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Abstract
A ten-layer feed forward network was constructed in the presence of an exogenous alternating magnetic field. Results indicate
that for rate coding, the firing rate is increased in the presence of an exogenous alternating magnetic field and particularly
with increasing enhancement of the alternating magnetic field amplitude. For temporal coding, in the presence of alternating
magnetic field, the interspike intervals of the spiking sequence are decreased and the distribution of interspike intervals tends
to be uniform.
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1. Introduction

Previous study of spiking neuron models have shown that an applied
magnetic field can affect their firing activity [1]. Results show that an
external electric field has a significant impact on the performance of
a neural network. A strong external electric field facilitates the firing
of action potentials and enhances the mean firing rate of the neurons
that comprise the network, but simultaneously, the synchronicity of
network activity is disrupted. Yu et al. [2] investigated the effects of
an induced electric field on a neural network and the result indicated
that an inhibitory interneuronal network can only be synchronized
within the range of gamma frequency (30–80 Hz). In this brief re-
port, the properties of neural coding in spiking neural networks with
biophysically reduced neurons in the presence of an exogenous alter-
nating magnetic field are derived. Ebrahimian et al. [3] studies the
parametric modeling of neurons under an extremely low frequency
(50 Hz) sinusoidal environmental magnetic field. Electrophysiologi-
cal recording from cells under current clamp were conducted to show
the effects of magnetic fields on ion channels of the Hodgkin–Huxley
cell model. Results indicated that low frequency magnetic fields with
50 Hz frequency directly lead to change in the bioelectric activities
of neurons through a change in the amount and rate of open and
closed ionic channels. The technique of magnetic stimulation has the
potential to contribute to the study of the peripheral nervous system.
Ruohonen et al. [4] discussed mathematical modeling of magnetic
stimulation of the peripheral nerves. The work reveals recent theo-
retical advances, which may give new insight into the exact site of
activation and help to understand the phenomena involved. Modolo
et al. [5] studied the single neuron and neuronal network exposed
to an extremely low frequency magnetic field. Results shed light
on its effect on neuronal activity from the single cell to the network
level, and illustrate the importance of a number of factors both in
extremely low frequency magnetic field characteristics and brain

tissue properties in determining the outcome of exposure. To provide
insights into the modulation of neuronal activity by an extremely
low frequency magnetic field, Yi et al. [6] presented a conductance-
based neuronal model and introduced an extremely low frequency
sinusoidal magnetic field as an additive voltage input. By analyzing
spike times and spiking frequency, it was observed that neurons with
distinct spiking patterns exhibited different response properties in
the presence of magnetic field exposure. Camera et al. [7] performed
simulations on neuronal models exposed to a specific pulsed mag-
netic field signal that seemed to be very effective in modulating the
complex neuroelectromagnetic pulse. Results showed that such a
pulse can silence the neurons of a feed-forward network for signal
intensities that depend on the strength of the bias current and en-
dogenous noise level. Jiang et al. [8] investigated the response of a
two-dimensional neuronal model under an extremely low frequency
magnetic field at different frequency and amplitude. By analyzing
the shift in neuronal spike timing and average spiking frequency, it
was found that the perturbation of neuronal spike timing and aver-
age spiking frequency induced by the magnetic field exposure was
maximized for several harmonics of the intrinsic spiking frequency
of the neuron. The study may contribute to guide future magnetic
therapeutic developments.

2. Methods

The biophysically reduced model neuron of Izhikevich [9–11] was
chosen as the deep spiking neural network unit; a deep spiking neural
network based on synaptic plasticity was constructed; the firing
rate and the interspike intervals (ISIs) of the spike sequence of the
Izhikevich model neuron is close to the spiking firing properties
of neurons and suited to large-scale simulation. The discrete time
version of the Izhikevich model is given as:
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v(t) = v(t−1)+∆t(0.04v(t−1)2+

5v(t−1)+140−u(t−1)+ I),

u(t) = u(t−1)+∆ta(bv(t−1)−u(t−1)),

if v(t)≥ 30mV, then

{
v← c;

u← u+d;
(1)

where v(t) gives the membrane voltage of the model neuron, u(t) is
the recovery variable for membrane voltage, I gives the sum of exter-
nal input current and synaptic currents, and ∆t is the timestep. The
Izhikevich neuron model can simulate a dozen different firing states
of biological neurons by adjusting the dimensionless parameters a,
b, c, d. The spiking pattern is used as the firing pattern of excitatory
neurons in the neural network.Commonly used parameters are: a =

0.02; b = 0.2; c = 65; and d = 8, whereas, the low-threshold spiking
pattern used to simulate the firing pattern of inhibitory interneurons
in the network used: a = 0.02; b = 0.25; c = −65; d = 2.

