
OPEN ACCESS J. Integr. Neurosci.

Research article

Functional analysis of ADHD in children using
nonlinear features of EEG signals
Shiva Khoshnoud1, Mohammad Ali Nazari1, Mousa Shamsi1,*

1Biomedical Engineering Faculty, Sahand University of Technology, Tabriz, Iran
2Cognitive Neuroscience Laboratory, Department of Psychology, University of Tabriz, Tabriz, Iran

*Correspondence: shamsi@sut.ac.ir (Mousa Shamsi)

https://doi.org/10.31083/JIN-170033

Abstract
Attention deficit hyperactivity disorder is a neurodevelopmental condition associated with varying levels of hyperactivity, inatten-
tion, and impulsivity. This study investigated brain function in children with attention deficit hyperactivity disorder using mea-
sures of nonlinear dynamics in electroencephalogram signals during rest. During eyes-closed resting, 19 channel electroen-
cephalogram signals were recorded from 12 ADHD and 12 normal age-matched children. The multifractal singularity spectrum,
the largest Lyapunov exponent, and approximate entropy were employed to quantify the chaotic nonlinear dynamics of these
electroencephalogram signals. As confirmed by Wilcoxon rank sum test, the largest Lyapunov exponent over left frontal-central
cortex exhibited a significant difference between attention deficit hyperactivity disorder subjects and the age-matched control
groups. Further, mean approximate entropy was significantly lower in attention deficit hyperactivity disorder subjects in prefrontal
cortex. The singularity spectrum was also considerably altered in attention deficit hyperactivity disorder subjects when compared
to control children. Evaluation of these features was performed with two classifiers: a support vector machine and a radial basis
function neural network. For better comparison, subject classification based on frequency band power was assessed using the
same types of classifiers. Nonlinear features provided better discrimination between attention deficit hyperactivity disorder and
control than band power features. Under four-fold cross-validation testing, the support vector machine gave 83.33% accurate
classification results.
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1. Introduction

Attention deficit hyperactivity disorder (ADHD) refers to a heteroge-
neous neurodevelopmental condition or set of conditions in which
children or adults exhibit varying levels of inattention, impulsivity
and physical restlessness and/or hyperactivity symptoms [1]. Ap-
proximately 3–7% of school-aged children are affected by ADHD [1].
According to the Diagnostic and Statistical Manual of Mental Dis-
orders (DSM-V) this syndrome has three clinical subtypes: pre-
dominantly inattentive, predominantly hyperactive-impulsive, and
combined [2]. Currently, diagnosis of ADHD is based on levels of
symptoms listed as DSM-V diagnostic criteria, as assessed from
diagnostic interviews.

Assessment of electroencephalogram (EEG) characteristics as-
sociated with ADHD, has generated substantial interest, resulting
in a large number of investigations [3–16]. Most of these studies
concern frequency-domain indicators, typically absolute and relative
power estimates for different frequency bands or ratios of power
in different frequency bands [7, 8, 10–13, 15]. Although simple to
compute and visualize, these approaches are not capable of measur-
ing the nonlinear structure of EEG brain dynamics. Methods from
nonlinear dynamics and chaos theory have been used to investigate
nonlinear properties of brain dynamics. EEG coherence provides
useful information about the coupling of brain activity in different

regions [8]. However, the inability of coherence to characterize non-
linear interdependencies, specifically for non-stationary time series,
has led to the use of nonlinear synchronization methods for analysing
functional brain connectivity [3–6, 9, 14, 16].

According to Stam [17], distinct states of brain activity have
different chaotic dynamics which might be quantified by nonlinear
measures including entropy and Lyapunov exponents. Approximate
entropy (ApEn) has proved to be particularly useful for character-
izing short, noisy time series. It is capable of providing a robust,
model-independent, and information-theoretic estimate of dynam-
ical complexity [14]. A recently published study has investigated
the nonlinear features of EEG signals in ADHD and normal adult
subjects performing a continuous performance test [9].

