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1. ABSTRACT

The International Agency for Research on 
Cancer (IARC) declared arsenic a class  I carcinogen. 
Arsenic exposure induces several forms of human 
cancers, including cancers of skin, lung, liver, and urinary 
bladder. The majority of the arsenic-induced cancers 
occur in skin. Among these, the most common is Bowen’s 
disease, characterized by epidermal hyperplasia, full 
layer epidermal dysplasia, leading to intraepidermal 
carcinoma as well as apoptosis, and moderate dermal 
infiltrates, which require the participation of mitochondria. 
The exact mechanism underlying arsenic induced 
carcinogenesis remains unclear, although increased 
reactive oxidative stresses, leading to chromosome 
abnormalities and uncontrolled growth, and aberrant 
immune regulations might be involved. Here, we highlight 
how increased mitochondrial biogenesis and oxidative 
stress lead to mitochondrial DNA damage and mutation 
in arsenic induced cancers. We also provide therapeutic 
rationale for targeting mitochondria in the treatment of 
arsenic induced cancers.

2. INTRODUCTION TO THE HEALTH 
HAZARDS OF ARESNIC

Arsenic is a common element found in the 
Earth’s crust. The name of arsenic is thought to come 
from ‘arsenikon’, the Greek name for the yellow pigment. 
Arsenic is a metalloid with both metallic and non-metallic 
chemical characteristics. In the element periodic table, 
arsenic belongs to the same family that includes nitrogen 
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and phosphorus, both of which are important components 
in the biochemical process and integrative structure in 
living cells. This unique chemical characteristic of arsenic 
to interact with biological molecules might explain to its 
diverse and profound biological effects. Arsenic acts like 
a double-sided sword in human health. In contrast to 
its notoriously adverse health effects, arsenic has been 
used for treatment of lymphoma and leukemia and it 
still remains the drug of choice for acute promyelocytic 
leukemia, a special form of acute myeloblastic 
leukemia  (1), due to, at least in part, the degradation 
of the aberrant PML-retinoic acid receptor α fusion 
protein (2). On the other hand, exposure to arsenic leads 
to several human cancers, including skin, lungs, urinary 
bladder, and liver (3). In addition to its associations with 
these cancers, arsenic exposure is also associated with 
the development of several vascular diseases, including 
stroke, ischemic heart diseases, and peripheral vascular 
diseases (4).

The major routes of human exposure to arsenic 
include drinking, inhalation, and skin contact. Drinking 
of water contaminated with arsenic remains the major 
route of human exposure. Hundreds of millions of people 
are exposed to arsenic by drinking contaminated water 
in many countries, including Bangladesh, West Bengal 
of India, Chile, Mexico, and China (5). In addition to 
environmental exposure, industrial exposure may also 
cause significant health effects. Arsenic has been used 
to produce paints, insecticides, wood preservatives, and 
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pesticides. For example, chromium copper arsenic is a 
wood preservative, although it is gradually being replaced. 
The important semiconductor alloy in the computer 
hardware and electronic chips includes allium arsenide, 
indium arsenide, and aluminum arsenide to modify their 
connectivity and plasticity. In 2014, it was estimated that 
the annual worldwide production of arsenic is around 
45,000 tons, with more than half of which from China (6).

2.1. Biological conversion and metabolisms of 
arsenic

Based on the oxidative status, arsenic exists in 
two inorganic chemical forms. Arsenite (AsIII) exists in 
the trivalent form whereas arsenate (AsV) exists in the 
pentavalent form. Arsenite is about 2-10 times more toxic 
than arsenate. After gastro-enteric absorption, inorganic 
arsenic is obtained by erythrocytes and then distributed 
through bloodstream to multiple organs, including lungs, 
liver, and skin (7). Inside the cells, arsenic is methylated 
by the methyl group supplied by s-adenosylmethionine 
(SAM). Compared to the inorganic forms, the methylated 
metabolites are less genotoxic (8) and are excreted 
readily in urine (9, 10). In transit from blood to tissues, 
arsenate is reduced to arsenite. In the liver, arsenic is 
methylated into mono-methylarsenic acid (MMA V), 
which is further reduced to monomethyl arsonous acid 
(MMA III). A  subsequent methylation reaction modifies 
MMA III to dimethylarsinic acid (DMA V) (11). In fact, the 
biological distribution and chemical conversion of arsenic 
necessitate the participation of mitochondria, which 
accounts for the production of ATP and reactive oxygen 
species (ROS).

