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Abstract
The continuing prevalence of a highly heritable and hypo-reproductive extreme tail of a human neurobehavioral quantitative
diversity suggests the reproductive majority retains the genetic mechanisms for extremes. From the perspective of stochastic
epistasis, the effect of an epistatic modifier variant can randomly vary in both phenotypic value and effect direction among carriers
depending on the genetic identity and the modifier carriers are ubiquitous in the population. The neutrality of the mean genetic
effect in carriers ensures the survival of the variant under selection pressures. Functionally or metabolically related modifier
variants make an epistatic network module and dozens of modules may be involved in the phenotype. To assess the significance
of stochastic epistasis, a simplified module-based model was simulated. The individual repertoire of the modifier variants in a
module also contributes in genetic identity, which determines the genetic contribution of each carrier modifier. Because the entire
contribution of a module to phenotypic outcome is unpredictable in the model, the module effect represents the total contribution
of related modifiers as a stochastic unit in simulations. As a result, the intrinsic compatibility between distributional robustness
and quantitative changeability could mathematically be simulated using the model. The artificial normal distribution shape in
large-sized simulations was preserved in each generation even if the lowest fitness tail was non-reproductive. The robustness
of normality across generations is analogous to the real situation of complex human diversity, including neurodevelopmental
conditions. The repeated regeneration of a non-reproductive extreme tail may be essential for survival and change of the
reproductive majority, implying extremes for others. Further simulation to illustrate how the fitness of extreme individuals can be
low across generations may be necessary to increase the plausibility of this stochastic epistasis model.
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1. Introduction

In quantitative complex traits, offspring trait value is determined by
genes inherited from parents (nature), environmental factors (nur-
ture), and the mixture (gene-environment interactions) [1]. A bal-
anced perspective, that appreciates both nature and nurture, is im-
portant and valid for the developmental trajectories of each pheno-
type, as well as for the eventual outcomes [2]. Although the pres-
ence of unpredictability or stochasticity is easily predictable in phe-
notypic variations associated with complex environmental factors
and gene-environment interaction [3], non-environmentally heritable
stochasticity has attracted little investigative attention. Traditional
intrinsic stochastic phenomena including the usual gene expression
noise and epigenetically-driven monoallelic expression cannot be
included in heritable stochasticity, because the phenotypic outcomes
or patterns in genetically identical pairs are discordant and usually
not replicable in offspring [4, 5]. In principle, the confirmation of

heritable unpredictability or stochasticity is only available from the
experimental conditioning of genetic backgrounds [6–8]. There-
fore, high concordance in monozygotic twins with a disparity be-
tween monozygotic and dizygotic concordance rates may be the
only clue to predict the presence of heritable unpredictability. Non-
environmental heritable stochasticity was first employed to explain
the survival of a hypo-reproductive extreme tail (autism) of a com-
plex human behavioral diversity [9]. The survival of this highly
heritable and mainly sporadic behavioral condition [10] dictates an
epistasis-associated stochastic fitness oscillation across generations
(phenotypic trade-offs) and unpredictability of genetic effects [9].
Importantly, the supposed genetic underpinning can load the extreme
tail with disabilities and allow the residual majority to enjoy their
normal functions, and the genetic factors are not necessary to explain
the presence of extreme tails for the stochastic epistasis concept [9].
In the inevitably stochastic process, whose phenotypic outcomes are
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concordant in genetically identical pairs, the phenotypic value of a
related modifier variant randomly changes with each generation and
varies in a generation because of genetic identity [9, 11–13]. As a
result, the mean fitness values of each modifier variant and the mean
total fitness of an epistatic network (module), whose constituents
are the modifiers and one or more of the evolutionarily survived
(monomorphic) switches for stochasticity, can be net neutral both
across generations and within a single generation [9, 11, 13]. Phe-
notypic stochasticity can render modifiers and modules hidden or
missing, while hidden genetic architectures can maintain phenotypic
diversity under selection [13]. Modest correlations between core
characteristics in a complex trait and the sizable genetic overlap
among multiple distinct complex conditions can be illustrated by the
infidelity of pleiotropy in stochastic epistasis [9, 12, 13]. This theo-
retical challenge originates in an insight into the robustness of fitness-
associated phenotypic diversity across generations, with the core of
the concept being the presence of fitness neutrality resulting from
the stochasticity of genetic effect [9]. Modifier variants that alter
the noise of gene expression can be detected by comparative studies
of experimental cell strains [14–16], and an evolvable stochasticity
in epigenetic variation has been revealed using tissue samples [17].
Without reciprocal citation of each other’s work, incomplete pene-
trance of complex human conditions and unpredictability of disease
susceptbility has been deductively reasoned using cell-level stochas-
ticity [15, 16], while evolvable epigenetic noise has been considered
as the driving force of development, differentiation, evolutionary
adaptation, and disease susceptibility [17].