Fractality is another common property of time series represent-
ing the dynamics of complex systems. Brain activity, as a complex
dynamical system, exhibits a multifractal structure [18, 19]. Fractal
analysis of EEG time series has proved to be useful for describing
brain activity during sleep [20]. Fetterhoff et al. [21] show that multi-
fractal firing patterns of hippocampal spike trains are more complex
during a working memory task and significantly declined with the
administration of memory impairment in rats. Zorick et al. [19]
showed the capability of MFDFA to interfere with the recognition of
changes in states of consciousness.

To the knowledge of the authors, the present study is the first
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to assess multifractal spectra of EEG signals in ADHD subjects. It
was predicted that multifractal analysis of EEG signal might provide
useful information about the dynamics of brain electrical activity in
ADHD subjects. Nonlinear EEG dynamic features were employed,
including ApEn, the largest Lyapunov exponent (LLE), and multi-
fractal spectra, to discriminate between children with ADHD and
age-matched controls.

2. Materials and methods

The aim of this research was to analyse nonlinear dynamical proper-
ties of EEG signals in children with ADHD and to present a classifi-
cation system based on these features. The algorithm consisted of
four steps: signal preprocessing, feature extraction, feature reduction,
and subject classification. Fig. 1 shows all analytic steps involved
and subsequently reported here.

2.1. Dataset and pre-processing

The dataset employed in this study was EEG time series recorded at
the Atieh Comprehensive Centre for Psychology and Nerve Disor-
ders, Tehran, Iran [3]. The subject group comprised 24 right-handed
children 7–12 years old (12 ADHD and 12 age-matched healthy sub-
jects). The ADHD group included all clinical subtypes (hyperactive-
impulsive, inattentive, and combined). All subjects were asked to sit
comfortably in a silent room with eyes-closed. The EEG data were
collected according to the 10–20 International system (Fp1, Fp2, F3,
F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz, and
Pz,) with eyes-closed during rest [3]. The eyes-closed condition was
preferred as the preference was to analyse ADHD brain dynamics
in the absence of external stimuli. Each recording consisted of 19
channels of EEG data with a sampling frequency rate of 256 Hz and
16-bit resolution [3]. Signal pre-processing was performed in Matlab
(MatlabR2013a). Artefact rejection was based on both visual inspec-
tion and com- puterized review. To remove out-of-band noise, EEG
time series were lowpass filtered at 60 Hz and highpass filtered at a 1
Hz cut-off frequency. Line noise suppression was by notch filtering
at 50 Hz. Signals were also visually analysed by an expert and any
artefacts discarded. This procedure reserved about one-minute of
artefact-free EEG trace out of a three-minute duration signal (15,000
time samples).

2.2. Feature extraction

Four types of feature extraction methods were selected, frequency
band powers and three nonlinear features: the LLE, ApEn, and
the height and width of the multifractal singularity spectrum of the
EEG time series. With 19 channels for each subject, a total of
24,198 features were extracted for the analysis. The following feature
extraction methods were applied to selected one minute durations of
noise-free signal obtained from each channel.

2.2.1. EEG frequency band power

EEG signals were filtered with a 16th order Butterworth band-pass
filter to extract four typical frequency bands: delta (0.5–4 Hz), theta
(4–8 Hz), alpha (8–13 Hz), and beta (13–30 Hz). For each band,
power was calculated by invoking Perceval’s theorem and summing
the signal in the time domain [22].

Fig. 1. Overall procedure for functional brain dynamic analysis of ADHD
and control children using nonlinear dynamical features of EEG signals. First
step: Signal was preprocessed to remove any noise and artefacts. Followed
by calculation of LLE, ApEn, and multifractal spectra for every channel of
the recorded EEG signals. In parallel with nonlinear features, frequency band
power estimates were also calculated. Subsequently, the principal component
coefficients of these features were computed and the 15 largest components
of each feature category employed as final features. Finally, subject group
classification was implemented with two classifiers: a support vector machine
classifier and a radial basis function neural network.