2.2. Distinctive morphological and 
pathophysiological features of arsenic-induced 
cancers in humans

It has been estimated at around 10% of 
population exposed to arsenic develop skin abnormalities, 
including variegated hyper-  and hypo-pigmentations, 
arsenic keratosis, Bowen’s disease, and invasive skin 
cancers. However, only about 1% of exposed humans 
develop skin cancers (12). Long-term arsenic exposure 
results in the impairment of immunity in susceptible 
individuals, which may account for the development of 
cancers in these individuals. We previously reported that 
people with arsenical cancers exhibit an impaired contact 
hypersensitivity response (13), accompanied with a 
selective CD4+ apoptosis in tumor microenvironment (14) 
and an impaired activation of dendritic cells (15). Other 
investigators have also reported that early exposure to 
arsenic renders influenza infections (16).

Among arsenic-induced skin cancers, Bowen’s 
disease is most common (17-19). Epidemiological 
studies have demonstrated a dose-response relationship 
between arsenic levels in the drinking water and the 
occurrence of skin cancers (18). Grossly, arsenic-
induced Bowen’s disease (As-BD) differs from classical 

(UV-induced) Bowen’s disease by its multiplicity and its 
propensity in non-sun-exposed areas on skin (3, 20). 
Microscopically, As-BD is featured by marked keratinocyte 
proliferation, full-layered epidermal dysplasia, individual 
cell apoptosis, and moderate dermal infiltrates (17). 
Over time, As-BD can penetrate through the basement 
membrane, causing invasive squamous cell carcinoma 
(SCC) and basal cell carcinoma (BCC) (21, 23). Patients 
with As-BD are more likely to develop cancers of lungs 
and urinary bladder (21, 24,25). It is estimated that 
As-BD starts within a decade, invasive skin cancer after 
20 years (26), and lung cancers after 30 years following 
arsenic exposure (22).

In addition to the distinctive clinical features of 
Bowen’s diseases, p53 protein expression is much higher 
in As-BD than it is in classical (UV-induced) BD (27, 28). 
Arsenic is able to induce mutant p53 accumulation via 
an ATM-dependent pathway (29, 30). The majority of the 
p53 mutation sites are located in the exon 5 and exon 8. 
Furthermore, the mutation sites and patterns of p53 gene 
in As-BD are different from those in classical (UV-induced) 
BD (31), indicating the pathogeneses of As-induced and 
UV-induced Bowen’s disease are different. Although the 
direct link between p53 mutation and arsenic exposure is 
not clear, the effect of arsenic on p53-related intracellular 
pathways is well recognized. For example, it has been 
reported that arsenic leads to p53-mediated G2/M cell 
cycle arrest and DNA aneuploidy (32, 34).

As mentioned above, microscopically, there are 
coexisting hyperproliferative (epidermal hyperplasia) and 
individual apoptotic keratinocytes in As-BD lesions (35). In 
fact, this phenomenon is reflected in vitro as the biological 
effects of arsenic on keratinocytes are concentration 
dependent. At lower concentrations (≤1 μM), arsenic 
induces keratinocyte proliferation and in parallel, 
enhances both NF-kB and AP-1 activity (35). On the other 
hand, at higher concentrations (≤5 μM), arsenic induces 
keratinocyte apoptosis through the Fas/Fas ligand (FasL) 
axis. Because the promoter site of FasL contains AP-1 
binding sites, arsenic-activated Fas/FasL signaling likely 
occurs through AP-1 activation (35-37).

2.3. The possible mechanisms in arsenic 
carcinogenesis

Although increased oxidative stress, 
chromosome abnormalities, altered growth factors, and 
aberrant immune regulations may contribute to arsenic 
carcinogenesis, the exact and direct mechanisms of 
arsenic carcinogenesis remains unclear (38).

