elucidate the 
function of PDGFRs in NPM-ALK negative ALCLs, which 
has not been done so far.

9. CELL CYCLE 

cJUN and JUNB can promote cell-cycle 
progression through regulation of cell cycle checkpoints. 
Using NPM-ALK positive ALCL cells, Leventaki et al., 
reported in 2007 that inhibition of JNK activity reduces cell 
proliferation due to G2/M cell-cycle arrest. Furthermore, 
siRNA mediated silencing of cJUN led to a decreased 
S-phase cell-cycle fraction and upregulation of p21 
and downregulation of CCND3 (CyclinD3) and CCNA2 
(CyclinA2) (27). 

A comparable however, different effect was 
achieved by transient knockdown of JUNB with si-RNA 
in NPM-ALK positive cell lines by Staber et al. Cellular 
proliferation was decreased as evidenced by proliferation 
curves as well as reduced cell count in the G2/M phase 
of the cell cycle (17). The effects of JUNB are highly 
dependent on the cellular context though. While JUNB 
inhibits the cell cycle by p16INK4a induction and CCND1 
(CyclinD1) repression in many cell types (15), it was also 
reported to promote proliferation by CCNA2 transcription. 
Mechanistically, RNAi mediated knockdown of JUNB led 
to downregulation of CCNA2,, CCND2 (CyclinD2) and 
CCND3 (CyclinD3) but activation of cyclin-dependent 
kinase inhibitors CDKN2A(p14) and CDKN1A(p21), 
resulting in cell cycle arrest. In addition, silencing of JUNB 
sensitized ALCL cells to standard chemotherapeutic 
agents (30). Another interesting notion on enhanced 
JUNB expression in ALCL and its consequences was 
recently provided by Pérez-Benavente et al. (46, 47). The 
authors showed that JUNB undergoes phosphorylation-
dependent ubiquitylation during the G2 phase of the 
cell cycle, which results in its degradation. GSK3 was 
identified as the kinase and SCF (FBXW7) as the E3 
ubiquitin ligase responsible for JUNB degradation in 
G2. JUNB proteolysis in G2 therefore, seems to be an 
essential step for proper mitosis. Constitutively activated 
ALK inhibits GSK3β activity in ALCL cells, which abrogates 
JUNB degradation and causes CCNA2 up-regulation in 
mitosis. This can result in genetic aberrations typical for 
cancer (15, 46, 47). 

10. MICRO RNA-155 INFLUENCES AP-1 

Micro RNA (miR)-155 expression alters many 
signaling pathways including most prominently the MAPK 
cascade. MiR-155 induces 3’UTR shortening and isoform 
switching of MAPK related genes. In addition, it correlates 
with protein phosphorylation of MAPK components and 
MAPK downstream targets ERK1/2 and AP-1 members 
FRA1 and cFOS. MiR-155 was also reported to induce 
expression of MAPK regulated genes Zeb1, Snail, 
Plaur, and SerpinE1 in 2014 (48). Interestingly, Merkel 
et al., identified a set of miRNAs that are specifically 
deregulated in ALCL in 2010 (49). Amongst other findings 
they reported a four miRNA classifier that distinguishes 
NPM-ALK positive from NPM-ALK negative ALCL. The 
miR-17–92 cluster was stronger expressed in NPM-ALK 
positive ALCL while miR-155 was expressed at about 
10-fold higher levels in NPM-ALK negative ALCL (49). It is 
suggested that miR-155 can act as a tumor driver in NPM-
ALK negative ALCL and other mature T-cell lymphomas 
and should be considered as a therapeutic target for this 
class of diseases (Merkel et al. 2015, in press).

11. EPIGENETIC DEREGULATIONS IN ALCL

Besides genetic mutations, epigenetic 
alterations are frequently found in diverse malignant 
diseases (50). Among these alterations, DNA methylation 
is an epigenetic modification occurring at CpG sites in the 
genome that normally leads to silencing of the underlying 
DNA sequence. Cancer cells show a global loss of 
DNA methylation, which adds to genomic instability 
and de-regulation of tissue-specific or imprinted genes. 
Additionally, local hypermethylation can arise at formerly 
unmethylated promoter CpG islands, often affecting 
tumor suppressor genes that control cell cycle, apoptosis 
or DNA repair (51, 52). 