2.2.2. Largest Lyapunov exponent

Lyapunov exponents quantify exponential divergence or convergence
of nearby trajectories in a state space. Since it may indicate chaotic
dynamics in a system, existence of positive LLE is of special impor-
tance [17]. Rosenstein et al. [23] have suggested a straightforward
approach to calculate LLE [23]. The basic idea of the algorithm is
that the average growth rate of inter-vector differences starting from
pairs of nearest neighbours is bounded by the largest Lyapunov com-
ponent. Based on Taken’s theorem [24], reconstruction of trajectories
from time series in a state space is given by:

X = (X1,X2, · · · ,Xm)
T (1)

where Xi is the state of the system at discrete time i, which for a N
point EEG signal x = x1,x2, . . . ,xN is calculated from:

Xi = (xi,xi+J , . . . ,xi+(m−1)J) (2)

where J is the lag delay and m is the embedding dimension. So X
would be an M×m matrix in which M =N–(m−1)J. To avoid infor-
mation loss, the lag delay and embedding dimension are determined
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so that the reconstructed trajectories in the new state space are not
folded [17]. After reconstructing the trajectories, the initial distance
from the “ j th point” X j to its nearest neighbour X ĵ is expressed as:

d j(0) = min
X ĵ

‖X j−X ĵ‖ (3)

where d j(0) is the initial distance and ‖· · ·‖ denotes the Euclidean
norm. In Rosenstein’s algorithm, the growth rate of inter-vector
differences starting from nearest neighbour pairs is bounded by
LLE [23]. Therefore, LLE(λ1) of the EEG signal is calculated from:

λ1(i) =
1

i∆t
1

(M− i)

M−i

∑
j=1

ln
d j(i)
d j(0)

(4)

where ∆t is the sampling period of the EEG signal and d j(i) is the
distance between the jth pair of the nearest neighbours after i dis-
crete time steps. A positive Lyapunov exponent implies that any
two points that are initially very close together will diverge exponen-
tially quickly in the direction of the positive Lyapunov exponent [23].
Since reconstructing a trajectory in a state space with the embedding
dimension lower than its minimum embedding dimension, causes
the trajectory to be folded, the minimum embedding dimension must
be calculated first [17]. Moreover, very small lag delays may bring
about almost linear trajectory reconstruction with high correlations
between consecutive phase space points and very large delays may
disregard the deterministic structure of the sequence [17]. According
to previous investigations, the minimum embedding dimension for
EEGs varies mostly in the range of 9 ± 3 [3, 4]. The minimum
embedding dimension of the EEG time series employed here, for all
channels and all subjects, calculated using the false nearest neigh-
bour algorithm [25], varied in the range of (6–15), so the optimum
embedding dimension employed was greater than 15. In this study,
the embedding dimension was assumed to be 15 because this value
was the maximum value found for minimum embedding dimension
in the dataset analysed here. Another important factor was the op-
timum lag delay. As it gave a better result at the classification step,
after testing several different values from 1 to 10, a lag delay of J =
1 was selected for use here.

2.2.3. Approximate entropy

The apen, as suggested by Pincus [26], is a nonlinear measure that
quantifies the complexity or irregularity of a system. It measures the
logarithm of the frequency at which the neighbourhoods of temporal
patterns with the same length within a certain distance by one time
point augmentation in phase space remain close [26]. Given the
embedding dimension m, and time lag J, the state space of the
N dimensional EEG signal x = x1,x2, . . . ,xN was computed from
Equation (2). ApEn was computed from the correlation integral
Cm(r), which represents the number of points within distance r from
the ith point of the EEG time series when the signal is embedded in
a phase space with embedding dimension m. The correlation integral
was then calculated as:

Cm
i (r) =

1
(N−m+1)

N−m+1

∑
j=1

Θ(r−‖Xi−X j‖) (5)

In eqn(5), Θ is the Heaviside function and Xi and X j are vectors
in the state space and r is a threshold value for distance. Finally, the
ApEn is defined as [26]:

ApEn(m,r,N) =
1

(N−m+1)

N−m+1

∑
i=1

logCm
i (r)

− 1
(N−m)

N−m

∑
i=1

logCm+1
i (r) (6)

The embedding dimension can be found as described above. In
some applications a value between 10 and 25 % of the data stan-
dard deviation (SD) is used for the threshold value [27]. Here, the
parameter r (distance) was set to be 10 % of the SD.

