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1. ABSTRACT

Translocations involving the anaplastic 
lymphoma kinase (ALK) gene locus on chromosome 
2p23 were first described in anaplastic large cell 
lymphoma (ALCL). Although most commonly fused 
to the nucleophosmin (NPM1) gene on chromosome 
5q35, which results in the t(2;5)(p23;q35)/NPM1-ALK 
translocation, several other ALK translocation partners 
have meanwhile been identified. Furthermore, apart from 
ALCL, ALK-involving translocations have been described 
in other hematopoietic and non-hematopoietic cancers. 
However, despite a rapid increase in literature on the 
nature and tissue distribution of ALK-translocations, 
much less is known about the mechanisms of formation 
of these translocations. The emergence of translocations 
has been linked to the transcriptional activity of the 
respective genome regions, reorganization of the 
chromatin and activation of the DNA repair machinery. In 
this review we discuss mechanisms and implications of 
formation of ALK-translocations.

2. INTRODUCTION

Chromosomal translocations are a defining 
feature of cancer cells and their role for initiation 
and maintenance of the transformation process has 
been particularly well documented in hematopoietic 
malignancies. One prominent recurrent translocation, 
identified in human T cell-derived ALCL more than 20 
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years ago, is t(2;5)(p23;q35), leading to constitutive 
activation of ALK. Meanwhile, many other ALK-involving 
translocations have been identified, and ALK-inhibition 
is a promising treatment strategy for various ALK-
translocation+ malignancies. Despite obvious clinical 
applications and potential treatment strategies based on 
these findings, only little is known regarding the molecular 
and cellular mechanisms leading to ALK-translocation 
formation. In the first part of this review we discuss 
current concepts of translocation formation followed by a 
second part summarizing the knowledge on the origin of 
ALK-involving translocations.

3. MECHANISMS OF TRANSLOCATION 
FORMATION: IMPLICATIONS FOR THE 
OCCURENCE OF ALK-INVOLVING 
TRANSLOCATIONS 

3.1. General insights into the mechanisms of 
translocation formation

The genesis of a chromosome translocation 
requires the formation of double-strand breaks (DSBs) 
in at least two chromosome sites. Failure of the cellular 
DNA damage response (DDR) in repairing these lesions 
may allow their physical juxtaposition and the illegitimate 
misjoining to create aberrant fusions, i.e. chromosomal 
translocations. As a consequence, it is fair to predict that 
processes that influence the occurrence of DSBs or affect 



The origins of ALK translocations

	 261� © 1996-2015

their motion within the three-dimensional nucleus, their 
physical contact or their illegitimate joining, may influence 
the frequency of translocations. Recent studies have 
delineated several mechanistic steps in translocation 
biogenesis, and it has now become clear that the non-
random positioning of chromosomes, the DDR pathways, 
the transcriptional activity and the epigenetic landscape 
are important factors in determining the selection 
of the translocating partners and the frequency of 
translocations (1). 

Accumulating evidence over the last decades 
suggests that transcription is a driver of translocation 
formation in several ways. First, studies have implicated 
active transcription to directly influence the occurrence of 
breaks in the genome. For example, it has been shown 
that transcription generates mechanical forces leading 
to DNA supercoiling and torsional stress which can be 
relieved by the action of topoisomerases (2, 3) and, 
importantly, these topoisomerase-induced breaks appear 
to be necessary for maximal transcriptional output of 
specific genes (4). However, they of course generate 
opportunities for the formation of persistent breaks, 
which can be precursors of translocations. In addition, 
the formation of three-stranded nucleic acid structures 
comprised of a nascent RNA hybridized with the DNA 
template, which form normally during transcription (R 
loops), can induce chromosome breakage and genomic 
instability when interfering with DNA replication (5,  6). 
These studies suggest that the local formation of 
breaks within transcribed genes is an integral part of 
transcription and may account for increased occurrence 
of translocations between transcribed genome sites 
(Figure 1A). In support of this idea, recent genome-wide 
translocation-capture studies in B-lymphocytes have 
identified translocation break points to be frequently 
positioned near transcription start sites of active 
genes  (7,  8). In line, early replicating fragile sites (9), 
mapped in more than 50% of the recurrent genome 
rearrangements in human diffuse large B cell lymphoma, 
are enriched in highly transcribed regions, and their 
fragility has been found to correlate with transcriptional 
activity (9). 