The stochastic epistasis model never dismisses the comprehen-
sive view that appreciates the involvement of the genetic effects of
major variants, environmental factors, and gene-environment inter-
actions [9, 11, 13]. Cis-acting genetic interactions associated with
genetic imprinting is also considered as one of the related inter-gene
interactions in the stochastic epistatic modules [12]. Because the
need for an enormous assortment of physiological responses in com-
plexity and specificity depends upon stochasticity-based phenotypic
diversity [18], stochastic epistasis may be critical in complex human
traits that include neurodevelopmental quantitative conditions [9, 11].
These complex traits involve the degree of phenotypic penetrance
of a major variant gene effect, the liability to dichotomous diagno-
sis, the latent period length of late-onset diseases, clinical response
to treatment, and resistance/vulnerability to pathogens, toxins, or
mental stress. Stochastic epistasis may have an especially important
role in complex conditions which have a disparity between monozy-
gotic and dizygotic concordances in twin studies like autism and
schizophrenia. In this article, a simplified module-based model was
employed to characterize stochastic epistasis.

2. Methods

The stochastic effects of the related epistatic modifier variants on
complex traits and the correlative genetic contribution of the parents
were simulated with a simplified model. Because the related modi-
fiers stochastically affect the phenotype according to the genetic iden-
tity as a network (module) and the effect values of related modules
are also stochastic [11], the summation of stochastic module effects
was added as the stochastic epistatic component according to the
de novo genetic identity in the zygote including germinal mutations
and chromosomal recombination and shuffling. Genetic effects of
major variants and the environmental contribution were not included

in this model so as to exclusively evaluate the nature of the stochastic
epistasis. In preliminary models, the number of related epistatic
modules was documented by the number of evolutionarily surviv-
ing monomorphic switches for the stochastic epistasis and modifier
variants were included in the random genetic individualities [13]. It
has previously been demonstrated that the normal distribution of a
quantitative trait can be well demonstrated by this model [11, 13].
The stochasticity of the component is supposed to be underpinned
by sufficiently randomized genetic identity. The phenotypic value of
an offspring (Xo) was obtained from the following formula.

Xo = a×X p+b×Xm+ c×
m

∑
i=1

Ui

The contribution from each stochastic module (Ui) ranges from
-1 to 1 (actually 0.999999999) using the uniform random number gen-
erator of a spread sheet application. As described above, a stochastic
module can generate an unpredictable genetic effect and previous
preliminary simulation suggested that the module number should be
multiplied for a quantitative phenotype [13]. Thus, the entire genetic
effect of related modifier variants were substituted by a uniform
random number to mimic the stochastic effect of a module. If there is
only one module in the real phenotype, the simulation is too simple
and the stochastic effect of each modifier variant should be simulated.
In the formula, m represents the number of related modules and
the additive stochastic component is the summation of the related
module values. To be consistent with the data reported for autism
and schizophrenia [10, 19, 20], hundreds of modifier variants should
be assumed in this simulation. Because the number of modifier vari-
ants in a module may be from several to dozens [11], m was ranged
from 1 to 50. The paternal phenotypic value (X p), the maternal
phenotypic value (Xm), and the additive stochastic component (the
sigma component) have coefficients (a, b, and c, respectively) for
their contributions. The coefficient c has a function to adjust the pro-
portional contribution for the parental components and the additive
stochastic component. The phenotypic value of a member of a gen-
eration was automatically calculated in a cell of by the spread sheet
application using assigned Visual Basic assembly macro programs,
and a population named generation zero (G0) was provided using
only the sigma component for the calculation of the first generation
(G1). As an example of the Visual Basic macros, macro a100 for
a changeability simulation is shown in the Appendix. Although a
traditional regression model (linear mixed-effects) has both fixed
and random effects components, the components of the equation
employed were all interpreted as random-effects and the model did
not predict unknown continuous variables but rather the phenotypic
diversity underpinned by a hidden genetic architecture. The mean
value of the sigma component in a generation population is zero and
the distribution approximates the normal distribution according to
the central limit theorem [13]. Both the parental phenotypic values
were calculated using the same formula as Xo in the previous gener-
ation, and the origins of the values were sigma components in G0 as
described above. Therefore, when the distributional robustness was
tested, the distribution of each generation could be approximated to
the normal distribution in simulations. When distributional drifts
or changeability could be simulated, the mean values for Xo, X p,
and Xm should be affected and changed. Given that phenotypic
robustness could be demonstrated, the mean values for Xo, X p, Xm,
as well as the sigma component should be zero as well.
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2.1. Robustness simulations