2.1. The neuron model with applied magnetic field

Biologically, the extremely low frequency alternating magnetic field
exerts effects on the firing sequence of a neuron through an induced
electric field. According to the Faraday’s law of electromagnetic
induction, an alternating magnetic field produces an induced alter-
nating electric field described by [2]:

E(t) =
r
2

dB(t)
dt

(2)

where r is the radius of the alternating magnetic field. A sinusoidal
magnetic field generates an induced electric field with a cosine form.

The relationship between the external electric field E and the
voltage ∆V can be described by [2]:

d∆V
dt

+
∆V
τ

=
λ

τ
E (3)

where τ is the Maxwell–Wagner time constant [12], and λ is the
polarization length [13].

According to equations (2) and (3), when an alternating magnetic
field is B(t) = Asin(2π f t), the voltage ∆V is given by [2]:

∆V (t) = πr f Aλ
cos(2π f t)+2π f τ sin(2π f t)

1+(2π f τ)2 (4)

The magnitude of τ is generally 10−10 s and the frequency f
is located in the range of the extremely low frequency, 2π f τ � 1.
Therefore, the voltage ∆V is approximated as follows [2]:

∆V (t)≈ πR f Aλ cos(2π f t). (5)

The voltage ∆V is an external voltage disturbance. The neuron
membrane voltage v(t) in the presence of an exogenous alternating
magnetic field B(t) = Asin(2π f t) can be described as follows [14]:

v(t)→ v(t)+∆V (t). (6)

The neuron model to be included in the spiking neural networks
under the alternating magnetic field can be obtained by introducing
equation (6) into the mathematical model of the Izhikevich quadratic
model. The complexity of the Hodgkin–Huxley neuron model is
high, so its simulation time of the Hodgkin–Huxley neuron model is
too long for simulation of deep neural networks even with a super-

computer [15]. However, the Izhikevich neuron model gives qual-
itatively similar responses to the Hodgkin–Huxley neuron model
and can simulate the firing behavior of real neurons. Therefore,
the Izhikevich neuron model is suitable for simulating neuron dis-
charge in large-scale deep neural networks. The answer as to whether
super-computational neuroscience can facilitate implementation of
Hodgkin–Huxley neuron models in deep neural networks remains to
be seen [16].

2.2. Synaptic plasticity

When the j th post-synaptic neuron is not activated by the i th pre-
synaptic neuron, the excitatory and inhibitory synaptic conductances
depend on exponential decay, respectively:
Excitatory synapse:

gex(t) = gex(t−1)−∆t(gex(t−1)/τex) (7)

Inhibitory synapse:

gin(t) = gin(t−1)−∆t(gin(t−1)/τin). (8)

where gex(t) is the excitatory synaptic conductance, gin(t) the in-
hibitory synaptic conductance, ∆t is the differential step, τex and
τin respectively represent the decay constants of the excitatory and
inhibitory conductances. In this study, τex = τin = 5 ms.

When the jth postsynaptic neuron is activated by the ith pre-
synaptic neuron, the excitatory and inhibitory synaptic conductances
are given by:
Excitatory synapse:

gex(t) = gex(t−1)+ ḡex(t), (9)

Inhibitory synapse:

gin(t) = gin(t−1)+ ḡin(t), (10)

where ḡex(t) and ḡin(t) gives the increment of excitatory and in-
hibitory conductances, respectively. In the excitatory synapse model,
ḡex(t) = ḡex(t−1)+gmaxwi, j(t); wi, j(t) is the synaptic modification
function; 0≤ ḡex(t)≤ gmax(gmax = 0.015). When ḡex(t) is less than
0, ḡex(t) is set to 0; when ḡex(t) is larger than gmax, ḡex(t) is set to
gmax. In the inhibitory synapse model, ḡin(t) is set to 0.05.