A different transcription-related mechanism that 
contributes to the formation of chromosome translocations 
involves the formation of site-specific breaks through the 
recruitment of the activation-induced cytidine deaminase 
(AID). AID is the cytidine deaminase that initiates class 
switch recombination (CSR) and immunoglobulin somatic 
hypermutation (SHM) by deaminating cytidine residues 
in ssDNA, which then can be processed by different DNA 
repair pathways to produce mutations or DSBs  (10). It 
has recently been shown that AID interaction with Spt5, 
a factor associated with stalled RNA polymerase II 
(Pol II) and single stranded DNA (ssDNA), facilitates AID 
recruitment to its targets (11). In addition to diversifying 
the antibody repertoire, AID-induced breaks contribute 

to malignant transformation by initiating chromosome 
translocations in lymphocytes (12). In an analogous 
fashion, AID co-recruitment with liganded androgen 
receptor (AR) to AR-binding DNA sequences sensitizes 
them to DSB breaks, leading to the formation of 
prostate-cancer-specific translocations (13). In line, AID 
deregulation has been associated with H. pylori infection 
and gastric cancer occurrence (14). Collectively, these 
studies suggest that binding of the transcription machinery 
may predispose genome regions to breakage that may 
lead to the formation of cancerous translocations.

Further evidence supporting a distinct 
mechanistic role of transcription in the formation 
of translocations comes from studies showing that 
transcription can influence the spatial proximity of 
translocation partners. Protein-coding gene transcription 
occurs at discrete, immobile, specialized sites called 
transcription factories (15, 16). These factories are 
typically evenly distributed across the nucleus and seem 
to act as centers of transcriptional activity, in which 
several genes can be transcribed concomitantly (17-19). 
Although it has been suggested that this congregation 
may serve to increase the concentration of transcription 
factors and thus enhance transcription efficiency, recent 
studies have raised the possibility that clustering of 
active genes to shared transcription factories may 
be detrimental in that it contributes to the formation 
of chromosome translocations by retaining potential 
translocating partners in close spatial proximity (Figure 
1B). Several recent studies support this notion. It has 
been shown that the proto-oncogene Myc and the highly 
transcribed IgH gene, which are frequently translocated 
in various malignant lymphomas, are rapidly relocated 
into shared common transcription factories during 
gene induction in B lymphocytes (18). Moreover, in a 
cellular model that recapitulates translocations between 
the androgen-dependent TMPRSS2 gene and the 
transcription factors ERG or ETV1, which are found 
translocated in approximately 50% of human prostate 
cancer (20), transcriptional activation by the androgen-
receptor-dependent signalling promotes the chromosome 
interactions of these partners (13). These studies suggest 
that active transcription is able to influence the probability 
of translocation formation by promoting the physical 
juxtaposition of potential translocation partners.

3.2. The origin of ALK-translocations
3.2.1. What determines the choice of ALK 
translocation partners?

Since the initial discovery of t(2;5)(p23;q35) 
and the description of its translocation product NPM1-
ALK (21, 22) an increasing number of ALK-translocations 
has been described. Given that the nature and distribution 
of ALK-translocations are extensively discussed in other 
articles in this issue, we will not review them here. However, 
we want to point out that, although ALK-translocations 
are found in various tumor entities, the ALK partner 
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selection for at least a number of these translocations 
is highly cell type-specific (23, 24). For example, NPM1-
ALK is lymphoma-specific and not found in solid tumors, 
whereas EML4-ALK is present in lung cancer but 
usually not in lymphomas. Regarding the tumor type-
specificity of these translocations the obvious question 
arises which processes predispose for selection of the 
respective translocation partners in ALK-translocation+ 
malignancies. Mechanisms of translocation formation 
have intensively been studied for translocations occurring 
in B cell lymphomas such as Burkitt´s lymphoma, e.g. IgH 
locus involving translocations like IG-MYC (for a recent 
review see (25)). In these cells, a machinery involving 
AID and RAG proteins is actively initiating DSBs in the 
IG gene loci, and their activity is intimately linked to the 
occurrence of IG-translocations. Despite the tight control 
of genes involved in these processes, their involvement 
in the formation of DSBs has also been documented 
in the translocation formation in solid tumors such as 
prostate cancer (13) and in targeting of non-IG genes 
involved in recurrent translocations in lymphoid cells (26). 
Focusing on ALCL, AID or RAG proteins seem not to 
be expressed at detectable levels and detailed data on 