2.2.4. Multifractal detrended fluctuation analysis

Detrended fluctuation analysis (DFA) is a widely-used method for
exploring the fractal properties of a time series. Nonetheless, time
series with a complex structure are multifractal and multifractal de-
trended fluctuation analysis (MFDFA) has been proposed for evalu-
ation of their fluctuations [28]. The MFDFA procedure consists of
five steps. In the first step, the structure of the EEG signal must be
converted into a random walk [28]. If x = {x1,x2, . . .xN} is an EEG
signal with length N, then:

Y (i) =
i

∑
k=1

[xk−〈x〉], i = 1,2, . . . ,N (7)

where 〈x〉 denotes the average amplitude of an EEG time series.
Next, the profile Y (i) is divided into Ns ≡ int(N/s) non-overlapping
segments with equal lengths s. For each segment, the root mean
square (RMS) variance is calculated from Equation (8), in which
ν = Ns +1, . . . ,2Ns and yν (i) is the fitting polynomial in segment ν :

F2(s,ν) =
1
s

s

∑
i=1
{Y [N− (ν−Ns)s+ i]− yν (i)}2 (8)

To obtain the qth-order fluctuation function, the mean RMS
value over all the segments is calculated from:

Fq(s) =

{
1

2Ns

2Ns

∑
ν=1

[F2(s,v)]q/2

}1/q

(9)

Spatial and temporal variations in the scale-invariant structure of
a multifractal time series require Steps two and three to be repeated
at several different time scales s. Finally, the scaling behaviour of
the fluctuation functions is determined by analysing log–log plots of
Fq(s) versus s for each value of q:

Fq(s)≈ sh(q) (10)

where h(q) is called the q-order Hurst exponent [28]. For mul-
tifractal EEG time series, there is significant dependence of h(q)
on q [28]. For positive values of q, h(q) describes the scaling be-
haviour of segments with large fluctuations. For negative values
of q, h(q) describes the scaling behaviour of segments with small
fluctuations [28]. The q-order Hurst exponent h(q), is only one of
several factors used to parameterize the multifractal structure of an
EEG time series. It is related to the scaling exponents τ(q) by:

τ(q) = qh(q)−1 (11)

Thereafter, scaling exponents can be converted into the q-order
singularity exponent (α) and the q-order singularity dimension
( f (α)) with the following equations to obtain a multifractal singu-
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larity spectrum:

α = τ
′(q) and f (α) = qα− τ(q) (12)

where τ ′(q) is the derivative of τ(q). The width and shape of the
multifractal spectrum are valuable factors for distinguishing different
multifractal structures [28]. In this study, the width (dα) and its
height (d f (α)) were used to evaluate the multifractal spectrum of
EEG signals:

dα = max(α)−min(α)

d f (α) = max f (α)−min f (α)
(13)

2.3. Feature reduction using principal component analysis

Principal component analysis (PCA) was used to extract features
strongly correlated to each other. In this procedure, the principal
component coefficients of the dataset are calculated and the k largest
components are considered to give the joint features of the dataset
that capture the most data variance in k dimensions [29]. Considering
the feature vector X with mean µx and a covariance matrix of Cx,e
the eigenvectors and eigenvalues of the features can be calculated
and sorted into an order of descending eigenvalues. In this case,
transforming a data vector X gives:

y = AK(X−µx) (14)

where AK is a matrix consisting of the first k eigenvectors of the
covariance matrix Cx and the components of y are then calculated as
the orthogonal transformations of X . Finally, the original data vector
X can be approximately reconstructed from y by:

X = AT
Ky = µx (15)

In this study, the principal component coefficients of previously
extracted features (Frequency band powers as well as nonlinear
features) were calculated and the 15 largest coefficients of each
category were then used as the final feature set.