The male to female ratio in each generation was fixed to 1.0 and
the marriage rate was fixed to 100%. Sex of an individual was
determined randomly. Mating was done only within a generation
and was also random, i. e. without positive or negative assortative
mating. The random mating was simulated only within each gen-
eration and inter-generational mating did not occur. The parental
phenotypic values (X p and Xm) were carried over from the previ-
ous generation and the simulation of G1 was conducted employing
G0 as described above. The offspring number for each couple was
fixed at two for robustness simulations, resulting in a stable popula-
tion size. Intrinsic distributional robustness and the phenotypic drift
through generations was evaluated for different population sizes (10,
50, 100, 500, and 1,000), module numbers (m: 1, 2, 4, 10, 30, and
50), and coefficients (a,b, and c). To detect size-dependent drifts
of generational populations, the population size was intentionally
altered from unrealistic numbers for these simplified artificial simu-
lations. To determine the optimum population size for the following
changeability simulations, the smallest population size, for which
distributional robustness could be obtained, was investigated. Auto-
matically simulated generations were from G1 to G100. To assess
the shape of the population, a generational population was depicted
as a box-and-whisker diagram with outliers (small circles) whose
values were between 1.5 and 3.0 times the box range and extremes
(asterisks) whose values were more than 3.0 times the box range
(IBM SPSS statistics, version 23). Each simulation was represented
by a sequence of these boxplots.

2.2. Changeability simulations

Phenotypic changeability was evaluated on the basis of the robust-
ness simulations. Sufficient population size (n = 1,000), for which
distributional robustness could be maintained in the robustness sim-
ulations, was employed was employed for the changeability simu-
lations. The extreme individuals with the lowest phenotypic values
in a generation are supposed to be unreproductive. Their ability or
opportunity in the mating arena is seriously reduced and they cannot
leave offspring. Xo values of the extreme cases (0.2, 1, 2, 5, and
10%) were first eliminated from the spread sheet table as unrepro-
ductive individuals and residual reproductive individuals 998, 990,
980, 950, and 900 were all respectively randomly coupled within the
generation as described above. The male to female ratio was fixed
to 1.0 and the sex of an individual was determined randomly. To
stabilize population size, hyper-reproductive couples, 1, 5, 10, 25,
and 50 couples, respectively, were randomly selected regardless of
the Xo values, and the selected couples were regarded as competent
to have four offspring for the next generation. On the other hand,
the other normal-reproductive couples (498, 490, 480, 450, and 400
couples) have 2 children. There were from 1 to 100 generations
simulated. A generation population was depicted as the mean ± one
standard deviation style (IBM SPSS statistics, version 23) and each
simulation was represented by a line graph.

2.3. Normality of the distribution and statistical analysis

Descriptive calculations and statistical analyses were performed
using a statistical software package (IBM SPSS statistics, version
23). The distribution of a generation is approximated to normal
distribution in the artificial robustness simulations [13]. In order to
access the intrinsic compatibility between distributional robustness

and phenotypic changeability in complex conditions, the normality
of the population distribution in a generation was evaluated using two
methods for both the robustness and the changeability simulations.
In descriptive statistics, a generation population with an absolute
value for skewness and/or kurtosis that exceeded 2.0 was considered
not to be normally distributed. p values based on the Shapiro-Wilk
regression test statistic under the null hypothesis of normality were
determined for the population distribution of a generation. When the
p value was less than 0.05, the null hypothesis was rejected and the
generation was considered not to be normally distributed.