epigenetic alterations or structural elements predisposing 
for DSBs, such as fragile sites or alterations of the 
chromatin structure at the putative breakpoint regions, 
are not available. The presence of such alterations and 
their impact on ALK-translocation formation should be 
investigated in future studies. Furthermore, apart from a 
common intronic ALK breakpoint region (23), breaks in an 
ALK exon have also been reported in ALCL (27). We have 
to admit that the exact mechanisms accounting for breaks 
on 2p23 and the different choice of ALK-translocation 
partners in distinct cell types are largely unknown. One 
common feature of ALK translocations is that in most 
of the physiological counterparts of the respective ALK-
transformed cells, ALK is not expressed (24). In these 
cells, a selection process for translocation partners 
with ongoing promoter activity has to be assumed. 
How frequent other non-productive ALK-translocations, 
which do not result in an ALK activation, occur during 
the transformation process might be answered in the 
future by high-throughput analyses such as the recently 
developed high-throughput, genome-wide translocation-
capture sequencing methodologies (7).

Figure 1. Transcription as a driver of translocation formation. (A) The binding of the transcription machinery to active genes (orange and red) predisposes 
these genome sites to breakage (red lightning bolt) and thus, makes them more prone to translocations. (B) Active genes (orange, red), co-transcribing in 
a shared transcription factory (blue), are retained in spatial proximity and therefore, when concomitant DSBs occur (red lightning bolts), there is a higher 
probability to be involved in chromosome translocations compared to the distal, transcriptionally inactive gene (green).
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3.2.2. Transcriptional alterations and 
chromosome positioning in ALCL and their link 
to NPM1-ALK translocation formation

Among the above outlined mechanisms 
promoting translocation formation, transcriptional 
alterations and spatial reorganization of the translocation-
involved chromosomes might directly favour the 
occurrence of ALK-translocations. Since among ALK-
translocation+ malignancies, ALCL might represent the 
most appropriate model system, we focus in the following 
paragraphs on ALCL. In ALCL, the t(2;5)(p23;q35) is 
found in approximately 50 – 60 % of cases. ALK+ and 
ALK- ALCL share morphological, immunophenotypic 
and also molecular characteristic features (28) and, 
at the level of the transcriptome, gene expression 
differences between ALK+ and ALK- ALCL are largely 
determined by an ALK signature in ALK+ ALCL (29). 
Despite known differences with respect to the genomic 
landscape (30,  31) it could be assumed that ALK+ 
and ALK- ALCL share (apart from ALK-induced gene 
expression changes) a common, fundamental cell-
characteristic gene expression program. Importantly, as 
outlined above, the transcriptional landscape is a major 
determinant of frequency and occurrence of chromosomal 
translocations (1, 8, 32). Of particular interest is the 
notion that transcriptional activation of genes alters 
positioning of chromosomes in the nuclear space, brings 
putative translocation partners into close spatial proximity 
in a cell type-specific manner, and predisposes them 
for translocation formation (13, 33, 34). This concept 
has been described by the “contact-first” model for 
chromosomal translocations (35). Again, pivotal evidence 
for the link between translocation frequency and nuclear 
distance of the respective partner chromosomes comes 
from the investigation of IG-translocations in B lymphoid 
cells (18, 34). Importantly, DSBs guided by such cell type-
specific transcriptional alterations (either induced by a 
physiological, cell-stage specific transcriptional program 
or maintained by e.g. aberrantly activated transcription 
factors during an early transformation process) are likely 
explanations for the reported cell type-specificity of 
various ALK-translocations.