2.4. Support vector machines classifier

The support vector machine (SVM) proposed by Vapnik [30] is a
supervised machine learning algorithm preferred for many classi-
fication problems. The aim of the SVM is to compute an optimal
separating hyperplane to which the distance from each nearest data
sample in each class is maximized. In non-separable cases, SVM
offers a solution using kernel mapping. To allow separation in such
cases, the data can be projected into a higher-dimensional feature
space using a nonlinear function (φ(·)).

In general, the formulation of the hyperplane is as follows:

W t
φ(·)+b = 0 (16)

in which W and b are a weight vector and a bias term, respectively.
To find such an optimum hyperplane, the optimization problem is:

Minimize J(W ) =
1
2
‖W‖2

Subject to di(W T
φ(x)+b≥ 1

(17)

The above-mentioned problem is solved using Lagrangian op-
timization theory [31]. Here, linear, polynomial, and radial basis
function (RBF) kernel functions were tested. The RBF kernel led to
better discrimination accuracy.

2.5. Radial basis function neural networks classifier

The radial basis function neural network (RBFNN), a supervised
machine learning algorithm, is an artificial neural network that uses
radial basis functions as activation functions [32]. The output of
the network is a linear combination of radial basis functions of the
inputs and neuron node parameters. A RBFNN typically has three
layers: input, hidden with a nonlinear RBF activation function, and a
linear output layer. For an input vector X , the output of the network
is given by:

φ(x) =
N

∑
i=1

aiρ(‖X−Ci‖) (18)

where N is the number of neurons in the hidden layer, Ci is the centre
vector for neuron node i, and ai is the weight of neuron node i in
the output neuron node [32]. The most commonly used radial basis
function (ρ) is Gaussian:

ρ(‖X−Ci‖) = exp[−β‖X−Ci‖2] (19)

RBFNNs are typically trained by back propagation [32]. In this
study, the MATLAB neural network toolbox was used to implement
a RBFNN. It is important to consider the optimum value for the
RBFNN spread parameter. It should be large enough that the radial
basis layer neuron nodes respond to overlapping regions in the input
space, but not so large that all neuron nodes respond in essentially
the same manner.

3. Result
To evaluate the proposed algorithm, noise removal was first per-
formed. The features mentioned above for the noise-free one-minute
long EEG signals were then extracted. Because of the small sample
size, evaluation of discrepancies in nonlinear feature category be-
tween ADHD and normal subjects was performed using the nonpara-
metric Wilcoxon rank sum test. The most highly distinguished LLEs
were the scalp channels Fp1 (p = 0.0379), Fp2 (p = 0.0499), F3 (p =
0.0379), C3 (p = 0.0148), F7 (p = 0.0148), and Cz (p = 0.0148).

The average LLE of the ADHD group was significantly higher
than the control group at left frontal central scalp electrode channels
This suggests that for those channels EEG chaoticity for ADHD
subjects was higher than the age-matched control group.

Similarly, the Wilcoxon rank sum test revealed significant group
differences for the ApEn measure. Mean ApEn in ADHD subjects
was lower than for the control group. Mean ApEn for ADHD subjects
trended lower at all 19 EEG channels, reaching statistical significance
at channels Fp1 (p = 0.0351) and Fp2 (p = 0.0531) (Fig. 2).

High values of ApEn indicate a more complex and irregular
system and low values, a lower complexity system. Fig. 2 shows that
the complexity of the EEG signals in the ADHD group was lower
over the prefrontal scalp.

The height of the multifractal spectrum for ADHD subjects at
most scalp channels was dissimilar to that of controls. No significant
differences were observed between the widths of the multifractal
spectrum in the two groups, except for channels Fp1 (p = 0.0166)
and F7 (p = 0.0404).