3. Results
The simplified model, which was designed to be consistent with the
correlation of parents and the de novo update of genetic identity in
the zygote, demonstrated some pronounced functions of the stochas-
tic epistasis component, as described below. Because preliminary
simulations revealed that the phenotypic diversity of the generation
population cannot be maintained without the stochastic epistatic
component and the stability of the mean phenotypic values is condi-
tional on the coefficients of the formula, to evaluate the influences of
population size and the effect of the module number, the coefficient
values were fixed (a = 0.5, b = 0.5, and c = 1.0). On the other hand,
to evaluate the coefficient conditions, the module number was fixed
to m = 10.

3.1. Population size and distributional robustness

Simulations were repeated five times and it was clearly demonstrated
that the median value for each generation in small-sized simulations
(n = 10 and 50) drifted randomly with the direction of the phenotypic
change randomly determined (Fig. 1 gives a representative simulation
for each population size). The phenotypic variance of the generation
population also varies randomly in small-sized simulations. This
phenotypic drift in small-sized simulation (n = 10) was confirmed for
different module numbers (m = 10 in Fig. 1 and m = 1, 2, and 4 data
not shown), and it was suggested that the drift can be exaggerated
when either module number or stochasticity were increased. In
marked contrast to the small-sized simulations, the simulation of n =
500 showed a significant distributional robustness from G1 to G100.
This intrinsic robustness was confirmed by multiple simulations (five
times) and ascertainment of the mean values. In this simulation (n
= 500), the median or mean phenotypic value was almost the same
through generations, while phenotypic diversity with extreme cases
can also be maintained through generations. From these results, the
population size for the following simulations were fixed to n = 1,000
to exclude the contamination from population size effects.

3.2. Contributions of each component to the stochastic epis-
tasis model

Following exhaustive evaluation of every possibility, the simulations
for each coefficient condition were repeated five times and three
representative simulations are shown in Fig. 2. It was revealed that
there are four conditions concerning the intrinsic distributional ro-
bustness. In the first condition (a+b 5 1 and c = 0), although the
phenotypic diversity could not be maintained without the additive
stochastic epistasis component, the median value of the phenotype
was the same as obtained for G1 across generations. In the second
condition (a+b 5 1, a+b > |c|, and c 6= 0), the phenotypic diversity
if G1 could not be maintained and the distribution range of the gen-
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Fig. 1. Population size-dependent stability of the simulated phenotypic diversity. A simulation is illustrated as a sequence of boxplot diagrams. The phenotypic
values (Xo) were automatically calculated using the formula (y-axis title) for each generation (G1−G100) as described in Methods. Simulations were repeated
five times with the population size varying from 10 to 500, and a representative simulation for each population size is shown. Small arrow heads indicate
generations whose population was not normally distributed by an assessment of the absolute value for skewness and/or kurtosis (= 2.0). The module number
was fixed (m = 10) for these representative simulations.

eration population was gradually attenuated during the first several
generations. After attenuation, the phenotypic diversity stabilized to
a modest value. The median value of the phenotype was the same as
G1 across generations. For the third condition (a+b 5 1, a+b 5 |c|,
and c 6= 0), both the phenotypic median and phenotypic variance
could remain in this condition across generations. Therefore, in this
condition, the perfect intrinsic robustness of phenotypic diversity
could be obtained. In the fourth condition (a+ b > 1 and c 6=0),
where the sum total of the parent’s contribution coefficients (a and
b) exceed 1.0, the phenotypic distribution suddenly deviated from
approximately G50, although the direction and degree of the devia-
tion was random, and the direction did not change in the simulation.
Even for the deviated generations, the phenotypic diversity could be
maintained as shown in Fig. 2.