In our previous work we have assumed that, 
due to the close relationship of ALK+ and ALK- ALCL, 
this lymphoma type might be a valuable model to 
study mechanisms of ALK-translocation formation (36). 
Focusing on the most commonly found t(2;5) (p23;q35)/
NPM1-ALK translocation we have identified a series of 
relatively proximal genes to the putative breakpoints on 
chromosomes 2p and 5q showing altered expression level 
and, in part, copy number alterations of the respective 
gene loci in ALCL. These genes include the oncogenic 
tyrosine kinase receptor CSF1R, the oncogenic AP-1 
transcription factor member FRA2 and the helix-loop-
helix protein ID2. All these genes have important 
functions in ALCL with or without the characteristic t(2;5)
(p23;q35)-translocation, suggesting that they support the 

transformation process of both ALCL subtypes, even in 
the absence of an ALK translocation (36). Although not 
performed with an extensive number of cell lines, it could 
be shown that only in cells with an aberrant transcriptional 
activation of these genes, including ALK- ALCL, the 
translocating chromosomes 2p and 5q were found in 
close spatial proximity in the nuclear space. Importantly, 
in cells with respective transcriptional alterations and 
spatial proximity of 2p and 5q, the t(2;5)(p23;q35)/NPM1-
ALK translocation was induced following application 
of genotoxic stress (36). These data suggest that 
chromatin changes, most likely induced by ALCL-specific 
transcriptional alterations, trigger changes in positioning 
of the translocation-involved gene loci and predispose 
them for the formation of NPM1-ALK translocations. 
Thus, such a cell-type- or developmental-stage-specific 
transcriptional program with respective changes of the 
chromatin structure predisposing for at least the majority 
of occuring chromosomal translocations (37) might be 
the major source for the choice of ALK translocation 
partners in distinct ALK-translocation+ malignancies. This 
hypothesis has to be addressed for other ALK-involving 
malignancies and translocation types in future studies. 
Furthermore, a shared transcriptional program of ALK+ 
and ALK- ALCL cells, as e.g. demonstrated for overlapping 
activities of STAT3 or AP-1 transcription factor programs, 
and subsequently overlapping transcription factories, 
might be a likely explanation for the spatial proximity 
observed for breakpoint proximal genome regions also in 
ALK- ALCL (36) (see also above). 

3.2.3. Experimental approaches to the 
mechanisms and consequences of 
ALK-translocations

Structural and functional alterations occurring 
before the formation of a respective translocation and 
those induced by the translocation event itself are highly 
complex. This raises the question of how accurately the 
experimental settings based on ectopic or transgenic 
expression of the ALK-involving translocations mirror 
the biological consequences of translocation formation. 
Furthermore, key requirements predisposing the genome 
for the generation of specific ALK-translocations in 
distinct malignancies (e.g. NPM-ALK in ALCL or EML4-
ALK in NSCLC (23, 24)) might not be reflected accurately 
in a chosen cell type for such experiments. In particular, 
direct and dominant effects of the respective fusion 
protein-mediated activation patterns of e.g. signaling 
pathways will be properly covered (23, 24). However, 
other important features might be missed including the 
resulting heterozygosity of the translocation partners, 
which might itself support malignant transformation (38). 
For NPM-ALK-induced lymphomagenesis, the effects 
of NPM1 heterozygosity have been started to be 
investigated (39). Furthermore, transcriptional and 
epigenetic changes of breakpoint-surrounding genes, 
cell type-specific ‘background transcription factor 
activities’ cooperating with ALK-transgene activities 
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and transgene expression levels are difficult to be 
incorporated in most settings. Some of these issues 
might be resolved in the future by more sophisticated 
experimental approaches such as the use of designer 
endonucleases like transcription activator-like effector 
nucleases (TALENs) or RNA-guided nucleases like the 
clustered regularly interspaced short palindromic repeats 
(CRISPR)-Cas9 system, by which specific genomic 
alterations can be introduced experimentally  (40, 41). 
Interestingly, endogenous NPM1 and ALK gene loci have 
already been targeted by TALENs in non-ALCL lymphoid 
and epithelial cells with subsequent generation of 
NPM1-ALK translocations resembling those observed in 
ALCL (42). Apart from the resulting heterozygosity of the 
affected gene loci, the regulation of the resulting fusion-
gene from the endogenous NPM1-promoter represents 
a further advantage of this approach. Finally, the cell of 
origin of ALK-bearing malignancies like ALCL is, despite 
recent progress, still a matter of debate (28, 43) and 
therefore the cellular background and developmental 
stage in which ALK-translocations occur remain to be 
elucidated.