2.3. A discrete time feed forward neural network

Fig. 1. Schematic illustration of the deep spiking feed forward neural net-
work.Input to the deep spiking neural network is Poissonian. Gi is the synap-
tic conductance matrix of neurons in the ith layer in the deep spiking neural
network, N is the number of neurons in each layer (except Layer 10), k and j
give the pre- and post-synaptic neuron, respectively.
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A deep spiking neural network with ten-layer feed forward topology
is shown in Fig. 1. A oisson impulse distribution approximated
the firing sequence of real neurons and was used as the input to
the deep spiking neural network. Layers 1 to 9 each contained one
hundred neurons. There was only one neuron in the output Layer
10. The ratio of excitatory neurons to inhibitory neurons was 4:1.
When an afferent neuron was excitatory, the synapse contacting the
postsynaptic neuron was excitatory, whereas, when the pre-synaptic
neuron was inhibitory, the synapse onto the postsynaptic neuron was
inhibitory. Thhere was no learning (retrograde information flow) in
the simulated network [17]. The discrete timestep model of a deep
spiking neural network was constructed as follows:

vi, j(t) = vi, j(t−1)+∆t(0.04v2
i, j(t−1)+5vi, j(t−1)+140

−ui, j(t−1)+ Iext + Isyn
i, j (t)),

ui, j(t) = ui, j(t−1)+∆ta(bvi, j(t−1)−ui, j(t−1)),

Isyn
i, j (t) =

N

∑
k=1

gi(k, j, t)(E− vi, j(t−1)),

Gi = {gi(k, j, t) | i = 1,2,3, . . . ,NL;

k = j = 1,2,3, . . . ,N; t = 1,2,3, . . . ,T

(11)

where vi, j(t) is the postsynaptic voltage of the j th neuron in the
ith layer, ui, j(t) is the recovery variable of the j th neuron in the ith
layer, ∆t is the time step, Iext is the external thalamic input, Ii, j(t) is
the sum of synaptic currents of the j th neuron in the ith layer, Gi
is the synaptic conductance matrix of the neurons in the ith layer,
gi(k, j, t) which is the synaptic conductance between presynaptic
neuron k and postsynaptic neuron j in the ith layerwas regulated by
the model of synaptic plasticity described in Section 2.2, NL is the
number of layers in the network, N is the number of neurons in each
layer (excepting Layer 10), T is the simulation time, and E is the
reversal potential. When the presynaptic neuron k is excitatory, Eex
was 0 mV when the presynaptic neuron k is inhibitory, Ein(t) was 70
mV.

The parameter values for network initialization (t = 1), were:

vi, j(t = 1)=−65mV;ui, j(t = 1)= bvi, j(t = 1);gi(k, j, t = 1)= 0.015.

(12)

3. Results
Here, spiking neural network behavior was analyzed by using rate
coding and temporal coding. Rate coding was employed as it one
of the most widely reported neural information coding methods in
neuroscience. Both current and traditional empirical results tend to
be reported as rates [18–22]. The firing rate for a given temporal
window is calculated as:

(1) Assuming tn is the nth firing time of neuron i, the firing
sequence Hi of neuron i can be described as follows:

Hi = {· · · tn
i · · ·}, t1

i < t2
i < · · ·< tn

i < · · · . (13)

(2) Temporal window length is set to tw. The firing rate γi of
neuron i in the temporal window [t− tw, t] is then:

γi(t, tw) =
ηi(t− tw, t)

tw
(14)

Table 1. Mean firing rate under alternating magnetic field

Alternating magnetic
field amplitude

Distribution range of
the neuron mean

firing rates

Mean firing rates of
whole network

No magnetic field 5.20 ∼ 9.99 8.67 ± 1.17
5 mT 5.41 ∼ 10.00 8.72 ± 1.18
10 mT 5.41 ∼ 10.83 9.01 ± 1.31
15 mT 5.62 ∼ 11.88 9.64 ± 1.48
20 mT 5.62 ∼ 10.84 9.66 ± 1.33
25 mT 5.83 ∼ 12.50 10.19 ± 1.60

Where ηi(·) is the firing number of neuron i in the temporal window [t− tw, t].
For this analysis the temporal window length tw was 200 ms and the temporal
window step size was 50 ms.

The range of magnetic field amplitude A was chosen to be 5 25
mT. When the amplitude A of the alternating magnetic field was 5
mT, 10 mT, 15 mT, 20 mT, 25 mT, the dynamic changes in mean
firing rate of the deep spiking neural network are given in Fig. 2.
The rate coding activity pattern of the neuron under the alternating
magnetic field shows no change when compared with the condition
of no magnetic field. With increased alternating magnetic field
amplitude, the firing pattern of the neuron remains unchanged and
firing synchronization becomes poor. Distribution range of the mean
neuronal firing rates and the mean firing rate of the whole network
under different alternating magnetic field amplitudes are given in
Table 1.