The height of the multifractal spectrum statistical evaluation
result is shown in Fig. 3. Multifractal spectrum differences between
ADHD and control subjects were found in some frontal and right
scalp channel signals including Fp1 (p = 0.0304), F4 (p = 0.0086),
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F7 (p = 0.0404), F8 (p = 0.0141), P4 (p = 0.0226), T4 (p = 0.0141),
O2 (p = 0.0464), Cz (p = 0.0262), and Pz (p = 0.0086). For ADHD
subjects the multifractal spectrum was higher than the control group
over these scalp electrodes.

Fig. 2. Results of the Wilcoxon rank sum test for the mean ApEn feature
between ADHD and control group at channels: (a) Fp1, (b) Fp2. Mean ApEn
in subjects with ADHD was significantly lower than control in these two
scalp electrodes.

Fig. 3. Black disks indicate channels with multifractal spectrum height
differences (p-value < 0.05) between ADHD and normal subjects. The
multifractal spectrum for ADHD subjects was significantly higher than the
control group over these scalp electrodes.

After evaluating the nonlinear features of channel signals, their
ability to discriminate the two groups was considered. The first 15
principle components in each feature category (band power and non-
linear) were chosen; these 15 PCs preserved 90% of signal variance.
Next, two classifiers, an SVM and an RBFNN, were constructed and
the first 15 principle components in each feature category were sepa-
rately analyzed. 80% of the data were used to train the classifiers; the
other 20% were kept for testing. The four-fold cross validation pro-
cedure was used for evaluating the classifiers’ performance. Fig. 4
summarizes the results of applying frequency band power values in
the classifiers. As shown in Fig. 4, using alpha power in the SVM
gave the highest accuracy (83.33%). Moreover, beta and delta power
using RBFNN gave the least accurate classification discrimination
(58.33%).

In Table 1, the results of using nonlinear features (LLE, ApEn,
and the multifractal spectrum) are given for both classifiers. When it
was used as input to the SVM classifier, the multifractal spectrum
features produced the highest accuracy, 79.17%. Accuracy was
lowest when ApEn was used as the classifier input for SVM (59%).
Largest Lyapunov exponents with RBFNN exhibited a high accuracy
(79.17%) in classifying two groups as well.

Fig. 4. Group classification using frequency band powers.

Table 1. Classification using nonlinear dynamical properties

Classifier
Nonlinear features

Largest
Lyapunov
exponent

Approximate
entropy

Multi fractal
spectrum

SVM 70.83 59 79.17
RBF 79.17 75 66.67

Table 2. Classification using combined features

Classifier
Band power features Nonlinear features

Without
PCA (%)

With PCA
(%)

Without
PCA (%)

With PCA
(%)

SVM 79.17 79.17 83.33 83.33
RBF 83.33 70.83 70.83 66.67

Finally, classification results using combined band power and
nonlinear features are shown in Table 2. SVM accuracy for frequency
band power (79.17%) did not change after PCA. Accuracy of band
power features with RBFNN before PCA (83.33%) declined after
PCA (70.83%). The highest classification accuracy (83.33%) was
achieved when nonlinear features were applied to the SVM classifier.
This result remained unchanged after applying PCA.

In general, using nonlinear features in the SVM classifier pro-
vided much better classification of ADHD and controls. Findings
confirmed that these nonlinear features increased the accuracy of
classification compared to using band power features.

4. Discussion
In this study, resting EEG from 12 ADHD subjects and 12 controls
were analysed using nonlinear analysis metrics. It was believed that
nonlinear analysis would offer new tools for exploration of brain
information processing. Thus, three measures of nonlinear dynamics
were explored: LLEs, ApEns, and the multifractal spectrum of one-
minute noise-free EEG signals extracted from 19 scalp channels.
To visualize the effects of each feature set, the mean and SD of all
features for the two groups are shown in Fig. 5. It is clear that the
MF spectrum height contains more discriminative information.