3.2.4. ALK-translocations in primary cutaneous 
ALCL

In the group of CD30+ cutaneous 
lymphoproliferative disorders (CD30-CLD) primary 
cutaneous ALCL (cALCL) may arise from CD30-CLD 
such as lymphomatoid papulosis (LyP) in up to 20% 
of cases. Furthermore, cALCL and LyP often share 
pathologic features (44, 45). We have previously 
demonstrated that at least some of the breakpoint-
surrounding genes, like FRA2 or ID2, which show a 
specific, biologically important deregulation in ALK+ and 
ALK- ALCL (see also above), are up-regulated in LyP as 
well (36). Given the link between deregulation of these 
breakpoint-surrounding genes and spatial proximity of 
the putative translocation partners on chromosomes 
2p and 5q as well as the induction of NPM1-ALK 
translocations in in vitro studies (36), it might predicted 
that at least occasionally ALK translocations might occur 
in ALCL limited to the skin. Although initially reported as 
restricted to systemic ALCL, ALK+ primary cutaneous 
ALCL (cALCL) have been reported (46-48). Only recently, 
ALK-translocation+ cALCL have unambiguously been 
demonstrated and found at a remarkable frequence (49). 
Due to the fact that the analysis of ALK expression has 
not routinely been performed in most studies on cALCL, 
the current percentage of ALK-translocation+ cALCL 
might be an underestimation. These data highlight that 
the close relationship between ALK+ and ALK- ALCL also 
holds for ALCL restricted to the skin. Based on these 
findings several questions arise. The most relevant being 
what the frequency and causative events of these ALCL 
subtype translocations are, the reason why these ALK+ 
cALCL do not progress to systemic ALCL and by which 
factors their excellent prognosis (49) is determined.

4. SUMMARY AND PERSPECTIVE 

In contrast to the increasing amount of data 
regarding the nature and tissue distribution of ALK-
translocations, only little is known about the mechanisms 
of formation of these translocations in the respective 
malignancies. With ALK inhibitory compounds we 
have powerful tools in our hands to treat ALK-induced 
malignancies (50, 51). Therefore, why should we further 
study the mechanisms of ALK-translocation formation? 
For several reasons the elucidation of translocation 
formation in ALK-translocation+ malignancies is not only 
of interest for understanding the pathology of the disease, 
but is also relevant for the development of treatment 
approaches, independent of or complementary to ALK-
inhibition. First, as observed for other small compound 
inhibitors, ALK-translocation bearing malignancies 
develop resistance towards ALK inhibitors (52, 53), which 
makes the search for alternative targeted treatment 
strategies mandatory. Second, understanding the 
mechanisms of ALK translocation-formation might lead 
to identification of druggable target structures in ALK-
negative, closely related malignancies as demonstrated 
for ALK+ and ALK- ALCL (36). Third, the presence of 
sibling ALCL types, with and without ALK translocations, 
suggests the use of ALCL as model system to supplement 
other experimental systems like yeast and to investigate 
the mechanisms of translocation formation.

The study of ALK translocations finds itself at a 
powerful confluence of recent developments. Advances 
in the clinical characterization of ALK-containing cancers 
is progressing rapidly with novel therapeutic approaches 
being developed. At the same time, progress is being 
made in the elucidation of the basic mechanisms of 
how chromosome translocations form in intact cells and 
tissues. ALK-translocations, and the cancers that contain 
them, are a promising experimental system to understand 
translocation formation and their consequences across 
the basic to clinical spectrum. 
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