3.3. Reproductive selection and phenotypic changeability

According to the percentage of the non-reproductive individuals
whose phenotypic value was lowest in the generatiing population,
the phenotypic distribution could be changed across generations
(Fig. 3). The change occurred in the opposite direction to the non-
reproductive extreme tail and the degree of change was determined by
the value of coefficient c (data not shown). Together with the results
of simulations with different numbers of stochastic epistatic modules

(m = 10, 30, and 50), it was suggested that changeability could be
exaggerated by an increase in the diversity range of the generation
population when the module number increases or the stochasticity
grows. The normality of the changing generating population could
be maintained across generations. Although a continuous selection
pressure generates a continual changeability across generations, a
cessation of the pressure leads to a reappearance of distributional
robustness and its eventual stabilization of the mean level.

3.4. Normality of the generation population

It is well known that the total sum of multiple uniform random num-
bers varies randomly, yielding a normally distributed histogram, and
the histograms of stochastic epistasis models have previously been
evaluated [13]. The normality of the population of each generation
was assessed using descriptive statistics (the absolute value for skew-
ness and/or kurtosis) and the Shapiro-Wilk regression test. It is only
in simulations with small populations (n = 10 and 50), that cases
with an absolute value for skewness and/or kurtosis exceeding 2.0
can be observed (Fig. 1). In almost all simulations the Shapiro-Wilk
regression test detected some generations whose population may not
be normally distributed and that exhibited a minimum correlation
with the skewness/kurtosis results. In the simulations where popula-
tion size was 10, 50, 100, 500, and 1,000 (a = 0.5, b = 0.5, c = 1.0,
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Fig. 2. Conditional effects of each coefficient of the formula (y-axis title). A simulation is illustrated as a sequence of boxplot diagrams. The phenotypic values
(Xo) were automatically calculated using the formula for each generation (G1−G100) as described in Methods. Simulations for each condition were repeated
five times and three representative simulations are given for each condition (300 boxplots per condition) with a = 0.5, b = 0.5, and c = 0 for the condition
a+b 5 1 and c = 0,a = 0.5,b = 0.5, and c = 0.1 for the condition a+b 5 1, a+b > |c|, and c 6= 0, a = 0.5,b = 0.5, and c = 1.0 for the condition a+b 5 1,
a+b 5 |c|, and c 6= 0, and a = 0.53,b = 0.53, and c = 1.0 for the condition a+b > 1 and c 6= 0, respectively. To exclude the contamination of the population
size effect, the population size was fixed (n = 1, 000). The module number was also fixed (m = 10).

m = 10), the number of generations whose population was suggested
to be not normally distributed by Shapiro-Wilk regression test (p <

0.05) was 4.4 ± 1.8, 6.8 ± 2.8, 6.4 ± 2.8, 6.0 ± 2.3, and 5.0 ± 2.6,
respectively in 100 generations (each n = 5). In the representative
simulations where population size was 10, 50, 100, 500, and 1,000,
the maximal absolute values for skewness and/or kurtosis were 6.91,
3.21, 1.59, 0.58, and 0.35, respectively. In the changeability sim-
ulations with population size n = 1,000, the descriptive analyses
revealed that the normality of the changing generation population
could be preserved across generations. The normality was confirmed
by maximal absolute values for skewness and/or kurtosis < 2.0. Un-
der conditions where the percentage of nonreproductive individuals
was 0.2, 1, 2, 5, and 10%, the maximal absolute value for skewness
and/or kurtosis was: 0.35, 0.41, 0.39, 0.39, and 0.33, respectively, for
the m = 10 simulations; 0.38, 0.35, 0.35, 0.47, and 0.38, respectively,
for the m = 30 simulations; and 0.44, 0.40, 0.38, 0.46, and 0.41,
respectively, for the m = 50 simulations.