From Table 1, the distribution range of mean firing rate of neuron
expands with increased amplitude of the alternating magnetic field.
The mean firing rate of the whole network is increased with increased
amplitude of the alternating magnetic field. According to classical
Hebbian coding theory, under the stimulation of an alternating mag-
netic field, the neurons whose firing rates increase simultaneously
can beidentified as a functional neuron population to characterize the
stimulation pattern of an alternating magnetic field.

The mean rate coding method can reflect the dynamic change of
the mean firing rate. However, the real-time performance of the mean
rate coding is poor since the firing rate of neurons obtained from a
given temporal window is an average value. Alternatively, temporal
coding shows the real-time evolution of interspike intervals of a spike
train generated by a neural network. Thus, temporal coding is can
be used to analyze the coding properties of spiking neural networks
under alternating magnetic field stimulation.

Temporal coding relies on ISIs rather than statistical averaging
to explore spike train timing. The pattern of the spike firing sequence
is given by the intervals between spikes [23, 24]. Three types of
descriptive methods ISI coding include the: ISI time domain dia-
gram, ISI histogram, and joint ISI distribution. The ISI time domain
diagram gives the distribution of ISIs and shows the dynamics of
firing patterns in neural networks. The ISI histogram illustrates the
overall distribution of ISIs. The joint ISI distribution can be used to
identify specific recurrence patterns from the perspective of third-
order coding. ISI time domain diagrams of a spiking neural network
when the amplitude A of an alternating magnetic field stimulus is 5
mT, 10 mT, 15 mT, 20 mT, and 25 mT, are shown in Fig. 3.

Simulation results have shown that the temporal coding pattern
of a neuron stimulated by an alternating magnetic field does not
change compared with the condition where the alternating magnetic
field is absent. With increased magnetic field amplitude, temporal
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Fig. 2. Dynamic change of mean firing rate of the neuron under alternating magnetic field stimulation. Horizontal axis indicates simulation time and the
vertical axis gives neuron index. Vertical color scale to the right ranges from red (high firing rate) to blue (low firing rate). a, the mean firing rate of the neurons
in layer 1 is lower than the neurons in other layers, mean firing rate of neurons during the initial period is higher than other periods. b–f, under the alternating
magnetic field, mean firing rate of neurons in layer 1 is also lower than the neurons in other layers; the mean firing rate of the neurons during the initial period
is higher than other periods.

coding is enhanced. Correspondingly, the amplitude A of the alter-
nating magnetic field is 5 mT, 10 mT, 15 mT, 20 mT, 25 mT, the
distribution of ISI histograms of spiking neural network are shown

in Fig. 4. Simulation results show that the distribution of the ISIs
becomes uniform and ISIs become shorter under alternating mag-
netic field stimulation. Lower ISI values correspond to higher firing
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Fig. 3. ISI time domain diagram for a deep spiking neural network stimulated by an alternating magnetic field. Horizontal axis gives discrete time points of
spike firing, vertical axis gives ISI value at spike firing time. For the 0–200 ms period the ISI distributionI was unstable and the distribution range of ISIs was
250 ms under the different amplitudes of the alternating magnetic field. During the period 200–1000 ms ISIs were divided into two populations in response to
the different amplitudes of the alternating magnetic field. The top layer gives the ISIs between bursts of action potentials and ranges over 150–200 ms. The
bottom layer gives ISIs inside the bursts of action potentials and ISIs range over 100–150 ms. Increased amplitude of the alternating magnetic field during the
period 0–200 ms, decreases the ISI range, during the period from 200–1000 ms, the distribution range of the bottom layer ISIs is decreased.

rates. The ISI histogram indicates that an alternating magnetic field
can increase the firing rate of a neural networke, which is consistent
with the results of rate coding. Likewise, when the amplitude A of an
alternating magnetic field is 5 mT, 10 mT, 15 mT, 20 mT, 25 mT, the
joint ISI distributions of spiking neural network are shown in Fig. 5.