Firstly, ROS production and oxidative DNA 
damages, such as 8-OHdG, have been found in 
the urine and skin tissue obtained from patients 
exposed to arsenic  (39). One In vitro study showed 
that low concentrations of arsenic generates ROS, 
consequently increasing the transcription of NF-kB and 
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cell proliferation (40). The oxidative stress inside the 
cells originates mainly from mitochondria (41). Previous 
studies have illustrated this mechanism by showing that 
arsenic induces mitochondria oxidative stress, leading to 
mitochondria damages and mutations (42, 43).

Secondly, the increased oxidative DNA damages 
and mutations by arsenic affect DNA repair machinery, 
including nucleotide excision repair, DNA ligase, DNA 
base excision repair, and DNA strand break rejoining. 
In parallel, arsenic impairs the DNA repair process by 
inhibiting several key repair enzymes, rendering the 
damaged or mutated DNA irreparable (44, 45). In addition 
to its permanent DNA damages, arsenic also affects 
several epigenetic processes, where, for example, 
arsenic induces DNA hypomethylations, in most cases, 
through its inhibition of DNA methyltransferases (46, 47).

Thirdly, arsenic causes abnormalities in 
chromosome integrity. Arsenic induces chromosome 
abnormalities and abnormal sister chromatid 
exchanges (48). In fact, the chromosome abnormalities 
are highly correlated with oxidative stresses and DNA 
damage. The frequency of micronuclei is increased 
by arsenic. One xenograft cancer model by HaCaT 
cells showed that the tumorigenecity of HaCaT cells is 
correlated with increased numbers of micronuclei (49).

All the above plausible pathways leading to 
arsenic carcinogenesis necessitate the participation 
of mitochondria in the induction of apoptosis, cell 
proliferation, DNA damages, chromosomal abnormalities, 
and ROS generation. In this article, we will discuss in 
more detail and in greater depth the role of mitochondria 
in carcinogenesis, and more specifically, in chemical 
carcinogenesis.

2.4. Role of mitochondria in carcinogenesis
Traditionally, cancer cells were thought to have 

impaired mitochondrial function and to rely on aerobic 
glycolysis for metabolism, known as the Warburg 
Effect. The advantage of the preferential aerobic 
glycolysis in cancer cells is not exactly known. For 
example, apoptosis induced by Bax and Bak requires 
oxidative  phosphorylation by disparate death stimuli, 
and thus the reliance of tumor cells on glycolysis may 
potentially be the way these cells evade apoptosis (50). 
In contrast to the Warburg Effect, however, there are 
several cancers that have increased mitochondrial 
oxidative phosphorylation (51). In addition, there is 
a metabolic heterogeneity within tumors, with some 
cells utilizing glycolysis while others using oxidative 
phosphorylation as the main energy source. Recently, 
studies of the tumor microenvironments revealed a 
Reverse Warburg Effect, where metabolic coupling exists 
between cancer-associated fibroblasts with high aerobic 
glycolysis and cancer with increased mitochondrial 
oxidative phosphorylation (52).

Although the metabolic abnormalities in Warburg 
effects have been implicated in the carcinogenesis, few 
studies have been performed to investigate how arsenic 
regulates Warburg effects in carcinogenesis. One of the 
important intracellular methyl group donors for arsenic 
metabolism, S-adenosylmethionine (SAM), has a high 
affinity to human mitochondrial SAM carrier (SAMC)  (53). 
Through its cellular bindings and metabolisms, arsenic 
regulates the process of the Warburg effect as evidenced 
by increasing accumulation of intracellular and 
extracellular lactate, increasing extracellular acidification, 
and inhibition by the non-metabolized glucose analog, 
2-deoxy-D-glucose (54).

In addition to the metabolic abnormalities, 
mitochondria might also contribute to carcinogenesis 
through ROS production, ATP production, energy 
consumption, and mitochondrial biogenesis. The multi-
staged model in chemical carcinogenesis is introduced 
below for a better understanding of the role of mitochondria 
in different stages of chemical carcinogenesis.