4. Discussion

In the simulations to evaluate population size effects, it was demon-
strated that small sized simulations (n = 10 or 50) can generate a phe-
notypic instability (drift) of the population distribution (Fig. 1). The
median or phenotypic mean of each generation drifts randomly and
the direction of the phenotypic change is determined by chance. Al-
though the scale of the population size is different between mathemat-
ical simulations and real populations, the phenotypic drift has phe-
nomenological similarities to the evolutionary ‘genetic drift’, which
can cause a fitness-independent skewness of the pooled gene reper-
toire in small populations as an important driver of evolution [21].
Because the drift of the phenotypic distribution in the small sized
simulations studied here provides a fitness-independent failure of
neutrality with loss of genetic complexity, if the model is credible,
the drifted population may consequently be exposed to selection
pressures in the real world and the phenotypic differentiation among
small populations may drive local adaptation similarly to the known
‘genetic drift’-associated phenotypic changes [22]. Such fitness-
independency associated with population size bottlenecking occurs
easily in the stochastic epistasis model, in which the link between
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Fig. 3. Phenotypic changeability in a selection pressure where the lowest extremes in the population cannot leave offspring. A simulation is illustrated as a line
graph (the mean value ± one standard deviation). The phenotypic values (Xo) were automatically calculated using the formula (y-axis title) for each generation
(G1−G100) as described in Methods. The percentage of nonreproductive extreme cases is shown at the right end of the simulation (from 0.2% to 10% with a
minus symbol). To exclude the contamination of population size effect, the population size was fixed (n = 1,000).

related modifier variant and phenotypic outcome is hidden in a large
population. The position of a modifier-carrier can be anywhere in
the phenotypic distribution and the size of any research sampling in
the population may be too bottlenecking (too small) for the modifier
carriers in sample to enjoy the neutrality of the phenotypic mean [11].
Therefore, in the stochastic epistasis concept, the fitness-independent
failure of neutrality might be common in the samplings for genetic
research and some of the related modifier variants in the sample
could be detected by a usual study sampling by chance. However, it
is supposed that the associations detected between complex condi-
tions and modifiers can hardly be replicated by additional research,
the modifiers are not necessarily detected only in the extreme cases,
and the presence of variants may only be revealed in a few of the
extreme cases. From this perspective, another sampling may result in
the detection of another association. In actual research on complex
human conditions including autism and schizophrenia, hundreds of
candidate variants have been found and most of these variants explain
only a modest amount of the observed heritability (the majority of
the variants assumed are missing) [10, 19, 20]. The reported variants
including de novo mutations can be detected in a minor number of
cases and sometimes show incomplete penetrance in relatives and
low result replication rates in different study samples [12]. These
similarities between the mathematical simulations and complex hu-
man conditions may increase the credibility of the stochastic epistasis
model for complex conditions.

In contrast to the phenotypic instability in small-sized simula-
tions of the model, there was a pronounced intrinsic robustness of
the phenotypic diversity in large-sized simulations (n = 500 or 1000)
with an optimal condition (a+b 5 1, a+b 5 |c|, and c 6= 0) in which
the phenotypic median (or mean) can be kept neutral (value zero)

even until the 100th generation (G100) (Fig. 2). Normality of the
generation distribution was perfectly maintained in the simulations
as confirmed by the maximal absolute value for skewness and/or
kurtosis (< 2.0). When the additive stochastic epistasis component
has no effect (a+b 5 1 and c 6= 0) or less effect than the parental
correlative components (a+ b 5 1, a+ b > |c|, and c 6= 0), the
median value of each generation can be constant with no or modest
diversity. Therefore, the stochastic epistasis component is critical
for the framework of the distributional robustness of phenotypic
diversity, and the normal shape with gently-sloping bilateral tails
of the population distribution depends on the stochastic epistatic
contribution. The fitness-independent maintenance of phenotypic
median (or mean) without wide-ranged diversity (a+b 5 1, a+b
> |c|, and c 6= 0) may be utilized for the simulation of stabilizing
selection.