So far, a couple of genes important for cell 
proliferation and survival have been shown to be silenced 
by promoter methylation in NPM-ALK lymphomas, for 
example the cell cycle inhibitor p16INK4a, the cytokine 
TNF-, which can trigger apoptosis, and nuclear factor of 
activated T cells 1 (NFATC1), which is able to transduce 
pro-apoptotic signals (53-55). Another pro-apoptotic 
member that is epigenetically silenced in NPM-ALK cell 
lines and lymph node biopsies from patients is BIM (56). 
BIM silencing occurred through recruitment of the 
methyl-binding protein MeCP2 and the SIN3a/histone 
deacetylase 1/2 corepressor complex, which could be 
reverted by the histone deacetylase inhibitor trichostatin A 
or demethylating drugs. In other mechanistic models, the 
NPM-ALK dependent transcription factor STAT3 has been 
implicated to contribute to epigenetic silencing in NPM-
ALK cells by up-regulating and recruiting DNMT1 to the 
promoter of certain tumor suppressors such as SHP1 and 
STAT5A, which stimulate degradation or inhibit expression 
of NPM-ALK, respectively (57, 58). The IL-2R common 
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gamma chain which is important for the maturation 
of normal CD4+ T lymphocytes, is also epigenetically 
silenced in a STAT3-dependent manner in NPM-ALK 
cells (59). Besides association with DNMT1, STAT3 might 
act by suppressing the expression of miR-21, which inhibits 
DNMT1 mRNA expression. Furthermore, components of 
the TCR pathway, such as ZAP70, CD3 and SLP76 are 
silenced by promoter methylation in the disease (60), 
Genome-wide DNA methylation analyses in our own lab 
indicate that several additional components of the TCR 
pathway are silenced by promoter DNA methylation in 
primary ALK+ ALCLs (Hassler et al., unpublished results). 
Data is accumulating showing that epigenetic silencing 
of tumor suppressor genes plays a key role in malignant 
transformation by NPM-ALK. Thus, reversal of these 
modifications by inhibiting enzymes involved in establishing 
DNA methylation patterns could be a promising strategy 
to target aberrant DNA methylation in NPM-ALK positive 
ALCL (61). The most successful drugs targeting DNA 
methylation enzymes are the nucleoside analogues 
5-azacytdine (5-aza-CR, Vidaza®) and its more stable 
deoxy-derivative 5-aza-2’-deoxycytidine (5-aza-CdR, 
Dacogen®) (51). The drugs work via incorporation into 
DNA of actively proliferating cells. Upon incorporation, they 
form covalent complexes with DNA methyltransferases 
and thus trap the enzymes at DNA sites. Thereby, they 
inhibit propagation of DNA methylation during each round 
of replication at low doses, whereas at high doses cytotoxic 
side effects can occur (62-64). Indeed, 5-aza-CdR has 
been shown to be effective in inhibiting proliferation and 
inducing apoptosis in NPM-ALK cell lines in vitro and in 
xenografts (65). Furthermore, 5-Aza-CdR was able to 
re-activate expression of tumor suppressors specifically 
silenced in NPM-ALK such as p16INK4A, STAT5A or BIM 
(56, 58, 65) thus making reversal of DNA methylation by 
DNMT inhibitors a promising alternative therapy option for 
NPM-ALK positive lymphomas.

A current issue in NPM-ALK related research 
relates to the identification and exact characterization 
of the cell-of-origin of NPM-ALK positive ALCL. Gene 
expression studies have shown that NPM-ALK positive 
lymphomas most closely resemble activated CD3+ 
T-cells, but recent experiments have discovered that 
a side population resembling early thymic progenitor 
cells is able to give rise to the bulk tumor in NPM-ALK 
positive ALCL (66, 67). DNA methylation patterns are 
characteristic for each cell type from precursor cells to 
committed or terminally differentiated lineages. Thus, 
genome-wide analyses of DNA methylation of NPM-
ALK tumor cells compared to different stages of T cell 
development including lymphoid progenitors and T-cell 
subsets might provide an elegant means to track down 
the cell-of-origin in NPM-ALK positive ALCL (68, 69).
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