2.5. Multi-staged model in chemical 
carcinogenesis

Chemical carcinogenesis is a special form 
of carcinogenesis in which a known chemical leads to 
tumor formation. The traditional sequential process 
in the chemical carcinogenesis involves initiation, 
promotion, and progression. Initiation, the first step in the 
multi-staged model, alters and damages cellular DNA, 
initiates irreversible genetic damages and mutations, 
allowing the daughter cells to carry the mutations upon 
next proliferation. Once cells have been mutated by 
an initiator, they are further susceptible to the effects 
of promoters, which enhances the abnormal cell 
proliferation and maintains the mutations and damages. 
Unlike initiators, promoters do not covalently bind to 
DNA or macromolecules within the cell. Many promotors 
bind to receptors on the cell surface in order to affect 
intracellular pathways that induce cell proliferation. The 
term progression refers to the malignant transformation 
of a benign tumor associated with aneuploidy (abnormal 
number of chromosomes).

2.6. Role of mitochondria in the initiation, 
promotion, and progressions of chemical 
carcinogenesis

Mitochondria may not contribute directly in the 
initiation process, though they may play a significant role 
on both the promotion and the progression. For example, 
the epidermal JB6 cells transformed with TPA (a common 
example of promotor) are less prone to form colonies in 
soft agar after TPA treatment when cells are blocked with 
mitochondrial coupling protein 2 (UCP2), suggesting that 
mitochondrial uncoupling may serve as an important 
regulator of p53 mitochondrial translocation and p53-
mediated apoptosis during early tumor promotion (55). In 
the checkpoint for apoptosis, the regulation of bcl-2/bax 
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in the mitochondria determines the direction towards 
either to cell apoptosis or cell survival (56).

In tumor promotion, both proliferation and 
apoptosis requires the participation of mitochondria, at 
least in part. The proliferation requires energy while the 
apoptosis necessitates the involvement of mitochondria 
through altered transmitochondrial potential. In 
lymphoma, T cell tumorigenesis involves a simultaneous 
upregulation of  mitochondrial biogenesis, mitochondrial 
respiration, and glycolytic activity. These processes 
allow cells to adapt to the stressful tumor environment by 
facilitating energy production and thereby promote tumor 
growth (57). Our previous study showed that arsenic 
induced mitochondrial biogenesis, ATP production, and 
oxygen consumption, suggesting that arsenic might act 
as a promotor in arsenic carcinogenesis (43).

In tumor progression, a typical human model 
of carcinogenesis is the malignant transformation from 
polyps in ulcerative colitis. In fact, mitochondrial loss 
precedes the development of dysplasia, but cancer cells 
restore mitochondria, suggesting that the mitochondrial 
biogenesis through PGC1α is needed for further 
proliferation (58). In addition to the role that mitochondrial 
biogenesis plays in tumor progression, mitochondria 
may play another role in the progression through their 
production of cellular ROS production. High ROS 
levels favor cancer cell mitochondrial metabolism and 
tumorigenesis. In breast cancer, metabolic synergy occurs 
in a nutrient-rich microenvironment to promote tumor 
growth through the generation of ROS and the induction of 
catabolism with autophagy, mitophagy and glycolysis (59). 

The ROS in stromal cells induces autophagy, causing cell 
death as compared to the ample mitochondrial volumes 
in the cancer cells (60). Our previous study of arsenic 
carcinogenesis showed that, although there is an increase 
in oxidative damage, expressions of DNA repair enzymes, 
and expressions of antioxidant enzymes, the arsenic-
induced DNA damage and mutation are abolished when 
ROS is neutralized by antioxidants (42).

2.7. Mitochondria biogenesis, damages, and 
mutations in skin carcinogenesis

Regarding carcinogenesis in general, 
ROS, adaptation to ROS, and mitochondrial 
biogenesis  compose a self-amplifying feedback loop 
in chronic lymphoid leukemia, which might be targeted 
therapeutically (61). In TPA-promoted keratinocytes, 
Stat3  translocates into mitochondria through the 
Stat3 phosphorylation and it binds mtDNA associated 
with mitochondrial transcription factor A (mtTFA) 
enhancing mitochondrial biogenesis  (62). In a study 
with 1,815  patients with ovarian cancer, variants 
in mitochondrial biogenesis genes were found to possibly 
affect susceptibility to epithelial ovarian cancers (63). 
These studies indicate that mitochondrial biogenesis 
and its regulation play an important role in the epithelial 
carcinogenesis. With regard to arsenic carcinogenesis, 
we previously reported that low doses of arsenic induce 
cell proliferation through enhancement of mtTFA-
mediated mitochondrial biogenesis (Figure  1)  (43). It 
is important to note that arsenic induces expression of 
several oncogenes, including c-H-ras and c-myc (64). 
It has been found that the myc proto-oncogene, once 