In the changeability simulations, the same formula as the robust-
ness simulations showed a complexity-dependent phenotypic change-
ability in a selection situation where individuals with the lowest Xo
values are nonreproductive (Fig. 3). In the same way as the fitness-
independent failure of the fitness neutrality in size-bottlenecking pop-
ulations, the fitness-dependent phenotypic change can be exagger-
ated by the increase of the stochastic epistatic contribution. Because
both the fitness-independent and -dependent phenotypic changes
are regarded as the core of local adaptation and evolution [21–23],
the implications of these mathematical phenotypic changes for com-
plex human conditions should be discussed as follows. There is
no heritability without genetic diversity [24], and co-segregation
between a phenotypic characteristic and the related gene variants is
one of the essential prerequisites for differentiation, development,
disease susceptibility, evolutionary adaptation, and speciation. In
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a fitness-associated complex condition whose normal distribution
includes the majority around the phenotypic mean and the flanking
bilateral extreme tails, if the co-segregation is fixed beyond gener-
ations, the distribution has a risk of being skewed by the burden of
selection process in which an extreme tail is nonreproductive. Why
can the variant-based normally distributed phenotypic diversity be
maintained through generations? Why can the nonreproductive tail
(e.g. autism and schizophrenia) of human diversity remain preva-
lent [9, 25]? Fitness-independent mechanisms, temporal or envi-
ronmental fitness changes or trade-offs, population benefit theory,
and the combinations, as a homeostatic mechanism have been re-
peatedly addressed as the solutions [23, 26–33]. In a novel concept,
the stochastic epistasis perspective, the difference from the temporal
fitness trade-offs in balancing selection (the classical neutral theory
of molecular evolution) is the stochasticity or unpredictability of
the fitness oscillations. Importantly, in the novel model, the carriers
of modifier variants are ubiquitously scattered in the entire popula-
tion distribution [9, 11–13]. In the mathematical model which was
used for simulations here, the reproductive majority of a generation
population can retain the genetic mechanism which regenerates the
extreme in the next generation. Therefore, phenotypic change is
available without damage to the genetic mechanism for the extreme
cases in the stochastic epistatic model. Although only surviving indi-
viduals can be involved in adaptation and evolutionary changes on
the cost of the nonreproductive extremes, the finding that phenotypic
changes are exaggerated by increased stochasticity or complexity
in the extreme-regeneration mechanism may emphasize the impli-
cation of the presence of nonreproductive extreme cases in adapta-
tion and quantitative population change. Because the increase of
stochasticity or complexity in the extreme-regeneration mechanism
is a manifestation of the intensification of the stochastic epistasis
mechanism and the phenotypic change is based on the fitness bene-
fits, the fitness benefit of the population depends on the stochastic
epistasis and the regeneration of nonreproductive individuals. The
presence of the nonreproductive tail is not for the regeneration of
the extreme tail, but for the reproductive majority’s competence to
change, suggesting that the extremes repeatedly exist for others [9].
Furthermore, the evolution of the stochasticity or complexity of the
extreme-regeneration (stochastic epistasis) mechanism may be re-
ferred to as the evolution of changeability. Each of the modifier
variants is indeed neither necessary nor sufficient for the establish-
ment of the extreme cases in the stochastic epistasis model, similarly
to the quantitative trait loci (QTLs) framework [1], but complex
conditions with huge phenotypic diversity like autistic assets may
be characterized by the increased number of the related stochastic
epistatic modules. A huge hidden genetic variation in the stochastic
epistasis modules may be an attractive candidate for the signature
of long-lasting historical quantitative changes as well as an index of
evolutionary potential [34–36].

5. Conclusions

The stochastic epistasis concept is a new neutral theory of quantita-
tive changes. In contrast to the traditional theory with contextual pre-
diction or explanation for the temporal change of phenotypic fitness
[23, 28, 32], it had been specified previously that the phenotypic os-
cillation of stochastic epistasis is random or unpredictable [9, 11–13].
In this approach, the stochastic effects of related epistatic modifier
variants make the network’s effect stochastic and multiple related

networks (modules) stochastically affect a phenotypic outcome [11].
The stochastic epistatic module can be a reservoir of genetic variants
and an important role of the genetic diversity is the maintenance of
the stochasticity. The hidden genetic variation can also fuel evolu-
tion when circumstances change through gene-environment interac-
tions [36]. The stochasticity hides related modifier variants and mod-
ules, but heritability of the phenotype can be preserved in any por-
tion of the phenotypic distribution. Stochastic epistasis-associated
conditions are characterized by a high concordance in monozygotic
twins and a low concordance in dizygotic twins and recognized to
be highly heritable but not inherited.