4. Conclusion

Based on a comprehensive analysis of ISI time domain diagrams, ISI
histograms, and joint ISI distributions, the ISIs of the neurons in a
spiking neural network are decreased and ISI distribution tends to

be uniform under the stimulus of an alternating magnetic field. The
firing rate is significantly increased under alternating magnetic field
stimulation and the rate coded response is enhanced with increased
stimulation intensity. The ISIs of the spiking sequence are decreased
and the distribution of the ISIs tends be uniform under alternating
magnetic field stimulation. Reduction of the spiking train ISIs gen-
erated by a spiking neural network corresponds to the higher firing
rate so the temporal coding properties of spiking neural network
under the alternating magnetic field become more consistent with
rate coded properties.
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Fig. 4. ISI histogram obtained from a deep spiking neural network under alternating magnetic field stimulation. The horizontal axis gives different values of
ISIs, vertical axis gives the repeated number of ISIs as a proportion of the total number of ISIs. a, the distribution of the ISIs is concentrated in a 100 ms period
and the distribution of ISIs in the other period is less without stimulation. b–f, in the presence of an alternating magnetic field, the distribution of the ISIs is also
concentrated within 100 ms. With increased amplitude of the alternating magnetic field, the distribution of ISIs in 100 ms is decreased and the distribution of
ISIs in the other period is increased.
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[12] Bédard C, Kröger H, Destexhe A (2006) Model of low-pass filtering
of local field potentials in brain tissue. Physical Review E Statistical
Nonlinear & Soft Matter Physics 73(5 Pt 1), 051911.

[13] Radman T, Ramos RL, Brumberg JC, Bikson M (2009) Role of Cortical
Cell Type and Morphology in Suband Suprathreshold Uniform Electric
Field Stimulation. Brain Stimulation 2(4), 215-228, e213.

[14] Giann M, Liberti M, Apollonio F, Inzeo GD (2006) Modeling electro-
magnetic fields detectability in a HH-like neuronal system: stochastic
resonance and window behavior. Biological Cybernetics 94(2), 118-127.

[15] Djurfeldt M, Lundqvist M, Johansson C, Rehn M, Ekeberg O, Lansner
A (2008) Brain-scale simulation of the neocortex on the IBM Blue
Gene/L supercomputer. IBM Journal of Research & Development 52(1,
2), 31-41.

[16] Graben PB, Zhou C, Thiel M, Kurths J (2008) Lectures in Supercompu-
tational Neuroscience: Dynamics in Complex Brain Networks. Journal
of the Computational Structural Engineering Institute of Korea 27(4),
297-303.

[17] Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553),
436-444.

[18] Paoli M, Weisz N, Antolini R, Haase A (2016) Spatially resolved time-
frequency analysis of odour coding in the insect antennal lobe. European
Journal of Neuroscience 44(6), 2387-2395.

[19] Won JH, Tremblay K, Clinard CG, Wright RA, Sagi E, Svirsky M (2016)
The neural encoding of formant frequencies contributing to vowel iden-
tification in normal-hearing listeners. Journal of the Acoustical Society
of America 139(1), 1-11.

[20] Jones HG, Brown AD, Koka K, Thornton JL, Tollin DJ (2015) Sound
frequency-invariant neural coding of a frequency-dependent cue to
sound source location. Journal of Neurophysiology 114(1), 531-539.

[21] Rosenbaum R, Zimnik A, Zheng F, Turner RS, Alzheimer C, Doiron B,
Rubin JE (2014) Axonal and synaptic failure suppress the transfer of
firing rate oscillations, synchrony and information during high frequency
deep brain stimulation. Neurobiology of Disease 62(2), 86-99.

[22] Alvespinto A, Palmer AR, Lopezpoveda EA (2014) Perception and
coding of high-frequency spectral notches: potential implications for
sound localization. Frontiers in Neuroscience 8(8), 112.

[23] Tsubo Y, Isomura Y, Fukai T (2012) Power-Law Inter-Spike Interval
Distributions Infer a Conditional Maximization of Entropy in Cortical
Neurons. Plos Computational Biology 8(4), e1002461.

[24] Yang Y, Ramamurthy B, Neef A, Xu-Friedman MA (2016) Low Somatic
Sodium Conductance Enhances Action Potential Precision in Time-
Coding Auditory Neurons. Journal of Neuroscience 36(47), 11999-
12009.


	Introduction
	Methods
	The neuron model with applied magnetic field
	Synaptic plasticity
	A discrete time feed forward neural network

	Results
	Conclusion