Figure 1. Schematic view of the role of mitochondria in the arsenic skin carcinogenesis. Arsenic induces mitochondrial biogenesis, through mtTFA 
upregulations, and eventually cell proliferations (Right). The aberrant cell proliferation contributes to the increased epidermal proliferation in the 
histopathology of arsenical cancers. In the context of increased mitochondrial biogenesis, arsenic also induced mitochondrial ROS production, leading 
to the upregulation of antioxidant and DNA repair enzymes, and eventually to the mitochondrial DNA damages and mutations (Left). This axis might 
contribute to the dysplasia, abnormal differentiation and apoptosis in the histopathology of arsenical skin cancers. The aberrant proliferation, under ROS 
stress and DNA damages, may contribute to the arsenic skin carcinogenesis in cooperation with oncogene, such as c-myc.
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activated, robustly induces critical genes involved not 
only in cell-cycle progression but also in mitochondrial 
biogenesis and glucose oxidative metabolisms, further 
supporting the theory that mitochondrial biogenesis plays 
a critical role in arsenic skin carcinogenesis (65).

Not only does mitochondrial biogenesis 
only play an important role in arsenic-induced skin 
carcinogenesis, it is present and is regulated in several 
other cancers. Studies suggest that mitochondrial 
biogenesis, which promotes tumors by increasing 
metabolites and generating energy, is upregulated by 
the c-myc and downregulated by the p53 (66, 67). The 
role of mitochondrial biogenesis is controversial in that 
production of new healthy mitochondria may suppress 
tumor growth by stabilizing HIF-α (68). Whether 
mitochondrial biogenesis promotes or limits cancer 
may depend on the microenvironment, tissue type, and 
tumor stages. The effect of arsenic on the mitochondrial 
dysfunctions is not unique to skin keratinocytes. In 
BEAS-2B cells, the normal bronchial epithelial cells, 
arsenic  generated a prolonged and steady increase in 
ROS levels, along with widespread up-regulation of genes 
associated with mitochondrial metabolism and increased 
ROS production and mitochondrial dysfunction (69).

In terms of mitochondrial oxidative 
phosphorylation in cancers, transgenic overexpression 
of mitochondrial uncoupling proteins (UCP1-3) with 
keratin-5 promotor in mice has been associated with 
a nearly complete resistance to chemically-mediated 
multistage skin carcinogenesis, suggesting that 
mitochondrial respiration may be a therapeutic target in 
the context of chemical carcinogenesis (70). Regarding 
to the role of mitochondrial biogenesis by arsenic, we 
have found that mitochondrial derived ROS contributes to 
mitochondrial DNA damages and mutations in arsenical 
skin cancers (Figure  1) (42). The arsenic-induced 
mitochondrial biogenesis and ROS production were 
reproduced in a study of prostate cancer, which showed 
that arsenic increased cell survival, DNA damage, and 
increased expression of mitochondrial transcription 
factor A (mtTFA) (71). Further evidence also supports this 
notion as mitochondria have been found to be the main 
target organelle for MMA-III-induced cytotoxicity (72).

3. CONCLUSIONS

The prototype of arsenical cancers is skin cancer, 
which is characterized microscopically by increased 
proliferation, individual cell apoptosis, and full-layered 
dysplasia, all of which necessitate the involvement of 
mitochondria which contribute to energy production, 
ROS development, cell proliferation, and DNA damages 
and mutations. Our study showed that arsenic induces 
mitochondrial biogenesis through mtTFA in keratinocytes. 
In the context of increased mitochondrial oxidative stress, 
arsenic contributes to increased oxidative damage 

and mutation to mtDNA in keratinocytes and in tumor 
tissues of patients with arsenical skin cancers. Arsenic 
may cause a ‘‘vicious cycle’’ of mitochondrial oxidative 
stress triggered by increased damage and mutation of 
mtDNA. Oxidative damage to mitochondria may drive 
the progression of carcinogenesis in arsenical cancers 
(Figure 1). Therefore, mitochondria might be an appealing 
therapeutic target in the treatment of arsenical cancers.
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