A Wilcoxon rank sum test revealed that mean LLE for ADHD
subjects was significantly higher than the control group in scalp elec-
trode channels over left frontal and left central scalp. Even though
the LLE distinguished the two groups, it could not be concluded with
certainty that these results indicate impaired cortical information
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Fig. 5. Mean and SD of different features for two groups (ADHD: Black bar,
Control: Gray bar).

processing in these brain regions.
ApEn was significantly lower in subjects with ADHD in scalp

channels over prefrontal scalp. This suggests that the complexity of
cortical dynamics in prefrontal regions of ADHD subjects may be
lower than that of control subjects. Reduced EEG complexity has
been associated with elevated dysfunction in some previous stud-
ies [14, 17, 33, 34]. Ikawa et al. [34] described region-specific cor-
relations between neuropsychological performance and dynamical
EEG complexity in subjects with attention deficit disorder. Sohn et
al. [14] also suggested an association between reduced cognitive per-
formance on the continuous performance test in ADHD adolescents
and impaired cortical information processing, as indicated by the
lower complexity of the EEG. Therefore the reduced ApEn in ADHD
children reported for this study might possibly relate to their relative
inability to deal with demands for flexible information processing,
also noted to be of difficulty for ADHD adults.

To the authors’ best knowledge, this is the first time that MFDFA
has been used for discrimination of ADHD. Several recent studies
suggest that changes in the multifractal structure of EEG signal re-
flect changes in the adaptability of underlying physiological pro-
cess [19, 21]. According to the results shown in Fig. 3, the shape of
the multifractal spectrum, including both its width and height dif-
fered in ADHD and healthy children. Specifically, in scalp channels
over the right hemisphere the multifractal spectrum for ADHD sub-
jects was higher than the age-matched control subjects. The elevated
height and width of multifractal spectrum in children with ADHD
show a more complex pattern in these children compared to healthy
subjects. These results are in line with previous study of epileptic
subjects which show that the degree of multifractality of EEG for
patients in an epileptic seizure are much higher when compared to
normal healthy people [18].

It has been suggested that symptoms of ADHD originate from
dysfunction of neural systems in brain regions associated with at-
tention and response inhibition [7]. A vast majority of previous in-
vestigation provides evidence for a deficit in the allocation of neural
resources in the frontal cortices [11–13, 35]. A neuropsychological
approach was previously used to examine the frontal lobe and right
parietal lobe theories of attention deficit hyperactivity disorder [36].
Hence, lower ApEn at prefrontal and higher LLE at frontal scalp
electrodes (Fp1, Fp2, F3, F7) might suggest a lower complexity and
predictability of underlying neural systems at these scalp regions.
Also the distinct multifractal spectrum shape at frontal (Fp1, F4, F7,

F8) and right parietal scalp channels might indicate impaired cortical
activity at these regions compared to that of healthy subjects.

These features, as well as spectral power features, were used for
classification (by use of two different classifiers: SVM and RBFNN).
Classification accuracy was significantly higher when nonlinear fea-
tures were used as input. In classifications using frequency band
power, the highest accuracy (83.33%) was achieved using the alpha
band power. For nonlinear features, using multifractal spectral fea-
tures in an SVM classifier produced the highest accuracy (79.17%).
This did not improve after PCA. Maximal accuracy (83.33%) was
achieved using a combination of nonlinear features in an SVM clas-
sifier. These results confirmed that the nonlinear features of scalp
EEG signals tested here can increase the accuracy of classification
compared to using band power features.

5. Conclusion
The ability of nonlinear dynamical analysis to discriminate EEG sig-
nals of children with ADHD in comparison with age-matched healthy
subjects was investigated. To do so, three nonlinear dynamical mea-
sures, LLE, ApEn, and the multifractal spectra of EEG signals were
extracted from different channels of the scalp and were classified.
Results showed that mean LLE, mean ApEn, and mean multifractal
spectrum shape were significantly different for both groups. Using
nonlinear features along with SVM yielded a high accuracy (83.3%)
of ADHD identification. This was the first investigation to employ
MFDFA for the discrimination of ADHD. However, small sample
size was a limitation of the study. It is suggested that nonlinear mea-
sures along with large datasets may reveal more aspects of cognitive
information processing deficit in children with ADHD.