Modest correlations between core characteristics in a complex
trait and the sizable overlap among multiple distinct complex con-
ditions can be illustrated by the infidelity of pleiotropy in stochas-
tic epistasis. Additionally, here it was demonstrated that both the
intrinsic distributional robustness of phenotypic diversity and quanti-
tative changeability can be mathematically explored with a stochas-
tic epistasis model, and the fast and strong plasticity of the non-
reproductive extreme tail may be essential for both survival and pop-
ulation changes under selection pressures. Stochastic epistasis may
also be the critical mechanism for evolvability. After a population
size bottleneck episode, the loss of genetic complexity in the model
can be a cue for fitness-independent phenotypic changes and local
adaptation. Furthermore, the model explains the research situation
where the result of an initial genetic study cannot be replicated by
subsequent studies and a large-scale study or meta-analysis of multi-
ple studies is unable to screen the candidate genes. Further simula-
tion to illustrate how extreme individuals can stay at low fitness for
generations may be warranted to further understand this model of
stochastic epistasis.

Appendix
An example of the Visual Basic macros (Microsoft Excel 2010) for a
changeability simulation. The worksheet G0 for generation G0 and
the worksheet m for an integer m are prepared in advance. The row
for generation G0 with 10 modules is Q in the G0 worksheet. This
macro (a100) should be run when a new worksheet is active.

Sub a100()
Range(”A1:A1000”) = Worksheets(”G0”).Range(”Q1:Q1000”).Value
Dim m As Integer
For m = 1 To 100
Worksheets(”m”).Cells (1, 1) = m
Call copy01
Call matching01
Call delete01
Call randomize01
Call copy02
Call hyperreproductive01
Call kids01
Call copy03
Call x01
Next m
End Sub
Private Sub copy01()
m = Worksheets(”m”).Cells (1, 1)
Range(Cells (1, 5 * m − 2), Cells (1000, 5 * m − 2)) = Range(Cells (1, 5 * m

− 4), Cells (1000, 5 * m − 4)).Value
End Sub
Private Sub matching01()
m = Worksheets(”m”).Cells (1, 1)
Range(Cells (1, 5 * m − 2), Cells (1000, 5 * m − 2))

. Sort Key1:=Range(Cells(1, 5 * m − 2), Cells (1000, 5 * m − 2)),
Order1:=xlAscending
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End Sub
Private Sub delete01 ()
m = Worksheets(”m”).Cells (1, 1)
Range(Cells (1, 5 * m − 2), Cells (50, 5 * m − 2)).Delete Shift :=xlShiftUp
End Sub
Private Sub randomize01()
m = Worksheets(”m”).Cells (1, 1)
Dim i As Integer
For i = 1 To 950

Cells ( i , 5 * m − 1) = Rnd()
Next i
Range(Cells (1, 5 * m − 2), Cells (950, 5 * m − 1))

. Sort Key1:=Range(Cells(1, 5 * m − 1), Cells (950, 5 * m − 1)), Order1
:=xlAscending

Range(Cells (1, 5 * m − 1), Cells (1000, 5 * m − 1)).Clear
End Sub
Private Sub copy02()
m = Worksheets(”m”).Cells (1, 1)
Range(Cells(476, 5 * m − 2), Cells (950, 5 * m − 2)).Copy
Range(Cells (1, 5 * m − 1), Cells (475, 5 * m − 1)). PasteSpecial
Range(Cells(476, 5 * m − 2), Cells (950, 5 * m − 2)).Delete Shift :=

xlShiftUp
End Sub
Private Sub hyperreproductive01 ()
m = Worksheets(”m”).Cells (1, 1)
Range(Cells(451, 5 * m − 2), Cells (475, 5 * m − 1)).Copy
Range(Cells(476, 5 * m − 2), Cells (500, 5 * m − 1)). PasteSpecial
End Sub
Private Sub kids01 ()
m = Worksheets(”m”).Cells (1, 1)
Range(Cells (1, 5 * m − 2), Cells (500, 5 * m − 1)).Copy
Range(Cells(501, 5 * m − 2), Cells (1000, 5 * m − 1)). PasteSpecial
End Sub
Private Sub copy03()
m = Worksheets(”m”).Cells (1, 1)
Range(Cells (1, 5 * m), Cells (1000, 5 * m)) = Worksheets(”G0”).Range(”Q1:

Q1000”).Value
End Sub
Private Sub x01()
m = Worksheets(”m”).Cells (1, 1)
Dim i As Integer
For i = 1 To 1000

Cells ( i , 5 * m + 1) = 0.5 * Cells ( i , 5 * m − 2) + 0.5 * Cells ( i , 5 *
m − 1) + 1 * Cells ( i , 5 * m)

Next i
End Sub
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