This study investigated nonlinear properties of EEG signals
during rest. Nevertheless, the allocation of neural resources differs
when a subject directs their attention in an experimentally controlled
situation. Therefore, the investigation of nonlinear measures of
cognitive performance tasks should be further explored in future
studies.
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[6] Adámek V, Valeš F (2012) Graph theoretical analysis of organization
of functional brain networks in ADHD. Clinical EEG & Neuroscience
43(1), 5-13.

[7] Barry RJ, Clarke AR, Johnstone SJ (2003) A review of electrophys-
iology in attention-deficit/hyperactivity disorder: I. Qualitative and
quantitative electroencephalography. Clinical Neurophysiology 114(2),
171-183.

[8] Barry RJ, Clarke AR, Mccarthy R, Selikowitz M (2002) EEG coherence
in attention-deficit/hyperactivity disorder: a comparative study of two
DSM-IV types. Clinical Neurophysiology 113(4), 579-585.

[9] Ghassemi F, Hassan Moradi M, Tehrani-Doost M, Abootalebi V (2012)
Using non-linear features of EEG for ADHD/normal participants’ clas-
sification. Procedia-Social and Behavioral Sciences 32, 148-152.

[10] Lazzaro I, Gordon E, Whitmont S, Meares R, Clarke S (2001) The
modulation of late component event related potentials by pre-stimulus
EEG theta activity in ADHD. International Journal of Neuroscience
107(3, 4), 247-264.

[11] Lazzaro I, Gordon E, Whitmont S, Plahn M, Li W, Clarke S, Dosen A,
Meares R (1998) Quantified EEG activity in adolescent attention deficit
hyperactivity disorder. Clinical Electroencephalogr 29(1), 37-42.

[12] Lubar JF (1991) Discourse on the development of EEG diagnostics and
biofeedback for attention-deficit/hyperactivity disorders. Biofeedback
and Self-regulation 16(3), 201-205.

[13] Mann CA, Lubar JF, Zimmerman AW, Miller CA, Muenchen RA (1992)
Quantitative analysis of EEG in boys with attention-deficit-hyperactivity
disorder: Controlled study with clinical implications. Pediatric Neurol-
ogy 8(1), 30-36.

[14] Sohn H, Kim I, Lee W, Peterson BS, Hong H, Chae JH, Hong S, Jeong J
(2010) Linear and non-linear EEG analysis of adolescents with attention-
deficit/hyperactivity disorder during a cognitive task. Clinical Neuro-
physiology Official Journal of the International Federation of Clinical
Neurophysiology 121(11), 1863-1870.

[15] Swartwood JN, Swartwood MO, Lubar JF, Timmermann DL (2003)
EEG differences in ADHD-combined type during baseline and cognitive
tasks. Pediatric Neurology 28(3), 199-204.

[16] Tcheslavski GV, Beex AA (2006) Phase synchrony and coherence anal-
yses of EEG as tools to discriminate between children with and without
attention deficit disorder. Biomedical Signal Processing & Control 1(2),
151-161.

[17] Stam CJ (2005) Nonlinear dynamical analysis of EEG and MEG: review
of an emerging field. Clinical Neurophysiology 116(10), 2266-2301.

[18] Dutta S, Ghosh D, Samanta S, Dey S (2014) Multifractal parameters
as an indication of different physiological and pathological states of
the human brain. Physica A Statistical Mechanics & Its Applications
396(2), 155-163.

[19] Zorick T, Mandelkern MA (2013) Multifractal Detrended Fluctuation
Analysis of Human EEG: Preliminary Investigation and Comparison
with the Wavelet Transform Modulus Maxima Technique. Plos One
8(7), e68360.
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